
Dam break free surface flow

Physical and numerical side of the 

problem:

• In this case we are going to use the volume of 

fluid (VOF) method.  

• This method solves the incompressible Navier-

Stokes equations plus an additional equation to 

track the phases (free surface location).

• As this is a multiphase case, we need to define 

the physical properties for each phase involved 

(viscosity, density and surface tension).

• The working fluids are water and air.

• Additionally, we need to define the gravity vector 

and initialize the two flows.

• This is a three-dimensional and unsteady case.

• The details of the case setup can be found in 

the following reference:

A Volume-of-Fluid Based Simulation Method for Wave 

Impact Problems. 

Journal of Computational Physics 206(1):363-393. 

June, 2005.
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Workflow of the case
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Initial conditions – Coarse mesh Solution at Time = 1 second – Coarse mesh
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At the end of the day, you should get something like this



VOF Fraction (Free surface tracking) – Very fine mesh
http://www.wolfdynamics.com/validations/3d_db/dbreak.gif
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• Let us run this case. Go to the directory:

$PTOFC/3d_damBreak 

• $PTOFC is pointing to the directory where you extracted the training material.

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this 

way, you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 



What are we going to do?
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• We will use this case to introduce the multiphase solver interFoam.

• interFoam is a solver for 2 incompressible, isothermal immiscible fluids using a VOF 

(volume of fluid) phase-fraction based interface capturing approach 

• We will define the physical properties of two phases and we are going to initialize 

these phases.

• We will define the gravity vector in the dictionary g.

• After finding the solution, we will visualize the results. This is an unsteady case so 

now we are going to see things moving.

• We are going to briefly address how to post-process multiphase flows.

• We are going to generate the mesh using snappyHexMesh, but for the purpose of this 

tutorial we are not going to discuss the dictionaries.

• Remember, different solvers have different input dictionaries.



The constant directory

• In this directory, we will find the following compulsory dictionary files:

• g

• transportProperties

• turbulenceProperties

• g contains the definition of the gravity vector. 

• transportProperties contains the definition of the physical properties of 

each phase.

• turbulenceProperties contains the definition of the turbulence model to 

use. 
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• This dictionary file is located in the directory 
constant.

• For multiphase flows, this dictionary is 

compulsory.

• In this dictionary we define the gravity vector (line 

19).

• Pay attention to the class type (line 12).

The g dictionary file

8  FoamFile

9  {

10 version     2.0;

11 format      ascii;

12 class       uniformDimensionedVectorField;

13 location    "constant";

14 object      g;

15 }

17 

18 dimensions      [0 1 -2 0 0 0 0];

19 value           (0 0 -9.81);
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• This dictionary file is located in the directory 
constant.

• We first define the name of the phases (line 17). 

In this case we are defining the names water and 

air. The first entry in this list is the primary phase 

(water).

• The name of the primary phase is the one you will 

use to initialize the solution.

• The name of the phases is given by the user.

• In this file we set the kinematic viscosity (nu), 

density (rho) and transport model 

(transportModel) of the phases.

• We also define the surface tension (sigma).

The transportProperties dictionary file

17 phases (water air);

18 

19 water

20 {

21 transportModel  Newtonian;

22 nu              [0 2 -1 0 0 0 0] 1e-06;

23 rho             [1 -3 0 0 0 0 0] 1000;

24 }

25 

26 air

27 {

28 transportModel  Newtonian;

29 nu              [0 2 -1 0 0 0 0] 1.48e-05;

30 rho             [1 -3 0 0 0 0 0] 1;

31 }

32 

33 sigma           [1 0 -2 0 0 0 0] 0.07;

Primary phase 
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• In this dictionary file we select what model we would like to use (laminar or 

turbulent).

• This dictionary is compulsory.

• In this case we use a RANS turbulence model (kEpsilon).

The turbulenceProperties dictionary file

17 simulationType    RAS;

18

19 RAS

20 {

21 RASModel kEpsilon;

22

23 turbulence on;

24

25 printCoeffs on;

26 }

3D Dam break – Free surface flow



The 0 directory

• In this directory, we will find the dictionary files that contain the boundary and 

initial conditions for all the primitive variables.

• As we are solving the incompressible RANS Navier-Stokes equations using 

the VOF method, we will find the following field files:

• alpha.water (volume fraction of water phase)

• p_rgh (pressure field minus hydrostatic component)

• U (velocity field)

• k (turbulent kinetic energy field)

• epsilon (rate of dissipation of turbulence energy field)

• nut (turbulence viscosity field)
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The file 0/alpha.water

17 dimensions      [0 0 0 0 0 0 0];

18 

19 internalField   uniform 0;

20 

21 boundaryField

22 {

23 front

24 {

25 type            zeroGradient;

26 }

27 back

28 {

29 type            zeroGradient;

30 }

31 left

32 {

33 type            zeroGradient;

34  }

35 right

36 {

37 type            zeroGradient;

38 }

39 bottom

40 {

41 type            zeroGradient;

42 }

43 top

44 {

45 type            inletOutlet;

46 inletValue      uniform 0;

47 value           uniform 0;

48 }

49 stlSurface

50 {

51 type            wall;

52 }

53 

54 }

• This file contains the boundary and initial conditions 

for the non-dimensional scalar field alpha.water

• This file is named alpha.water, because the 

primary phase is water (we defined the primary 
phase in the transportProperties dictionary).

• Initially, this field is initialize as 0 in the whole domain 

(line 19). This means that there is no water in the 

domain at time 0.  Later, we will initialize the water 

column and this file will be overwritten with a non-

uniform field for the internalField.

• For the front, back, left, right, bottom and 

stlSurface patches we are using a zeroGradient

boundary condition (we are just extrapolating the 

internal values to the boundary face).

• For the top patch we are using an inletOutlet

boundary condition.  This boundary condition avoids 

backflow into the domain. If the flow is going out it 

will use zeroGradient and if the flow is coming back 

it will assign the value set in the keyword inletValue

(line 46).
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The file 0/p_rgh

• This file contains the boundary and initial conditions 

for the dimensional scalar field p_rgh.  The 

dimensions of this field are given in Pascal (line 17)

• This scalar field contains the value of the static 

pressure field minus the hydrostatic component.

• This field is initialize as 0 in the whole domain (line 

19). 

• For the front, back, left, right, bottom and 

stlSurface patches we are using a 

fixedFluxPressure boundary condition (refer to the 

source code or doxygen documentation to know 

more about this boundary condition).

• For the top patch we are using the totalPressure

boundary condition (refer to the source code or 

doxygen documentation to know more about this 

boundary condition).
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17 dimensions      [1 -1 -2 0 0 0 0];

18 

19 internalField   uniform 0;

20 

21 boundaryField

22 {

23 front

24 {

25 type            fixedFluxPressure;

26 value uniform 0;

27 }

28 back

33 left

38 right

43 bottom

48 top

49 {

50 type            totalPressure;

51 p0 uniform 0;

52 U U;

53 phi phi;

54 rho rho;

55 psi none;

56 gamma 1;

57 value uniform 0;

58 }

59 stlSurface

60 {

61 type            fixedFluxPressure;

62 value uniform 0;

63 }

64 

65 }



The file 0/U

• This file contains the boundary and initial conditions 

for the dimensional vector field U. 

• We are using uniform initial conditions and the 

numerical value is (0 0 0) (keyword internalField in 

line 19).

• The front, back, left, right, bottom and stlSurface

patches are no-slip walls, therefore we impose a 

fixedValue boundary condition with a value of (0 0 0) 

at the wall.

• For the top patch we are using the 

pressureInlterOutletVelocity boundary condition

(refer to the source code or doxygen documentation 

to know more about this boundary condition).
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17 dimensions      [0 -1 -1 0 0 0 0];

18 

19 internalField   uniform (0 0 0);

20 

21 boundaryField

22 {

23 front

24 {

25 type            fixedValue;

26 value uniform (0 0 0);

27 }

28 back

33 left

38 right

43 bottom

48 top

49 {

50 type            pressureInletOutletVelocity;

51 value uniform (0 0 0);

52 }

53 stlSurface

54 {

55 type            fixedValue;

56 value uniform (0 0 0);

57 }

58 

59 }



The file 0/k

• This file contains the boundary and initial conditions 

for the dimensional scalar field k. 

• This scalar (turbulent kinetic energy), is related to the 

turbulence model.

• This field is initialize as 0.1 in the whole domain, and 

all the boundary patches take the same value 

($internalField). 

• For the front, back, left, right, bottom and 

stlSurface patches we are using a 

kqRWallFunction boundary condition, which applies 

a wall function at the walls (refer to the source code 

or doxygen documentation to know more about this 

boundary condition).

• For the top patch we are using the inletOutlet

boundary condition, this boundary condition handles 

backflow (refer to the source code or doxygen 

documentation to know more about this boundary 

condition).

• We will deal with turbulence modeling later.
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17 dimensions      [0 2 -2 0 0 0 0];

18 

19 internalField   uniform 0.1;

20 

21 boundaryField

22 {

23 “(front|back|left|right|bottom|stlSurface)”

24 {

25 type            kqRWallFunction;

26 value $internalField;

27 }

28

29 top

30 {

31 type            inletOutlet;

32 inletValue $internalField;

33 value $internalField;

34 }

35 

36 }



The file 0/epsilon

• This file contains the boundary and initial conditions 

for the dimensional scalar field epsilon. 

• This scalar (rate of dissipation of turbulence energy), 

is related to the turbulence model.

• This field is initialize as 0.1 in the whole domain, and 

all the boundary patches take the same value 

($internalField). 

• For the front, back, left, right, bottom and 

stlSurface patches we are using a 

epsilonWallFunction boundary condition, which 

applies a wall function at the walls (refer to the 

source code or doxygen documentation to know 

more about this boundary condition).

• For the top patch we are using the inletOutlet

boundary condition, this boundary condition handles 

backflow (refer to the source code or doxygen 

documentation to know more about this boundary 

condition).

• We will deal with turbulence modeling later.
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17 dimensions      [0 2 -3 0 0 0 0];

18 

19 internalField   uniform 0.1;

20 

21 boundaryField

22 {

23 “(front|back|left|right|bottom|stlSurface)”

24 {

25 type            epsilonWallFunction;

26 value $internalField;

27 }

28

29 top

30 {

31 type            inletOutlet;

32 inletValue $internalField;

33 value $internalField;

34 }

35 

36 }



The file 0/nut

• This file contains the boundary and initial conditions 

for the dimensional scalar field nut. 

• This scalar (turbulent viscosity), is related to the 

turbulence model.

• This field is initialize as 0 in the whole domain, and 

all the boundary patches take the same value 

($internalField). 

• For the front, back, left, right, bottom and 

stlSurface patches we are using a 

nutkWallFunction boundary condition, which applies 

a wall function at the walls (refer to the source code 

or doxygen documentation to know more about this 

boundary condition).

• For the top patch we are using the calculated

boundary condition, this boundary condition 

computes the value of nut from k and epsilon (refer to 

the source code or doxygen documentation to know 

more about this boundary condition).

• We will deal with turbulence modeling later.
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17 dimensions      [0 2 -1 0 0 0 0];

18 

19 internalField   uniform 0;

20 

21 boundaryField

22 {

23 “(front|back|left|right|bottom|stlSurface)”

24 {

25 type            nutkWallFunction;

26 value $internalField;

27 }

28

29 top

30 {

31 type            calculated;

32 value $internalField;;

33 }

34 

35 }



The system directory

• The system directory consists of the following compulsory dictionary files: 

• controlDict 

• fvSchemes

• fvSolution

• controlDict contains general instructions on how to run the case. 

• fvSchemes contains instructions for the discretization schemes that will be 

used for the different terms in the equations.  

• fvSolution contains instructions on how to solve each discretized linear 

equation system. 
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17   application     interFoam;

18   

19   startFrom       startTime;

20   

21   startTime       0;

22   

23   stopAt          endTime;

24   

25   endTime         8;

26   

27   deltaT          0.0001;

28   

29   writeControl    adjustableRunTime;

30   

31   writeInterval   0.02;

32   

33   purgeWrite      0;

34   

35   writeFormat     ascii;

36   

37   writePrecision  8;

38   

39   writeCompression uncompressed;

40   

41   timeFormat      general;

42   

43   timePrecision   8;

44   

45   runTimeModifiable yes;

46   

47   adjustTimeStep  yes;

48   

49   maxCo           0.5;

50   maxAlphaCo      0.5;

51   maxDeltaT       0.01;

• This case starts from time 0 (startTime), and it will run up to 8 

seconds (endTime). 

• The initial time step of the simulation is 0.0001 seconds 

(deltaT).

• It will write the solution every 0.02 seconds (writeInterval) of 

simulation time (runTime).  It will automatically adjust the time 

step (adjustableRunTime), in order to save the solution at the 

precise write interval.

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat).

• The write precision is  8 digits (writePrecision). It will only save 

eight digits in the output files.

• And as the option runTimeModifiable is on, we can modify all 

these entries while we are running the simulation.

• In line 47 we turn on the option adjustTimeStep. This option 

will automatically adjust the time step to achieve the maximum 

desired courant number (lines 49-50). We also set a maximum 

time step in line 51.

• Remember, the first time step of the simulation is done using 

the value set in line 27 and then it is automatically scaled to 

achieve the desired maximum values (lines 49-51). 

The controlDict dictionary
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55   functions

56   {

60   minmaxdomain

61   {

62   type fieldMinMax;

63   

64   functionObjectLibs ("libfieldFunctionObjects.so");

65   

66   enabled true; //true or false

67   

68   mode component;

69   

70   writeControl timeStep;

71   writeInterval 1;

72   

73   log true;

74   

75   fields (p p_rgh U alpha.water k epsilon);

76   }

144  };

• Let us take a look at the functionObjects definitions.

• In lines 60-76 we define the fieldMinMax functionObject 

which computes the minimum and maximum values of 

the field variables (p p_rgh U alpha.water k epsilon).

The controlDict dictionary

3D Dam break – Free surface flow



55   functions

56   {

81   water_in_domain

82   {

83   type            volRegion;

84   functionObjectLibs ("libfieldFunctionObjects.so");

85   enabled         true;

86   

87   enabled         true;

88   

89   //writeControl     outputTime;

90   writeControl   timeStep;

91   writeInterval  1;

92   

93   log             true;

94   

95   regionType      all;

96   

97  operation       volIntegrate;

98  fields

99  (

100  alpha.water

101  );

102  }

144  };

The controlDict dictionary

• Let us take a look at the functionObjects definitions.

• In lines 81-102 we define the volRegion functionObject 

which computes the volume integral (volIntegrate) of the 

field variable alpha.water in all the domain.

• Basically, we are monitoring the quantity of water in the 

domain.
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55   functions

56   {

107   probes1

108   {

109   type            probes;

110   functionObjectLibs ("libsampling.so");

111

112   pobeLocations

113   (

114  (0.82450002 0 0.021)

115  (0.82450002 0 0.061)

116  (0.82450002 0 0.101)

117  (0.82450002 0 0.141)

118  (0.8035 0 0.161)

119  (0.7635 0 0.161)

120  (0.7235 0 0.161)

121  (0.6835 0 0.161)

122   );

123   

124  fields

125  (

126  p p_rgh

127  );

128

129   writeControl   timeStep;

130   writeInterval 1;

131  }

144  };

The controlDict dictionary

• Let us take a look at the functionObjects definitions.

• In lines 107-131 we define the probes functionObject 

which sample the selected fields (lines 124-127) at the 

selected locations (lines 112-122).

• This sampling is done on-the-fly.  All the information 

sample by this functionObject is saved in the directory 
./postProcessing/probes1

• As we are sampling starting from time 0, the sampled 

data will be located in the directory:

postProcessing/probes1/0

• Feel free to open the files located in the directory 
postProcessing/probes1/0 using your favorite text 

editor.
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Sampling locations 
(probeLocations)



55   functions

56   {

135   yplus

136   {

137   type            yPlus;

138   functionObjectLibs ("libutilityFunctionObjects.so ");

139 enabled true;

140 writeControl outputTime;

141 }

144  };

The controlDict dictionary

• Let us take a look at the functionObjects definitions.

• In lines 135-141 we define the yplus functionObject 

which computes the yplus value.  

• This quantity is related to the turbulence modeling.

• This functionObject will save the yplus field in the 

solution directories with the same saving frequency as the 

solution (line 140).

• It will also save the minimum, maximum and mean values 

of yplus in the directory:

postProcessing/yplus
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17 ddtSchemes

18 {

19 default         Euler;

21 }

22 

23 gradSchemes

24 {

25 default         Gauss linear;

26 grad(U)         cellLimited Gauss linear 1;

27 }

28 

29 divSchemes

30 {

31 div(rhoPhi,U)  Gauss linearUpwindV grad(U);

32 div(phi,alpha)  Gauss vanLeer;

33 div(phirb,alpha) Gauss linear;

35 div(phi,k) Gauss upwind;

36 div(phi,epsilon) Gauss upwind;

37 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

38 }

39 

40 laplacianSchemes

41 {

42 default         Gauss linear corrected;

43 }

44 

45 interpolationSchemes

46 {

47 default         linear;

48 }

49 

50 snGradSchemes

51 {

52 default         corrected;

53 }

• In this case, for time discretization (ddtSchemes) we are 

using the Euler method.

• For gradient discretization (gradSchemes) we are using the 

Gauss linear as the default method and slope limiters 

(cellLimited) for the velocity gradient or grad(U). 

• For the discretization of the convective terms (divSchemes) 

we are using linearUpwindV interpolation method for the 

term div(rhoPhi,U).

• For the term div(phi,alpha) we are using vanLeer 

interpolation.  For the term div(phirb,alpha) we are using 

linear interpolation.  These terms are related to the volume 

fraction equation.

• For the terms div(phi,alpha) and div(phi,alpha) we are 

using upwind (these terms are related to the turbulence 

modeling).

• For the term div(((rho*nuEff)*dev2(T(grad(U))))) we are 

using linear interpolation (this term is related to the 

turbulence modeling).

• For the discretization of the Laplacian (laplacianSchemes

and snGradSchemes) we are using the Gauss linear 

corrected method 

• In overall, this method is second order accurate but a little bit 

diffusive. Remember, at the end of the day we want a 

solution that is second order accurate.

The fvSchemes dictionary
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17 solvers

18 {

19 "alpha.water.*"

20 {

21 nAlphaCorr      3;

22 nAlphaSubCycles 1;

23 cAlpha          1;

24 

25 MULESCorr       yes;

26 nLimiterIter    10;

27 

28 solver          smoothSolver;

29 smoother        symGaussSeidel;

30 tolerance       1e-8;

31 relTol          0;

32 }

33 

34 “(pcorr|pcorrFinal)”

35 {

36 solver          PCG;

37 preconditioner  DIC;

38 tolerance       1e-8;

39 relTol          0;

40 }

41 

42 p_rgh

43 {

44 solver          PCG;

45 preconditioner  DIC;

46 tolerance       1e-06;

47 relTol          0.01;

48 minIter         1;

49 }

• To solve the volume fraction or alpha.water (lines 19-32) we 

are using the smoothSolver method. 

• In line 25 we turn on the semi-implicit method MULES. The 

keyword nLimiterIter controls the number of MULES iterations 

over the limiter.

• To have more stability it is possible to increase the number of 

loops and corrections used to solve alpha.water (lines 21-22). 

• The keyword cAlpha (line 23) controls the sharpness of the 

interface (1 is usually fine for most cases).

• In lines 34-40 we setup the solver for pcorr and pcorrFinal 

(pressure correction).

• In this case pcorr is solved only one time at the beginning of 

the computation.

• In lines 42-49 we setup the solver for p_rgh.  

• The keyword minIter (line 48), means that the linear solver will 

do at least one iteration.

The fvSolution dictionary
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51 p_rghFinal

52 {

53 $p_rgh;

54 relTol          0;

55 minIter         1;

56 }

57 

58 "(U|UFinal)"

59 {

60 solver          PBiCGStab;

61 Preconditioner  DILU;

62 tolerance       1e-08;

63 relTol          0;

72 }

73

74 "(k|epsilon).*"

75 {

76 solver          PBiCGStab;

77 Preconditioner  DILU;

78 tolerance       1e-08;

79 relTol          0;

80 }

81 }

82 

• In lines 51-56 we setup the solver for p_rghFinal. This 

correspond to the last iteration in the loop (we can use a tighter 

convergence criteria to get more accuracy without increasing 

the computational cost)

• In lines 58-72 we setup the solvers for U and UFInal.  

• In lines 74-80 we setup the solvers for the turbulent quantities, 

namely, k and epsilon.

The fvSolution dictionary
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82

83 PIMPLE

84 {

85 momentumPredictor   yes;

86 nOuterCorrectors    1;

87 nCorrectors         3;

88 nNonOrthogonalCorrectors 1;

89 }

90 

91 relaxationFactors

92 {

93 fields

94 {

95 ".*" 1;

96 }

97 equations

98 {

99 ".*" 1;

100 }

101 }

102

• In lines 83-89 we setup the entries related to the pressure-

velocity coupling method used (PIMPLE in this case). Setting 

the keyword nOuterCorrectors to 1 is equivalent to running 

using the PISO method.

• To gain more stability we can increase the number of correctors 

(lines 87-88), however this will increase the computational cost. 

• In lines 91-101 we setup the under relaxation factors related to 

the PIMPLE method.  By setting the coefficients to one we are 

not under-relaxing.  

• The option momentumPredictor (line 85), is recommended for 

highly convective flows.

The fvSolution dictionary
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The system directory

• In the system directory you will find the following optional dictionary files: 

• decomposeParDict

• setFieldsDict

• decomposeParDict is read by the utility decomposePar.  This dictionary 

file contains information related to the mesh partitioning. This is used when 

running in parallel. 

• setFieldsDict is read by the utility setFields.  This utility set values on 

selected cells/faces. 
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The setFieldsDict dictionary

17 defaultFieldValues

18 (

19 volScalarFieldValue alpha.water 0

20 );

21 

22 regions

23 (

24 boxToCell

25 {

26 box (1.992 -10 0) (5 10 0.55);

27 fieldValues

28 (

29 volScalarFieldValue alpha.water 1

30 );

31 }

32 );

• This dictionary file is located in the directory system.

• In lines 17-20 we set the default value to be 0 in the whole 

domain (no water).

• In lines 22-32, we initialize a rectangular region (box) 

containing water (alpha.water 1). 

• In this case, setFields will look for the dictionary file 

alpha.water and it will overwrite the original values 

according to the regions defined in setFieldsDict.

• We initialize the water phase because is the primary phase in 
the dictionary transportProperties.

• If you are interested in initializing the vector field U, you can 

proceed as follows volVectorFieldValue U (0 0 0)
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The decomposeParDict dictionary

17 numberOfSubdomains 4;

18 

19 method scotch;

20 

• This dictionary file is located in the directory system.

• This dictionary is used to decompose the domain in order to run in parallel.

• The keyword numberOfSubdomains (line 17) is used to set the number of cores we want to use in the 

parallel simulation.

• In this dictionary we also set the decomposition method (line 19).  

• Most of the times the scotch method is fine.

• In this case we set the numberOfSubdomains to 4, therefore we will run in parallel using 4 cores.
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• When you run in parallel, the solution is saved in the directories processorN, where N stands for processor 

number.  In this case you will find the following directories with the decomposed mesh and solution: 
processor0, processor1, processor2, and processor3.



Running the case

1. $> foamCleanTutorials

2. $> rm –rf 0

3. $> blockMesh 

4. $> surfaceFeatureExtract 

5. $> snappyHexMesh -overwrite

6. $> createPatch -dict system/createPatchDict.0 -overwrite

7. $> createPatch -dict system/createPatchDict.1 -overwrite

8. $> checkMesh

9. $> paraFoam

3D Dam break – Free surface flow

• Let us first generate the mesh.  

• To generate the mesh will use snappyHexMesh (sHM), do not worry we will talk about 

sHM tomorrow.



Running the case

1. $> rm –rf 0

2. $> cp –r 0_org 0

3. $> setFields

4. $> paraFoam

5. $> decomposePar

6. $> mpirun –np 4 interFoam –parallel | tee log.interFoam

7. $> reconstructPar

8. $> paraFoam

3D Dam break – Free surface flow

• Let us run the simulation in parallel using the solver interFoam. 

• We will talk more about running in parallel tomorrow 

• To run the case, type in the terminal:



Running the case

• In steps 1-2 we copy the information of the backup directory 0_org into the directory 

0. We do this because in the next step the utility setFields will overwrite the file 

0/alpha.water, so it is a good idea to keep a backup.

• In step 3 we initialize the solution using the utility setFields. This utility reads the 

dictionary setFieldsDict located in the system directory. 

• In step 4 we visualize the initialization using paraFoam. 

• In step 5 we use the utility decomposePar to do the domain decomposition needed 

to run in parallel. 

• In step 6 we run the simulation in parallel.  Notice that np means number of 

processors and the value used should be the same number as the one you set in the 
dictionary decomposeParDict. 

• If you want to run in serial, type in the terminal: interFoam | tee log

• In step 7 we reconstruct the parallel solution. This step is only needed if you are 

running in parallel.

• Finally, in step 8 we visualize the solution. 

3D Dam break – Free surface flow



• To plot the sampled data using gnuplot you can proceed as follows. To enter to the 

gnuplot prompt type in the terminal:

1. $> gnuplot

3D Dam break – Free surface flow

1. set xlabel 'Time (seconds)'

2. set ylabel 'Water volume integral'

3. gnuplot> plot 'postProcessing/water_in_domain/0/volRegion.dat' u 1:2 w l title 

'Water in domain'

4. set xlabel 'Time (seconds)'

5. set ylabel 'Pressure'

6. plot 'SPHERIC_Test2/case.txt' u 1:2 w l title 'Experiment', 

'postProcessing/probes1/0/p' u 1:2 w l title 'Numerical simulation'

7. gnuplot> exit

To exit gnuplot

• Now that we are inside the gnuplot prompt, we can type,



• The output of steps 3 and 6 is the following:

3D Dam break – Free surface flow

alpha.water vs. time p vs. time (at probe 0)

      

     

      

     

      

     

      

     

      

     

         

 
 
  
  
 
 
  
 
 
  
 
  
 
  
 

              

               

     

 

    

    

    

    

     

     

     

     

     

         

 
 
 
  
 
  
  
 
  
  
 
 
 
  

              

          

                    



The output screen

3D Dam break – Free surface flow

Courant Number mean: 0.0099001831 max: 0.50908228

Interface Courant Number mean: 0.0012838336 max: 0.05362054

deltaT = 0.00061195165

Time = 0.41265658

PIMPLE: iteration 1

smoothSolver:  Solving for alpha.water, Initial residual = 0.00035163885, Final residual = 9.3476388e-11, No Iterations 2

Phase-1 volume fraction = 0.20706923  Min(alpha.water) = -9.1300674e-12  Max(alpha.water) = 1.0000113

MULES: Correcting alpha.water

MULES: Correcting alpha.water

MULES: Correcting alpha.water

Phase-1 volume fraction = 0.20706923  Min(alpha.water) = -1.2354076e-07  Max(alpha.water) = 1.0000113

DILUPBiCGStab:  Solving for Ux, Initial residual = 0.00057936556, Final residual = 2.3207684e-09, No Iterations 1

DILUPBiCGStab:  Solving for Uy, Initial residual = 0.0021990412, Final residual = 7.228845e-09, No Iterations 1

DILUPBiCGStab:  Solving for Uz, Initial residual = 0.00041048425, Final residual = 3.946807e-10, No Iterations 1

DICPCG:  Solving for p_rgh, Initial residual = 0.0013260985, Final residual = 1.2556023e-05, No Iterations 4

DICPCG:  Solving for p_rgh, Initial residual = 1.4873252e-05, Final residual = 8.7706547e-07, No Iterations 13

time step continuity errors : sum local = 2.166836e-08, global = -4.8300033e-11, cumulative = -5.8278026e-05

DICPCG:  Solving for p_rgh, Initial residual = 1.6925332e-05, Final residual = 8.9811533e-07, No Iterations 9

DICPCG:  Solving for p_rgh, Initial residual = 1.1731393e-06, Final residual = 4.991128e-07, No Iterations 1

time step continuity errors : sum local = 1.2328745e-08, global = -3.6165262e-09, cumulative = -5.8281643e-05

DICPCG:  Solving for p_rgh, Initial residual = 8.2834963e-07, Final residual = 4.6047958e-07, No Iterations 1

DICPCG:  Solving for p_rgh, Initial residual = 4.6053278e-07, Final residual = 4.65519e-07, No Iterations 1

time step continuity errors : sum local = 1.1498949e-08, global = -3.1908629e-09, cumulative = -5.8284834e-05

DILUPBiCGStab:  Solving for epsilon, Initial residual = 0.001169828, Final residual = 9.2601488e-11, No Iterations 2

DILUPBiCGStab:  Solving for k, Initial residual = 0.0014561556, Final residual = 9.4651262e-11, No Iterations 2

ExecutionTime = 23.21 s  ClockTime = 24 s

fieldMinMax minmaxdomain write:

min(p) = -9.8942827 in cell 5509 at location (2.490155 0.025000016 1) on processor 2

max(p) = 4703.3656 in cell 1485 at location (3.1948336 -0.425 0) on processor 2

min(p_rgh) = -7.9025882 in cell 1241 at location (0.82088765 -0.20846334 0.043756428) on processor 1

max(p_rgh) = 4831.247 in cell 3285 at location (3.1948341 -0.475 0.42499986) on processor 2

min(U) = (-0.96505264 -0.019641482 -0.052664083) in cell 2 at location (2.1879167 -0.42500042 0.024999822) on processor 2

max(U) = (0.32541708 0.29383224 2.7117589) in cell 5246 at location (0.8884354 0.087713417 0.16296979) on processor 1

min(alpha.water) = -1.2354076e-07 in cell 2653 at location (0.84202094 -0.10628417 0.0062556498) on processor 1

max(alpha.water) = 1.0000113 in cell 224 at location (2.6411358 -0.42500003 0.074999874) on processor 2

min(k) = 0.0041733636 in cell 2510 at location (0.65789113 -0.0062500875 0.0062360099) on processor 1

max(k) = 0.83402261 in cell 6589 at location (1.2803306 -0.025028634 0.17499623) on processor 1

min(epsilon) = 0.018352121 in cell 2510 at location (0.65789113 -0.0062500875 0.0062360099) on processor 1

max(epsilon) = 11.712212 in cell 1933 at location (0.83147515 -0.19630576 0.068753535) on processor 1

volFieldValue water_in_domain write:

volIntegrate() of alpha.water = 0.66459985

Flow courant number

Interface courant number. When solving multiphase flows, is always 

desirable to keep the interface courant number less than 1.  
alpha.water 
residuals

nAlphaCorr 3
nAlphaSubCycles 1
Only one loop

3 pressure correctors 

and no non-orthogonal 
corrections 

Tighter tolerance 

(p_rghFinal) is only applied 

to this iteration (the final 
one)

Volume integral functionObject
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Post-processing multiphase flows in paraFoam

• To visualize the volume fraction, proceed as follows,

3D Dam break – Free surface flow

2. Select alpha.water in 

the Active Variable drop-

down menu

1. In the Properties tab select 

alpha.water in Volume Fields 

3. Select Surface in the 

Representation drop-down 
menu

Air
alpha.water = 0

Water
alpha.water = 1

Interface
alpha.water = 0.5

4. To animate the solution, press Play in the 

VCR Controls



Post-processing multiphase flows in paraFoam

• To visualize a surface representing the interface, proceed as follows,

3D Dam break – Free surface flow

1. Select the filter Contour

2. Select alpha.water or the field you 

want to use to plot the iso-surface (it 

has to be a scalar)

3. Enter the value 0.5 which 

corresponds to the interface 
between water and air

4. Press apply

5. To animate the solution, press Play in the 

VCR Controls

Iso-surface representing the interface 
between water and air



Post-processing multiphase flows in paraFoam

• To visualize all the cells representing the water fraction, proceed as follows,

3D Dam break – Free surface flow

1. Select the filter Threshold

2. Select alpha.water or the field 

you want to use to visualize the 

cells (it has to be a scalar)

3. Select the range you want to 

visualize.  To visualize the 
water select Minimum 0.5 and 

Maximum 1.

4. Press apply

Cells representing the 
water location

5. To animate the solution, press Play in the 

VCR Controls



3D Dam break – Free surface flow

• Instead of using the boundary condition totalPressure and pressureInletOutletVelocity for the patch top, try 

to use zeroGradient.  Do you get the same results? Any comments?

(Hint: this combination of boundary conditions will give you an error, read carefully the screen, you 
will need to add a fix in the file fvSolution)

• Instead of using the boundary condition fixedFluxPressure for the walls, try to use zeroGradient. Do you get 

the same results? Any comments?

• Run the simulation in a close domain. Does the volume integral of alpha.water remains the same? Why the 

value is not constant when the domain is open?

• Use a functionObject to measure the average pressure at the obstacle.

• How many initialization methods are there available in the dictionary setFieldsDict?

(Hint: use the banana method)

• Run the simulation using Gauss upwind instead of Gauss vanLeer for the term div(phi,alpha) (fvSchemes).  

Do you get the same quantitative results?

• Run a numerical experiment for cAlpha equal to 0, 1, and 2.  Do you see any difference in the solution? What 

about computing time?

• Use the solver GAMG instead of using the solver PCG for the variable p_rgh.  Do you see any difference on 

the solution or computing time?

• Increase the number of nOuterCorrector to 2 and study the output screen. What difference do you see?

• Turn off the MULES corrector (MULESCorr). Do you see any difference on the solution or computing time? 

• If you set the gravity vector to (0 0 0), what do you think will happen?

• Try to break the solver and identify the cause of the error.  You are free to try any kind of setup.

Exercises


