
Flow around a cylinder – 10 < Re < 2 000 000

Incompressible and compressible flow

All the dimensions are in meters

Flow past a cylinder – From laminar to turbulent flow

Physical and numerical side of the

problem:

• In this case we are going to solve the flow

around a cylinder. We are going to use

incompressible and compressible solvers, in

laminar and turbulent regime.

• Therefore, the governing equations of the

problem are the incompressible/compressible

laminar/turbulent Navier-Stokes equations.

• We are going to work in a 2D domain.

• Depending on the Reynolds number, the flow

can be steady or unsteady.

• This problem has a lot of validation data.

Workflow of the case

Flow past a cylinder – From laminar to turbulent flow

icoFoam

pisoFoam

pimpleFoam

pimpleDyMFoam

simpleFoam

rhoPimpleFoam

interFoam

sonicFoam

potentialFoam

mapFields

sampling

functionObjects

postProcessing

utilities

paraview

blockMesh

Or

fluentMeshToFoam

NOTE:

One single mesh can be used with all

solvers and utilities

Vortex shedding behind a cylinder

Flow past a cylinder – From laminar to turbulent flow

Drag coefficient

Strouhal number

Re < 5

5 < Re < 40 - 46

40 - 46 < Re < 150

150 < Re < 300

300 < Re < 3 x 10
5

3 x 10 < Re < 3 x 10
5 6

Transition to turbulence

3 x 10 > Re
6

Creeping flow (no separation)
Steady flow

A pair of stable vortices
in the wake
Steady flow

Laminar vortex street
(Von Karman street)
Unsteady flow

Laminar boundary layer up to
the separation point, turbulent
wake
Unsteady flow

Boundary layer transition to
turbulent
Unsteady flow

Turbulent vortex street, but the
wake is narrower than in the
laminar case
Unsteady flow

Flow past a cylinder – From laminar to turbulent flow

Some experimental (E) and numerical (N) results of the flow past a circular
cylinder at various Reynolds numbers

[1] D. Tritton. Experiments on the flow past a circular cylinder at low Reynolds numbers. Journal of Fluid Mechanics, 6:547-567, 1959.

[2] M. Cuntanceau and R. Bouard. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. Journal of Fluid

Mechanics, 79:257-272, 1973.

[3] D. Rusell and Z. Wang. A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow. Journal of Computational Physics, 191:177-205, 2003.

[4] D. Calhoun and Z. Wang. A cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. Journal of Computational Physics. 176:231-275, 2002.

[5] T. Ye, R. Mittal, H. Udaykumar, and W. Shyy. An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries. Journal of Computational Physics,

156:209-240, 1999.

[6] B. Fornberg. A numerical study of steady viscous flow past a circular cylinder. Journal of Fluid Mechanics, 98:819-855, 1980.

[7] J. Guerrero. Numerical simulation of the unsteady aerodynamics of flapping flight. PhD Thesis, University of Genoa, 2009.

Lrb = length of recirculation bubble, cd = drag coefficient, Re = Reynolds number,

Reference cd – Re = 20 Lrb – Re = 20 cd – Re = 40 Lrb – Re = 40

[1] Tritton (E) 2.22 – 1.48 –

[2] Cuntanceau and Bouard (E) – 0.73 – 1.89

[3] Russel and Wang (N) 2.13 0.94 1.60 2.29

[4] Calhoun and Wang (N) 2.19 0.91 1.62 2.18

[5] Ye et al. (N) 2.03 0.92 1.52 2.27

[6] Fornbern (N) 2.00 0.92 1.50 2.24

[7] Guerrero (N) 2.20 0.92 1.62 2.21

Flow past a cylinder – From laminar to turbulent flow

Some experimental (E) and numerical (N) results of the flow past a circular
cylinder at various Reynolds numbers

[1] D. Rusell and Z. Wang. A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow. Journal of Computational Physics, 191:177-205, 2003.

[2] D. Calhoun and Z. Wang. A cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. Journal of Computational Physics. 176:231-275, 2002.

[3] M. Braza, P. Chassaing, and H. Hinh. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. Journal of Fluid Mechanics, 165:79-130,

1986.

[4] J. Choi, R. Oberoi, J. Edwards, an J. Rosati. An immersed boundary method for complex incompressible flows. Journal of Computational Physics, 224:757-784, 2007.

[5] C. Liu, X. Zheng, and C. Sung. Preconditioned multigrid methods for unsteady incompressible flows. Journal of Computational Physics, 139:33-57, 1998.

[6] J. Guerrero. Numerical Simulation of the unsteady aerodynamics of flapping flight. PhD Thesis, University of Genoa, 2009.

Reference cd – Re = 100 cl – Re = 100 cd – Re = 200 cl – Re = 200

[1] Russel and Wang (N) 1.38 ± 0.007 ± 0.322 1.29 ± 0.022 ± 0.50

[2] Calhoun and Wang (N) 1.35 ± 0.014 ± 0.30 1.17 ± 0.058 ± 0.67

[3] Braza et al. (N) 1.386± 0.015 ± 0.25 1.40 ± 0.05 ± 0.75

[4] Choi et al. (N) 1.34 ± 0.011 ± 0.315 1.36 ± 0.048 ± 0.64

[5] Liu et al. (N) 1.35 ± 0.012 ± 0.339 1.31 ± 0.049 ± 0.69

[6] Guerrero (N) 1.38 ± 0.012 ± 0.333 1.408 ± 0.048 ± 0.725

cl = lift coefficient, cd = drag coefficient, Re = Reynolds number

Incompressible flow – Reynolds 200

At the end of the day, you should get something like this

Flow past a cylinder – From laminar to turbulent flow

Instantaneous velocity magnitude field
www.wolfdynamics.com/wiki/cylinder_vortex_shedding/movvmag.gif

Instantaneous vorticity magnitude field
www.wolfdynamics.com/wiki/cylinder_vortex_shedding/movvort.gif

http://www.wolfdynamics.com/wiki/cylinder_vortex_shedding/movvmag.gif
http://www.wolfdynamics.com/wiki/cylinder_vortex_shedding/movvort.gif

Incompressible flow – Reynolds 200

At the end of the day, you should get something like this

Flow past a cylinder – From laminar to turbulent flow

Flow past a cylinder – From laminar to turbulent flow

• Let us run this case. Go to the directory:

$PTOFC/vortex_shedding

• $PTOFC is pointing to the directory where you extracted the training material.

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of

how to run the case. In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh,

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on. These files can be used to run the case

automatically by typing in the terminal, for example, sh run_solver.

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this

way, you will get used with the command line interface and OpenFOAM® commands.

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases.

What are we going to do?

• We will use this case to learn how to use different solvers and utilities.

• Remember, different solvers have different input dictionaries.

• We will learn how to convert the mesh from a third party software.

• We will learn how to use setFields to accelerate the convergence.

• We will learn how to map a solution from a coarse mesh to a fine mesh.

• We will learn how to setup a compressible solver.

• We will learn how to setup a turbulence case.

• We will use gnuplot to plot and compute the mean values of the lift and drag

coefficients.

• We will visualize unsteady data.

Flow past a cylinder – From laminar to turbulent flow

• Let us first convert the mesh from a third-party format (Fluent format).

• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c2

• In the terminal window type:

1. $> foamCleanTutorials

2. $> fluent3DMeshToFoam ../../../meshes_and_geometries/vortex_shedding/ascii.msh

3. $> checkMesh

4. $> paraFoam

• In step 2, we convert the mesh from Fluent format to OpenFOAM® format. Have in

mind that the Fluent mesh must be in ascii format.

• If we try to open the mesh using paraFoam (step 4), it will crash. Can you tell what is

the problem (read the screen)?

Running the case

Flow past a cylinder – From laminar to turbulent flow

• To avoid this problem, type in the terminal,

• Basically, the problem is related to the names and type of the patches in the file
boundary and the boundary conditions (U, p). Notice that OpenFOAM® is telling you

what and where is the error.

Running the case

Flow past a cylinder – From laminar to turbulent flow

1. $> paraFoam -builtin

Created temporary 'c2.OpenFOAM'

--> FOAM FATAL IO ERROR:

patch type 'patch' not constraint type 'empty'

for patch front of field p in file "/home/joegi/my_cases_course/5x/101OF/vortex_shedding/c2/0/p"

file: /home/joegi/my_cases_course/5x/101OF/vortex_shedding/c2/0/p.boundaryField.front from line 60 to line 60.

From function Foam::emptyFvPatchField<Type>::emptyFvPatchField(const Foam::fvPatch&, const

Foam::DimensionedField<Type, Foam::volMesh>&, const Foam::dictionary&) [with Type = double]

in file fields/fvPatchFields/constraint/empty/emptyFvPatchField.C at line 80.

FOAM exiting

What Where

• Remember, when converting meshes the name and type of the patches are not

always set as you would like, so it is always a good idea to take a look at the file
boundary and modify it according to your needs.

• Let us modify the boundary dictionary file.

• In this case, we would like to setup the following numerical type boundary

conditions.

Flow past a cylinder – From laminar to turbulent flow

The boundary dictionary file

• This dictionary is located in the
constant/polyMesh directory.

• This file is automatically created when converting

or generating the mesh.

• To get a visual reference of the patches, you can

the mesh with paraFoam/paraview.

• The type of the out patch is OK.

• The type of the sym1 patch is OK.

• The type of the sym2 patch is OK.

• The type of the in patch is OK.

18 7

19 (

20 out

21 {

22 type patch;

23 nFaces 80;

24 startFace 18180;

25 }

26 sym1

27 {

28 type symmetry;

29 inGroups 1(symmetry);

30 nFaces 100;

31 startFace 18260;

32 }

33 sym2

34 {

35 type symmetry;

36 inGroups 1(symmetry);

37 nFaces 100;

38 startFace 18360;

39 }

40 in

41 {

42 type patch;

43 nFaces 80;

44 startFace 18460;

45 }

Flow past a cylinder – From laminar to turbulent flow

The boundary dictionary file

46 cylinder

47 {

48 type wall;

49 inGroups 1(wall);

50 nFaces 80;

51 startFace 18540;

52 }

53 back

54 {

55 type patch;

56 nFaces 9200;

57 startFace 18620;

58 }

59 front

60 {

61 type patch;

62 nFaces 9200;

63 startFace 27820;

64 }

65)

• The type of the cylinder patch is OK.

• The type of the back patch is NOT OK.

Remember, this is a 2D simulation, therefore the

type should be empty.

• The type of the front patch is NOT OK.

Remember, this is a 2D simulation, therefore the

type should be empty.

• Remember, we assign the numerical type

boundary conditions (numerical values), in the
field files found in the directory 0

Flow past a cylinder – From laminar to turbulent flow

• At this point, check that the name and type of the base type boundary conditions

and numerical type boundary conditions are consistent. If everything is ok, we are

ready to go.

• Do not forget to explore the rest of the dictionary files, namely:

• 0/p (p is defined as relative pressure)

• 0/U

• constant/transportProperties

• system/controlDict

• system/fvSchemes

• system/fvSolution

• Reminder:

• The diameter of the cylinder is 2.0 m.

• And we are targeting for a Re = 200.

Flow past a cylinder – From laminar to turbulent flow

• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c2

• In the folder c1 you will find the same setup, but to generate the mesh we use

blockMesh (the mesh is identical).

• To run this case, in the terminal window type:

1. $> renumberMesh -overwrite

2. $> icoFoam | tee log.icofoam

3.
$> pyFoamPlotWatcher.py log.icofoam

You will need to launch this script in a different terminal

4.
$> gnuplot scripts0/plot_coeffs

You will need to launch this script in a different terminal

5. $> paraFoam

Running the case

Flow past a cylinder – From laminar to turbulent flow

• In step 1 we use the utility renumberMesh to make the linear system more diagonal

dominant, this will speed-up the linear solvers. This is inexpensive (even for large

meshes), therefore is highly recommended to always do it.

• In step 2 we run the simulation and save the log file. Notice that we are sending the

job to background.

• In step 3 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly. As the

job is running in background, we can launch this utility in the same terminal tab.

• In step 4 we use the gnuplot script scripts0/plot_coeffs to plot the force

coefficients on-the-fly. Besides monitoring the residuals, is always a good idea to

monitor a quantity of interest. Feel free to take a look at the script and to reuse it.

• The force coefficients are computed using functionObjects.

• After the simulation is over, we use paraFoam to visualize the results. Remember to

use the VCR Controls to animate the solution.

• In the folder c1 you will find the same setup, but to generate the mesh we use

blockMesh (the mesh is identical).

Running the case

Flow past a cylinder – From laminar to turbulent flow

• At this point try to use the following utilities. In the terminal type:

• $> postProcess –func vorticity –noZero
This utility will compute and write the vorticity field. The –noZero option means do not compute the vorticity field for the

solution in the directory 0. If you do not add the –noZero option, it will compute and write the vorticity field for all the

saved solutions, including 0

• $> postprocess –func 'grad(U)' –latestTime
This utility will compute and write the velocity gradient or grad(U) in the whole domain (including at the walls). The

–latestTime option means compute the velocity gradient only for the last saved solution.

• $> postprocess –func 'grad(p)'
This utility will compute and write the pressure gradient or grad(U) in the whole domain (including at the walls).

• $> postProcess -func 'div(U)'
This utility will compute and write the divergence of the velocity field or grad(U) in the whole domain (including at the

walls). You will need to add the keyword div(U) Gauss linear; in the dictionary fvSchemes.

• $> foamToVTK –time 50:300
This utility will convert the saved solution from OpenFOAM® format to VTK format. The –time 50:300 option means

convert the solution to VTK format only for the time directories 50 to 300

• $> pisoFoam -postProcess -func CourantNo
This utility will compute and write the Courant number. This utility needs to access the solver database for the physical
properties and additional quantities, therefore we need to tell what solver we are using. As the solver icoFoam does not

accept the option –postProcess, we can use the solver pisoFoam instead. Remember, icoFoam is a fully laminar

solver and pisoFoam is a laminar/turbulent solver.

• $> pisoFoam -postProcess -func wallShearStress
This utility will compute and write the wall shear stresses at the walls. As no arguments are given, it will save the wall

shear stresses for all time steps.

Flow past a cylinder – From laminar to turbulent flow

Non-uniform field initialization

• In the previous case, it took about 150 seconds of simulation ime to onset the

instability.

• If you are not interested in the initial transient or if you want to speed-up the

computation, you can add a perturbation in order to trigger the onset of the instability.

• Let us use the utility setFields to initialize a non-uniform flow.

• This case is already setup in the directory

$PTOFC/101OF/vortex_shedding/c3

Flow past a cylinder – From laminar to turbulent flow

The setFieldsDict dictionary

17 defaultFieldValues

18 (

19 volVectorFieldValue U (1 0 0)

20);

21

22 regions

23 (

24 boxToCell

25 {

26 box (0 -100 -100) (100 100 100);

27 fieldValues

28 (

29 volVectorFieldValue U (0.98480 0.17364 0)

30);

31 }

32);

• This dictionary file is located in the directory system.

• In lines 17-20 we set the default value of the velocity vector

to be (0 0 0) in the whole domain.

• In lines 24-31, we initialize a rectangular region (box) just

behind the cylinder with a velocity vector equal to (0.98480

0.17364 0)

• In this case, setFields will look for the dictionary file U

and it will overwrite the original values according to the
regions defined in setFieldsDict.

boxToCell region

U
 (

1
 0

 0
)

U
 (

0
.9

8
4
8
0
 0

.1
7
3
6
4
 0

)

• Let us run the same case but using a non-uniform field

Flow past a cylinder – From laminar to turbulent flow

• Let us run the same case but using a non-uniform field.

• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c3

• Feel free to use the Fluent mesh or the mesh generated with blockMesh. Hereafter, we will

use blockMesh.

• To run this case, in the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> rm –rf 0 > /dev/null 2>&1

4. $> cp –r 0_org/ 0

5. $> setFields

6. $> renumberMesh -overwrite

7. $> icoFoam | log.icofoam

8.
$> pyFoamPlotWatcher.py log.icofoam

You will need to launch this script in a different terminal

9.
$> gnuplot scripts0/plot_coeffs

You will need to launch this script in a different terminal

10. $> paraFoam

Flow past a cylinder – From laminar to turbulent flow

Running the case – Non-uniform field initialization

• In step 2 we generate the mesh using blockMesh. The name and type of the

patches are already set in the dictionary blockMeshDict so there is no need to

modify the boundary file.

• In step 4 we copy the original files to the directory 0. We do this to keep a backup of

the original files as the file 0/U will be overwritten when using setFields.

• In step 5 we initialize the solution using setFields.

• In step 6 we use the utility renumberMesh to make the linear system more diagonal

dominant, this will speed-up the linear solvers.

• In step 7 we run the simulation and save the log file. Notice that we are sending the

job to background.

• In step 8 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly. As the

job is running in background, we can launch this utility in the same terminal tab.

• In step 9 we use the gnuplot script scripts0/plot_coeffs to plot the lift and drag

coefficients on-the-fly. Besides monitoring the residuals, is always a good idea to

monitor a quantity of interest. Feel free to take a look at the script and to reuse it.

Flow past a cylinder – From laminar to turbulent flow

No field initialization With field initialization

Does non-uniform field initialization make a difference?

• A picture is worth a thousand words. No need to tell you yes, even if the solutions are

slightly different.

• This bring us to the next subject, for how long should we run the simulation?

Flow past a cylinder – From laminar to turbulent flow

For how long should run the simulation?

• This is the difficult part when dealing with

unsteady flows.

• Usually you run the simulation until the

behavior of a quantity of interest does not

oscillates or it becomes periodic.

• In this case we can say that after the 50

seconds mark the solution becomes

periodic, therefore there is no need to run up

to 350 seconds (unless you want to gather a

lot of statistics).

• We can stop the simulation at 150 seconds

(or maybe less), and do the average of the

quantities between 100 and 150 seconds.

Flow past a cylinder – From laminar to turbulent flow

What about the residuals?

• Residuals are telling you a lot, but they are

difficult to interpret.

• In this case the fact that the initial residuals

are increasing after about 10 seconds, does

not mean that the solution is diverging. This

is in indication that something is happening

(in this case the onset of the instability).

• Remember, the residuals should always

drop to the tolerance criteria set in the
fvSolution dictionary (final residuals). If

they do not drop to the desired tolerance, we

are talking about unconverged time-steps.

• Things that are not clear from the residuals:

• For how long should we run the

simulation?

• Is the solution converging to the right

value?

Flow past a cylinder – From laminar to turbulent flow

68 functions

69 {

195 forceCoeffs_object

196 {

205 type forceCoeffs;

206 functionObjectLibs ("libforces.so");

208 patches (cylinder);

209

210 pName p;

211 Uname U;

212 rhoName rhoInf;

213 rhoInf 1.0;

214

215 //// Dump to file

216 log true;

217

218 CofR (0.0 0 0);

219 liftDir (0 1 0);

220 dragDir (1 0 0);

221 pitchAxis (0 0 1);

222 magUInf 1.0;

223 lRef 1.0;

224 Aref 2.0;

225

226 outputControl timeStep;

227 outputInterval 1;

228 }

255 };

• To compute the force coefficients we use

functionObjects.

• Remember, functionObjects are defined at the end of
the controlDict dictionary file.

• In line 195 we give a name to the functionObject.

• In line 208 we define the patch where we want to

compute the forces.

• In lines 212-213 we define the reference density value.

• In line 218 we define the center of rotation (for moments).

• In line 219 we define the lift force axis.

• In line 220 we define the drag force axis.

• In line 221 we define the axis of rotation for moment

computation.

• In line 223 we give the reference length (for computing

the moments)

• In line 224 we give the reference area (in this case the

frontal area).

• The output of this functionObject is saved in the file
forceCoeffs.dat located in the directory

forceCoeffs_object/0/

How to compute force coefficients

Flow past a cylinder – From laminar to turbulent flow

Can we compute basic statistics of the force coefficients using gnuplot?

1. gnuplot> stats ‘postProcessing/forceCoeffs_object/0/forceCoeffs.dat’ u 3

This will compute the basic statistics of all the rows in the file forceCoeffs.dat (we are sampling column 3 in the input file)

2. gnuplot> stats ‘postProcessing/forceCoeffs_object/0/forceCoeffs.dat’ every ::3000::7000 u 3

This will compute the basic statistics of rows 3000 to 7000 in the file forceCoeffs.dat (we are sampling column 3 in the input file)

3. gnuplot> plot ‘postProcessing/forceCoeffs_object/0/forceCoeffs.dat’ u 3 w l

This will plot column 3 against the row number (iteration number)

4. gnuplot> exit

To exit gnuplot

• Yes we can. Enter the gnuplot prompt and type:

• Remember the force coefficients information is saved in the file forceCoeffs.dat

located in the directory postProcessing/forceCoeffs_object/0

Flow past a cylinder – From laminar to turbulent flow

17 ddtSchemes

18 {

20 default backward;

22 }

23

24 gradSchemes

25 {

31 default cellLimited leastSquares 1;

37 }

38

39 divSchemes

40 {

41 default none;

45 div(phi,U) Gauss linearUpwindV default;

49 }

50

51 laplacianSchemes

52 {

59 default Gauss linear limited 1;

60 }

61

62 interpolationSchemes

63 {

64 default linear;

66 }

67

68 snGradSchemes

69 {

71 default limited 1;

72 }

• At the end of the day we want a solution that is second order

accurate.

• We define the discretization schemes (and therefore the
accuracy) in the dictionary fvSchemes.

• In this case, for time discretization (ddtSchemes) we are

using the backward method.

• For gradient discretization (gradSchemes) we are using the

leastSquares method with slope limiters (cellLimited).

• For the discretization of the convective terms (divSchemes)

we are using linearUpwindV interpolation method for the

term div(rho,U).

• For the discretization of the Laplacian (laplacianSchemes

and snGradSchemes) we are using the Gauss linear

limited 1 method

• This method is second order accurate.

On the solution accuracy

Flow past a cylinder – From laminar to turbulent flow

17 solvers

18 {

31 p

32 {

33 solver GAMG;

34 tolerance 1e-6;

35 relTol 0;

36 smoother GaussSeidel;

37 nPreSweeps 0;

38 nPostSweeps 2;

39 cacheAgglomeration on;

40 agglomerator faceAreaPair;

41 nCellsInCoarsestLevel 100;

42 mergeLevels 1;

43 }

44

45 pFinal

46 {

47 $p;

48 relTol 0;

49 }

50

51 U

52 {

53 solver PBiCG;

54 preconditioner DILU;

55 tolerance 1e-08;

56 relTol 0;

57 }

69 }

70

71 PISO

72 {

73 nCorrectors 2;

74 nNonOrthogonalCorrectors 2;

77 }

• We define the solution tolerance and linear solvers in the
dictionary fvSolution.

• To solve the pressure (p) we are using the GAMG method

with an absolute tolerance of 1e-6 and a relative tolerance

relTol of 0.01.

• The entry pFinal refers to the final correction of the PISO

loop. It is possible to use a tighter convergence criteria only

in the last iteration.

• To solve U we are using the solver PBiCG and the DILU

preconditioner, with an absolute tolerance of 1e-8 and a

relative tolerance relTol of 0 (the solver will stop iterating

when it meets any of the conditions).

• Solving for the velocity is relative inexpensive, whereas

solving for the pressure is expensive.

• The PISO sub-dictionary contains entries related to the

pressure-velocity coupling (in this case the PISO method).

Hereafter we are doing two PISO correctors (nCorrectors)

and two non-orthogonal corrections

(nNonOrthogonalCorrectors).

On the solution tolerance and linear solvers

Flow past a cylinder – From laminar to turbulent flow

17 application icoFoam;

18

20 startFrom latestTime;

21

22 startTime 0;

23

24 stopAt endTime;

26

27 endTime 350;

29

33 deltaT 0.05;

34

35 writeControl runTime;

43

44 writeInterval 1;

45

52 purgeWrite 0;

53

54 writeFormat ascii;

55

56 writePrecision 8;

57

58 writeCompression off;

59

60 timeFormat general;

61

62 timePrecision 6;

63

64 runTimeModifiable true;

• This case starts from the latest saved solution (startFrom).

• In this case as there are no saved solutions, it will start from

0 (startTime).

• It will run up to 350 seconds (endTime).

• The time step of the simulation is 0.05 seconds (deltaT). The

time step has been chosen in such a way that the Courant

number is less than 1

• It will write the solution every 1 second (writeInterval) of

simulation time (runTime).

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat).

• The write precision is 8 digits (writePrecision).

• And as the option runTimeModifiable is on, we can modify

all these entries while we are running the simulation.

On the runtime parameters

Flow past a cylinder – From laminar to turbulent flow

Time = 350

Courant Number mean: 0.11299953 max: 0.87674198

DILUPBiCG: Solving for Ux, Initial residual = 0.0037946307, Final residual = 4.8324843e-09, No Iterations 3

DILUPBiCG: Solving for Uy, Initial residual = 0.011990022, Final residual = 5.8815028e-09, No Iterations 3

GAMG: Solving for p, Initial residual = 0.022175872, Final residual = 6.2680545e-07, No Iterations 14

GAMG: Solving for p, Initial residual = 0.0033723932, Final residual = 5.8494331e-07, No Iterations 8

GAMG: Solving for p, Initial residual = 0.0010074964, Final residual = 4.4726195e-07, No Iterations 7

time step continuity errors : sum local = 1.9569266e-11, global = -3.471923e-14, cumulative = -2.8708402e-10

GAMG: Solving for p, Initial residual = 0.0023505548, Final residual = 9.9222424e-07, No Iterations 8

GAMG: Solving for p, Initial residual = 0.00045248026, Final residual = 7.7250386e-07, No Iterations 6

GAMG: Solving for p, Initial residual = 0.00014664077, Final residual = 4.5825218e-07, No Iterations 5

time step continuity errors : sum local = 2.0062733e-11, global = 1.2592813e-13, cumulative = -2.8695809e-10

ExecutionTime = 746.46 s ClockTime = 807 s

faceSource inMassFlow output:

sum(in) of phi = -40

faceSource outMassFlow output:

sum(out) of phi = 40

fieldAverage fieldAverage output:

Calculating averages

Writing average fields

forceCoeffs forceCoeffs_object output:

Cm = 0.0043956828

Cd = 1.4391786

Cl = 0.44532594

Cl(f) = 0.22705865

Cl(r) = 0.21826729

fieldMinMax minmaxdomain output:

min(p) = -0.82758125 at location (2.2845502 0.27072681 1.4608125e-17)

max(p) = 0.55952746 at location (-1.033408 -0.040619346 0)

min(U) = (-0.32263726 -0.054404584 -1.8727033e-19) at location (2.4478235 -0.69065656 -2.5551406e-17)

max(U) = (1.4610304 0.10220218 2.199981e-19) at location (0.43121241 1.5285504 -1.4453535e-17)

The output screen

• This is the output screen of the icoFoam solver.

nNonOrthogonalCorrectors 2

Force
coefficients

Mass flow at in patch

Mass flow at out patch

Computing averages of fields

Courant number

pFinal

nCorrectors 2

Flow past a cylinder – From laminar to turbulent flow
n

C
o

rr
e
c
to

r
2

n
C

o
rr

e
c
to

r
1

Min and max values

Let us use a potential solver to find a quick solution

• In this case we are going to use the potential solver potentialFoam (remember potential

solvers are inviscid, irrotational and incompressible)

• This solver is super fast and it can be used to find a solution to be used as initial conditions

(non-uniform field) for an incompressible solver.

• A good initial condition will accelerate and improve the convergence rate.

• This case is already setup in the directory

$PTOFC/101OF/vortex_shedding/c4

• Do not forget to explore the dictionary files.

• The following dictionaries are different

• system/fvSchemes

• system/fvSolution

Try to spot the differences.

Flow past a cylinder – From laminar to turbulent flow

• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c4

• Feel free to use the Fluent mesh or the mesh generated with blockMesh. In this

case we will use blockMesh.

• To run this case, in the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> rm –rf 0

4. $> cp –r 0_org 0

5. $> potentialFoam –noFunctionObjects –initialiseUBCs –writep -writePhi

6. $> paraFoam

Running the case – Let us use a potential solver to find a quick solution

Flow past a cylinder – From laminar to turbulent flow

• In step 2 we generate the mesh using blockMesh. The name and type of the

patches are already set in the dictionary blockMeshDict so there is no need to

modify the boundary file.

• In step 4 we copy the original files to the directory 0. We do this to keep a backup of

the original files as they will be overwritten by the solver potentialFoam.

• In step 5 we run the solver. We use the option –noFunctionObjects to avoid

conflicts with the functionobjects. The options –writep and –writePhi will write

the pressure field and fluxes respectively.

• At this point, if you want to use this solution as initial conditions for an incompressible
solver, just copy the files U and p into the start directory of the incompressible case

you are looking to run. Have in mind that the meshes need to be the same.

• Be careful with the name and type of the boundary conditions, they should be same

between the potential case and incompressible case.

Flow past a cylinder – From laminar to turbulent flow

Running the case – Let us use a potential solver to find a quick solution

Potential solution

• Using a potential solution as initial conditions is much better than using a uniform

flow. It will speed up the solution and it will give you more stability.

• Finding a solution using the potential solver is inexpensive.

Velocity field Pressure field

Flow past a cylinder – From laminar to turbulent flow

Calculating potential flow

DICPCG: Solving for Phi, Initial residual = 2.6622265e-05, Final residual = 8.4894837e-07, No Iterations 27

DICPCG: Solving for Phi, Initial residual = 1.016986e-05, Final residual = 9.5168103e-07, No Iterations 9

DICPCG: Solving for Phi, Initial residual = 4.0789046e-06, Final residual = 7.7788216e-07, No Iterations 5

DICPCG: Solving for Phi, Initial residual = 1.8251249e-06, Final residual = 8.8483568e-07, No Iterations 1

DICPCG: Solving for Phi, Initial residual = 1.1220074e-06, Final residual = 5.6696809e-07, No Iterations 1

DICPCG: Solving for Phi, Initial residual = 7.1187246e-07, Final residual = 7.1187246e-07, No Iterations 0

Continuity error = 1.3827583e-06

Interpolated velocity error = 7.620206e-07

Calculating approximate pressure field

DICPCG: Solving for p, Initial residual = 0.0036907012, Final residual = 9.7025397e-07, No Iterations 89

DICPCG: Solving for p, Initial residual = 0.0007470416, Final residual = 9.9942495e-07, No Iterations 85

DICPCG: Solving for p, Initial residual = 0.00022829496, Final residual = 8.6107759e-07, No Iterations 36

DICPCG: Solving for p, Initial residual = 7.9622793e-05, Final residual = 8.4360883e-07, No Iterations 31

DICPCG: Solving for p, Initial residual = 2.8883108e-05, Final residual = 8.7152873e-07, No Iterations 25

DICPCG: Solving for p, Initial residual = 1.151539e-05, Final residual = 9.7057871e-07, No Iterations 9

ExecutionTime = 0.17 s ClockTime = 0 s

End

The output screen

• This is the output screen of the potentialFoam solver.

• The output of this solver is also a good indication of the sensitivity of the mesh quality

to gradients computation. If you see that the number of iterations are dropping

iteration after iteration, it means that the mesh is fine.

• If the number of iterations remain stalled, it means that the mesh is sensitive to

gradients, so should use non-orthogonal correction.

• In this case we have a good mesh.

nNonOrthogonalCorrectors 5

Initial approximation
Velocity computation

Pressure computation

Flow past a cylinder – From laminar to turbulent flow

Let us map a solution from a coarse mesh to a finer mesh

• It is also possible to map the solution from a coarse mesh to a finer mesh (and all the

way around).

• For instance, you can compute a full Navier Stokes solution in a coarse mesh (fast

solution), and then map it to a finer mesh.

• Let us map the solution from the potential solver to a finer mesh (if you want you can
map the solution obtained using icoFoam). To do this we will use the utility

mapFields.

• This case is already setup in the directory

$PTOFC/101OF/vortex_shedding/c6

Flow past a cylinder – From laminar to turbulent flow

• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c6

• To generate the mesh, use blockMesh (remember this mesh is finer).

• To run this case, in the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> rm –rf 0

4. $> cp –r 0_org 0

5. $> mapfields ../c4 –consistent –noFunctionObjects –mapMethod cellPointInterpolate -sourceTime 0

6. $> paraFoam

Running the case – Let us map a solution from a coarse mesh to a finer mesh

Flow past a cylinder – From laminar to turbulent flow

• In step 2 we generate a finer mesh using blockMesh. The name and type of the

patches are already set in the dictionary blockMeshDict so there is no need to

modify the boundary file.

• In step 4 we copy the original files to the directory 0. We do this to keep a backup of

the original files as they will be overwritten by the utility mapFields.

• In step 5 we use the utility mapFields with the following options:

• We copy the solution from the directory ../c4

• The options –consistent is used when the domains and BCs are the same.

• The option –noFunctionObjects is used to avoid conflicts with the

functionObjects.

• The option –mapMethod cellPointInterpolate defines the interpolation

method.

• The option -sourceTime 0 defines the time from which we want to interpolate

the solution.

Flow past a cylinder – From laminar to turbulent flow

Running the case – Let us map a solution from a coarse mesh to a finer mesh

Coarse mesh Fine mesh

mapFields

The meshes and the mapped fields

Flow past a cylinder – From laminar to turbulent flow

Source: ".." "c4"

Target: "/home/joegi/my_cases_course/5x/101OF/vortex_shedding" "c6"

Mapping method: cellPointInterpolate

Create databases as time

Source time: 0

Target time: 0

Create meshes

Source mesh size: 9200 Target mesh size: 36800

Consistently creating and mapping fields for time 0

interpolating Phi

interpolating p

interpolating U

End

The output screen

• This is the output screen of the mapFields utility.

• The utility mapFields, will try to interpolate all fields in the source directory.

• You can control the target time via the startFrom and startTime keywords in the
controlDict dictionary file.

Interpolated fields

Source case

Source and target mesh cell count

Target case

Interpolation method

Source time

Target time

Flow past a cylinder – From laminar to turbulent flow

Setting a turbulent case

• So far we have used laminar incompressible solvers.

• Let us do a turbulent simulation.

• When doing turbulent simulations, we need to choose the turbulence model, define

the boundary and initial conditions for the turbulent quantities, and modify the
fvSchemes and fvSolution dictionaries to take account for the new variables we

are solving (the transported turbulent quantities).

• This case is already setup in the directory

$PTOFC/101OF/vortex_shedding/c14

Flow past a cylinder – From laminar to turbulent flow

• The following dictionaries remain unchanged

• system/blockMeshDict

• constant/polyMesh/boundary

• 0/p

• 0/U

• The following dictionaries need to be adapted for the turbulence case

• constant/transportProperties

• system/controlDict

• system/fvSchemes

• system/fvSolution

• The following dictionaries need to be adapted for the turbulence case

• constant/turbulenceProperties

Flow past a cylinder – From laminar to turbulent flow

• This dictionary file is located in the directory constant.

• In this file we set the transport model and the kinematic viscosity (nu).

The transportProperties dictionary file

16 transportModel Newtonian;

17

19 nu nu [0 2 -1 0 0 0 0] 0.0002;

Flow past a cylinder – From laminar to turbulent flow

• Reminder:

• The diameter of the cylinder is 2.0 m.

• And we are targeting for a Re = 10000.

• This dictionary file is located in the directory constant.

• In this dictionary file we select what model we would like to use (laminar or turbulent).

• In this case we are interested in modeling turbulence, therefore the dictionary is as follows

The turbulenceProperties dictionary file

17 simulationType RAS;

18

19 RAS

20 {

21 RASModel kOmegaSST;

22

23 turbulence on;

24

25 printCoeffs on;

26 }

• If you want to know the models available use the banana method.

RANS type simulation

RANS model to use

Turn on/off turbulence. Runtime modifiable

Print coefficients at the beginning

RANS sub-dictionary

Flow past a cylinder – From laminar to turbulent flow

17 application pimpleFoam;

18

20 startFrom latestTime;

21

22 startTime 0;

23

24 stopAt endTime;

25

26 endTime 500;

27

28 deltaT 0.001;

32

33 writeControl runTime;

41

42 writeInterval 1;

43

50 purgeWrite 0;

51

52 writeFormat ascii;

53

54 writePrecision 8;

55

56 writeCompression off;

57

58 timeFormat general;

59

60 timePrecision 6;

61

62 runTimeModifiable yes;

63

64 adjustTimeStep yes;

65

66 maxCo 0.9;

67 maxDeltaT 0.1;

• This case will start from the last saved solution (startFrom). If there is

no solution, the case will start from time 0 (startTime).

• It will run up to 500 seconds (endTime).

• The initial time step of the simulation is 0.001 seconds (deltaT).

• It will write the solution every 1 second (writeInterval) of simulation time

(runTime).

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat).

• The write precision is 8 digits (writePrecision).

• And as the option runTimeModifiable is on, we can modify all these

entries while we are running the simulation.

• In line 64 we turn on the option adjustTimeStep. This option will

automatically adjust the time step to achieve the maximum desired

courant number maxCo (line 66).

• We also set a maximum time step maxDeltaT in line 67.

• Remember, the first time step of the simulation is done using the value

set in line 28 and then it is automatically scaled to achieve the desired

maximum values (lines 66-67).

• The feature adjustTimeStep is only present in the PIMPLE family

solvers, but it can be added to any solver by modifying the source code.

The controlDict dictionary

Flow past a cylinder – From laminar to turbulent flow

17 ddtSchemes

18 {

21 default CrankNicolson 0.5;

22 }

24 gradSchemes

25 {

31 default cellLimited leastSquares 1;

36 grad(U) cellLimited Gauss linear 1;

37 }

39 divSchemes

40 {

41 default none;

47 div(phi,U) Gauss linearUpwindV grad(U);

49 div((nuEff*dev2(T(grad(U))))) Gauss linear;

51 div(phi,k) Gauss linearUpwind default;

52 div(phi,omega) Gauss linearUpwind default;

63 }

65 laplacianSchemes

66 {

74 default Gauss linear limited 1;

75 }

77 interpolationSchemes

78 {

79 default linear;

81 }

83 snGradSchemes

84 {

86 default limited 1;

87 }

89 wallDist

90 {

91 method meshWave;

92 }

The fvSchemes dictionary

• In this case, for time discretization (ddtSchemes) we are using the

blended CrankNicolson method. The blending coefficient goes from 0

to 1, where 0 is equivalent to the Euler method and 1 is a pure Crank

Nicolson.

• For gradient discretization (gradSchemes) we are using as default

option the leastSquares method. For grad(U) we are using Gauss

linear with slope limiters (cellLimited). You can define different

methods for every term in the governing equations, for example, you

can define a different method for grad(p).

• For the discretization of the convective terms (divSchemes) we are

using linearUpwindV interpolation method with slope limiters for the

term div(phi,U).

• For the terms div(phi,k) and div(phi,omega) we are using

linearUpwind interpolation method with no slope limiters. These terms

are related to the turbulence modeling.

• For the term div((nuEff*dev2(T(grad(U))))) we are using linear

interpolation (this term is related to turbulence modeling).

• For the discretization of the Laplacian (laplacianSchemes and

snGradSchemes) we are using the Gauss linear limited 1 method.

• To compute the distance to the wall and normals to the wall, we use the

method meshWave. This only applies when using wall functions

(turbulence modeling).

• This method is second order accurate.

Flow past a cylinder – From laminar to turbulent flow

17 solvers

18 {

31 p

32 {

33 solver GAMG;

34 tolerance 1e-6;

35 relTol 0.001;

36 smoother GaussSeidel;

37 nPreSweeps 0;

38 nPostSweeps 2;

39 cacheAgglomeration on;

40 agglomerator faceAreaPair;

41 nCellsInCoarsestLevel 100;

42 mergeLevels 1;

44 minIter 2;

45 }

46

47 pFinal

48 {

49 solver PCG;

50 preconditioner DIC;

51 tolerance 1e-06;

52 relTol 0;

54 minIter 3;

55 }

56

57 U

58 {

59 solver PBiCGStab;

60 preconditioner DILU;

61 tolerance 1e-08;

62 relTol 0;

63 minIter 3;

64 }

The fvSolution dictionary

• To solve the pressure (p) we are using the GAMG method, with an

absolute tolerance of 1e-6 and a relative tolerance relTol of 0.001.

Notice that we are fixing the number of minimum iterations (minIter).

• To solve the final pressure correction (pFinal) we are using the PCG

method with the DIC preconditioner, with an absolute tolerance of 1e-6

and a relative tolerance relTol of 0.

• Notice that we can use different methods between p and pFinal. In this

case we are using a tighter tolerance for the last iteration.

• We are also fixing the number of minimum iterations (minIter). This

entry is optional.

• To solve U we are using the solver PBiCGStab with the DILU

preconditioner, an absolute tolerance of 1e-8 and a relative tolerance

relTol of 0. Notice that we are fixing the number of minimum iterations

(minIter).

Flow past a cylinder – From laminar to turbulent flow

17 solvers

18 {

77 UFinal

78 {

79 solver PBiCGStab;

80 preconditioner DILU;

81 tolerance 1e-08;

82 relTol 0;

83 minIter 3;

84 }

85

86 omega

87 {

88 solver PBiCGStab;

89 preconditioner DILU;

90 tolerance 1e-08;

91 relTol 0;

92 minIter 3;

93 }

94

95 omegaFinal

96 {

97 solver PBiCGStab;

98 preconditioner DILU;

99 tolerance 1e-08;

100 relTol 0;

101 minIter 3;

102 }

103

104 k

105 {

106 solver PBiCGStab;

107 preconditioner DILU;

108 tolerance 1e-08;

109 relTol 0;

110 minIter 3;

111 }

The fvSolution dictionary

• To solve UFinal we are using the solver PBiCGStab with an absolute

tolerance of 1e-8 and a relative tolerance relTol of 0. Notice that we are

fixing the number of minimum iterations (minIter).

• To solve omega and omegaFinal we are using the solver PBiCGStab

with an absolute tolerance of 1e-8 and a relative tolerance relTol of 0.

Notice that we are fixing the number of minimum iterations (minIter).

• To solve k we are using the solver PBiCGStab with an absolute

tolerance of 1e-8 and a relative tolerance relTol of 0. Notice that we are

fixing the number of minimum iterations (minIter).

Flow past a cylinder – From laminar to turbulent flow

113 kFinal

114 {

115 solver PBiCGStab;

116 preconditioner DILU;

117 tolerance 1e-08;

118 relTol 0;

119 minIter 3;

120 }

121 }

122

123 PIMPLE

124 {

126 nOuterCorrectors 1;

127 //nOuterCorrectors 2;

128

129 nCorrectors 3;

130 nNonOrthogonalCorrectors 1;

133 }

134

135 relaxationFactors

136 {

137 fields

138 {

139 p 0.3;

140 }

141 equations

142 {

143 U 0.7;

144 k 0.7;

145 omega 0.7;

146 }

147 }

The fvSolution dictionary

• To solve kFinal we are using the solver PBiCGStab with an absolute

tolerance of 1e-8 and a relative tolerance relTol of 0. Notice that we are

fixing the number of minimum iterations (minIter).

• In lines 123-133 we setup the entries related to the pressure-velocity

coupling method used (PIMPLE in this case). Setting the keyword

nOuterCorrectors to 1 is equivalent to running using the PISO method.

• To gain more stability we are using 1 outer correctors

(nOuterCorrectors), 3 inner correctors or PISO correctors

(nCorrectors), and 1 correction due to non-orthogonality

(nNonOrthogonalCorrectors).

• Remember, adding corrections increase the computational cost.

• In lines 135-147 we setup the under relaxation factors used during the

outer corrections (pseudo transient iterations). If you are working in

PISO mode (only one outer correction or nOuterCorrectors), these

values are ignored.

Flow past a cylinder – From laminar to turbulent flow

• The following dictionaries are new

• 0/k

• 0/omega

• 0/nut

These are the field variables related to the closure equations of the turbulent

model.

• As we are going to use the model we need to define the initial

conditions and boundaries conditions.

• To define the IC/BC we will use the free stream values of and

• In the following site, you can find a lot information abut choosing initial and

boundary conditions for the different turbulence models:

• https://turbmodels.larc.nasa.gov/

Flow past a cylinder – From laminar to turbulent flow

• The initial value for the turbulent kinetic energy can be found as follows

Turbulence model free-stream boundary conditions

Flow past a cylinder – From laminar to turbulent flow

• The initial value for the specific kinetic energy can be found as follows

• Where is the viscosity ratio and is the turbulence intensity.

• If you are working with external aerodynamics or virtual wind tunnels, you can use the following

reference values for the turbulence intensity and the viscosity ratio. They work most of the

times, but it is a good idea to have some experimental data or a better initial estimate.

Low Medium High

1.0 % 5.0 % 10.0 %

1 10 100

The file 0/k

19 internalField uniform 0.00015;

20

21 boundaryField

22 {

23 out

24 {

25 type inletOutlet;

26 inletValue uniform 0.00015;

27 value uniform 0.00015;

28 }

29 sym1

30 {

31 type symmetryPlane;

32 }

33 sym2

34 {

35 type symmetryPlane;

36 }

37 in

38 {

39 type fixedValue;

40 value uniform 0.00015;

41 }

42 cylinder

43 {

44 type kqRWallFunction;

45 value uniform 0.00015;

46 }

47 back

48 {

49 type empty;

50 }

51 front

52 {

53 type empty;

54 }

55 }

• We are using uniform initial conditions (line 19).

• For the in patch we are using a fixedValue boundary

condition.

• For the out patch we are using an inletOutlet boundary

condition (this boundary condition avoids backflow).

• For the cylinder patch (which is base type wall), we

are using the kqRWallFunction boundary condition.

This is a wall function, we are going to talk about this

when we deal with turbulence modeling. Remember,

we can use wall functions only if the patch is of base

type wall.

• The rest of the patches are constrained.

• FYI, the inlet velocity is 1 and the turbulence intensity is

equal to 1%.

Flow past a cylinder – From laminar to turbulent flow

The file 0/omega

19 internalField uniform 0.075;

20

21 boundaryField

22 {

23 out

24 {

25 type inletOutlet;

26 inletValue uniform 0.075;

27 value uniform 0.075;

28 }

29 sym1

30 {

31 type symmetryPlane;

32 }

33 sym2

34 {

35 type symmetryPlane;

36 }

37 in

38 {

39 type fixedValue;

40 value uniform 0.075;

41 }

42 cylinder

43 {

44 type omegaWallFunction;

45 Cmu 0.09;

46 kappa 0.41;

47 E 9.8;

48 beta1 0.075;

49 value uniform 0.075;

50 }

51 back

52 {

53 type empty;

54 }

55 front

56 {

57 type empty;

58 }

59 }

• We are using uniform initial conditions (line 19).

• For the in patch we are using a fixedValue boundary

condition.

• For the out patch we are using an inletOutlet boundary

condition (this boundary condition avoids backflow).

• For the cylinder patch (which is base type wall), we

are using the omegaWallFunction boundary condition.

This is a wall function, we are going to talk about this

when we deal with turbulence modeling. Remember, we

can use wall functions only if the patch is of base type

wall.

• The rest of the patches are constrained.

• FYI, the inlet velocity is 1 and the eddy viscosity ratio is

equal to 10.

Flow past a cylinder – From laminar to turbulent flow

The file 0/nut

19 internalField uniform 0;

20

21 boundaryField

22 {

23 out

24 {

25 type calculated;

26 value uniform 0;

27 }

28 sym1

29 {

30 type symmetryPlane;

31 }

32 sym2

33 {

34 type symmetryPlane;

35 }

36 in

37 {

38 type calculated;

39 value uniform 0;

40 }

41 cylinder

42 {

43 type nutkWallFunction;

44 Cmu 0.09;

45 kappa 0.41;

46 E 9.8;

47 value uniform 0;

48 }

49 back

50 {

51 type empty;

52 }

53 front

54 {

55 type empty;

56 }

57 }

• We are using uniform initial conditions (line 19).

• For the in patch we are using the calculated boundary

condition (nut is computed from kappa and omega)

• For the out patch we are using the calculated

boundary condition (nut is computed from kappa and

omega)

• For the cylinder patch (which is base type wall), we

are using the nutkWallFunction boundary condition.

This is a wall function, we are going to talk about this

when we deal with turbulence modeling. Remember, we

can use wall functions only if the patch is of base type

wall.

• The rest of the patches are constrained.

• Remember, the turbulent viscosity (nut) is equal to

Flow past a cylinder – From laminar to turbulent flow

• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c14

• Feel free to use the Fluent mesh or the mesh generated with blockMesh. In this case we will use

blockMesh.

• To run this case, in the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> renumberMesh -overwrite

4.
$> pimpleFoam | log

You will need to launch this script in a different terminal

5.
$> pyFoamPlotWatcher.py log

You will need to launch this script in a different terminal

6.
$> gnuplot scripts0/plot_coeffs

You will need to launch this script in a different terminal

7. $> pimpleFoam –postprocess –func yPlus –latestTime -noFunctionObjects

8. $> paraFoam

Running the case – Setting a turbulent case

Flow past a cylinder – From laminar to turbulent flow

• In step 3 we use the utility renumberMesh to make the linear system more diagonal

dominant, this will speed-up the linear solvers.

• In step 4 we run the simulation and save the log file. Notice that we are sending the

job to background.

• In step 5 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly. As the

job is running in background, we can launch this utility in the same terminal tab.

• In step 6 we use the gnuplot script scripts0/plot_coeffs to plot the force

coefficients on-the-fly. Besides monitoring the residuals, is always a good idea to

monitor a quantity of interest. Feel free to take a look at the script and to reuse it.

• In step 7 we use the utility postProcess to compute the value of each saved

solution (we are going to talk about when we deal with turbulence modeling).

Flow past a cylinder – From laminar to turbulent flow

Running the case – Setting a turbulent case

Courant Number mean: 0.088931706 max: 0.90251464

deltaT = 0.040145538

Time = 499.97

PIMPLE: iteration 1

DILUPBiCG: Solving for Ux, Initial residual = 0.0028528538, Final residual = 9.5497298e-11, No Iterations 3

DILUPBiCG: Solving for Uy, Initial residual = 0.0068876991, Final residual = 7.000938e-10, No Iterations 3

GAMG: Solving for p, Initial residual = 0.25644342, Final residual = 0.00022585963, No Iterations 7

GAMG: Solving for p, Initial residual = 0.0073871161, Final residual = 5.2798526e-06, No Iterations 8

time step continuity errors : sum local = 3.2664019e-10, global = -1.3568363e-12, cumulative = -9.8446438e-08

GAMG: Solving for p, Initial residual = 0.16889316, Final residual = 0.00014947209, No Iterations 7

GAMG: Solving for p, Initial residual = 0.0051876466, Final residual = 3.7123156e-06, No Iterations 8

time step continuity errors : sum local = 2.2950163e-10, global = -8.0710768e-13, cumulative = -9.8447245e-08

PIMPLE: iteration 2

DILUPBiCG: Solving for Ux, Initial residual = 0.0013482181, Final residual = 4.1395468e-10, No Iterations 3

DILUPBiCG: Solving for Uy, Initial residual = 0.0032433196, Final residual = 3.3969121e-09, No Iterations 3

GAMG: Solving for p, Initial residual = 0.10067317, Final residual = 8.9325549e-05, No Iterations 7

GAMG: Solving for p, Initial residual = 0.0042844521, Final residual = 3.0190597e-06, No Iterations 8

time step continuity errors : sum local = 1.735023e-10, global = -2.0653335e-13, cumulative = -9.8447452e-08

GAMG: Solving for p, Initial residual = 0.0050231165, Final residual = 3.2656397e-06, No Iterations 8

DICPCG: Solving for p, Initial residual = 0.00031459519, Final residual = 9.4260163e-07, No Iterations 36

time step continuity errors : sum local = 5.4344408e-11, global = 4.0060595e-12, cumulative = -9.8443445e-08

DILUPBiCG: Solving for omega, Initial residual = 0.00060510266, Final residual = 1.5946601e-10, No Iterations 3

DILUPBiCG: Solving for k, Initial residual = 0.0032163247, Final residual = 6.9350899e-10, No Iterations 3

bounding k, min: -3.6865398e-05 max: 0.055400108 average: 0.0015914926

ExecutionTime = 1689.51 s ClockTime = 1704 s

fieldAverage fieldAverage output:

Calculating averages

forceCoeffs forceCoeffs_object output:

Cm = 0.0023218797

Cd = 1.1832452

Cl = -1.3927646

Cl(f) = -0.69406044

Cl(r) = -0.6987042

fieldMinMax minmaxdomain output:

min(p) = -1.5466372 at location (-0.040619337 -1.033408 0)

max(p) = 0.54524589 at location (-1.033408 0.040619337 1.4015759e-17)

min(U) = (0.94205232 -1.0407426 -5.0319219e-19) at location (-0.70200781 -0.75945224 -1.3630525e-17)

max(U) = (1.8458167 0.0047368607 4.473279e-19) at location (-0.12989625 -1.0971865 2.4694467e-17)

min(k) = 1e-15 at location (1.0972618 1.3921931 -2.2329889e-17)

max(k) = 0.055400108 at location (2.1464795 0.42727634 0)

min(omega) = 0.2355751 at location (29.403674 19.3304 0)

max(omega) = 21.477072 at location (1.033408 0.040619337 1.3245285e-17)

pimpleFoam output screen

Time step
Courant number

Outer iteration 1 (nOuterCorrectors)

Outer iteration 2 (nOuterCorrectors)

pFinal

kappa and omega residualsMessage letting you know that

the variable is becoming
unbounded

Force coefficients

Minimum and
maximum values

Flow past a cylinder – From laminar to turbulent flow

Simulation time

Time = 500.01

Reading field U

Reading/calculating face flux field phi

Selecting incompressible transport model Newtonian

Selecting RAS turbulence model kOmegaSST

kOmegaSSTCoeffs

{

alphaK1 0.85;

alphaK2 1;

alphaOmega1 0.5;

alphaOmega2 0.856;

gamma1 0.55555556;

gamma2 0.44;

beta1 0.075;

beta2 0.0828;

betaStar 0.09;

a1 0.31;

b1 1;

c1 10;

F3 false;

}

Patch 4 named cylinder y+ : min: 0.94230389 max: 12.696632 average: 7.3497345

Writing yPlus to field yPlus

The output screen

• This is the output screen of the yPlus utility.

Model coefficients

Patch where we are computing y+

Minimum, maximum and average values

Writing the field to the solution directory

Flow past a cylinder – From laminar to turbulent flow

Turbulence model

Transport model

Using a compressible solver

• So far we have only used incompressible solvers.

• Let us use the compressible solver rhoPimpleFoam, which is a

Transient solver for laminar or turbulent flow of compressible fluids for HVAC and

similar applications. Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-

resolved and pseudo-transient simulations.

• When working with compressible solver we need to define the thermodynamical

properties of the working fluid and the temperature field (we are also solving the

energy equation)

• This case is already setup in the directory

$PTOFC/101OF/vortex_shedding/c24

Flow past a cylinder – From laminar to turbulent flow

• The following dictionaries remain unchanged

• system/blockMeshDict

• constant/polyMesh/boundary

Flow past a cylinder – From laminar to turbulent flow

• Reminder:

• The diameter of the cylinder is 0.002 m.

• The working fluid is air at 20° Celsius and at a sea level.

• Isothermal flow.

• And we are targeting for a Re = 200.

The constant directory

• In this directory, we will find the following compulsory dictionary files:

• thermophysicalProperties

• turbulenceProperties

• thermophysicalProperties contains the definition of the physical

properties of the working fluid.

• turbulenceProperties contains the definition of the turbulence model to

use.

Flow past a cylinder – From laminar to turbulent flow

• This dictionary file is located in the directory constant.

Thermophysical models are concerned with energy, heat

and physical properties.

• In the sub-dictionary thermoType (lines 18-27), we

define the thermophysical models.

• The transport modeling concerns evaluating dynamic

viscosity (line 22). In this case the viscosity is constant.

• The thermodynamic models (thermo) are concerned with

evaluating the specific heat Cp (line 23). In this case Cp

is constant

• The equationOfState keyword (line 24) concerns to the

equation of state of the working fluid. In this case

• The form of the energy equation to be used in the

solution is specified in line 26 (energy). In this case we

are using enthalpy (sensibleEnthalpy).

The thermophysicalProperties dictionary file

18 thermoType

19 {

20 type hePsiThermo;

21 mixture pureMixture;

22 transport const;

23 thermo hConst;

24 equationOfState perfectGas;

25 specie specie;

26 energy sensibleEnthalpy;

27 }

28

29 mixture

30 {

31 specie

32 {

33 nMoles 1;

34 molWeight 28.9;

35 }

36 thermodynamics

37 {

38 Cp 1005;

39 Hf 0;

40 }

41 transport

42 {

43 mu 1.84e-05;

44 Pr 0.713;

45 }

46 }

Flow past a cylinder – From laminar to turbulent flow

• In the sub-dictionary mixture (lines 29-46), we define the

thermophysical properties of the working fluid.

• In this case, we are defining the properties for air at 20°

Celsius and at a sea level.

The thermophysicalProperties dictionary file

18 thermoType

19 {

20 type hePsiThermo;

21 mixture pureMixture;

22 transport const;

23 thermo hConst;

24 equationOfState perfectGas;

25 specie specie;

26 energy sensibleEnthalpy;

27 }

28

29 mixture

30 {

31 specie

32 {

33 nMoles 1;

34 molWeight 28.9;

35 }

36 thermodynamics

37 {

38 Cp 1005;

39 Hf 0;

40 }

41 transport

42 {

43 mu 1.84e-05;

44 Pr 0.713;

45 }

46 }

Flow past a cylinder – From laminar to turbulent flow

• In this dictionary file we select what model we would like to use (laminar or

turbulent).

• This dictionary is compulsory.

• As we do not want to model turbulence, the dictionary is defined as follows,

The turbulenceProperties dictionary file

17 simulationType laminar;

Flow past a cylinder – From laminar to turbulent flow

The 0 directory

• In this directory, we will find the dictionary files that contain the boundary and

initial conditions for all the primitive variables.

• As we are solving the compressible laminar Navier-Stokes equations, we will

find the following field files:

• p (pressure)

• T (temperature)

• U (velocity field)

Flow past a cylinder – From laminar to turbulent flow

The file 0/p

17 dimensions [1 -1 -2 0 0 0 0];

18

19 internalField uniform 101325;

20

21 boundaryField

22 {

23 in

24 {

25 type zeroGradient;

26 }

28 out

29 {

30 type fixedValue;

31 value uniform 101325;

32 }

34 cylinder

35 {

36 type zeroGradient;

37 }

39 sym1

40 {

41 type symmetryPlane;

42 }

44 sym2

45 {

46 type symmetryPlane;

47 }

49 back

50 {

51 type empty;

52 }

54 front

55 {

56 type empty;

57 }

58 }

• This file contains the boundary and initial conditions

for the scalar field pressure (p). We are working

with absolute pressure.

• Contrary to incompressible flows where we defined

relative pressure, this is the absolute pressure.

• Also, pay attention to the units (line 17). The

pressure is defined in Pascal.

• We are using uniform initial conditions (line 19).

• For the in patch we are using a zeroGradient

boundary condition.

• For the outlet patch we are using a fixedValue

boundary condition.

• For the cylinder patch we are using a zeroGradient

boundary condition.

• The rest of the patches are constrained.

Flow past a cylinder – From laminar to turbulent flow

The file 0/T

17 dimensions [0 0 0 -1 0 0 0];

18

19 internalField uniform 293.15;

20

21 boundaryField

22 {

23 in

24 {

25 type fixedValue;

26 value $internalField;

27 }

29 out

30 {

31 type inletOutlet;

32 value $internalField;

33 inletValue $internalField;

34 }

36 cylinder

37 {

38 type zeroGradient;

39 }

41 sym1

42 {

43 type symmetryPlane;

44 }

46 sym2

47 {

48 type symmetryPlane;

49 }

51 back

52 {

53 type empty;

54 }

56 front

57 {

58 type empty;

59 }

60 }

• This file contains the boundary and initial conditions

for the scalar field temperature (T).

• Also, pay attention to the units (line 17). The

temperature is defined in Kelvin.

• We are using uniform initial conditions (line 19).

• For the in patch we are using a fixedValue boundary

condition.

• For the out patch we are using a inletOutlet

boundary condition (in case of backflow).

• For the cylinder patch we are using a zeroGradient

boundary condition.

• The rest of the patches are constrained.

Flow past a cylinder – From laminar to turbulent flow

The file 0/U

17 dimensions [0 1 -1 0 0 0 0];

18

19 internalField uniform (1.5 0 0);

20

21 boundaryField

22 {

23 in

24 {

25 type fixedValue;

26 value uniform (1.5 0 0);

27 }

29 out

30 {

31 type inletOutlet;

32 phi phi;

33 inletValue uniform (0 0 0);

34 value uniform (0 0 0);

35 }

37 cylinder

38 {

39 type fixedValue;

40 value uniform (0 0 0);

41 }

43 sym1

44 {

45 type symmetryPlane;

46 }

48 sym2

49 {

50 type symmetryPlane;

51 }

53 back

54 {

55 type empty;

56 }

58 front

59 {

60 type empty;

61 }

62 }

• This file contains the boundary and initial conditions

for the dimensional vector field U.

• We are using uniform initial conditions and the

numerical value is (1.5 0 0) (keyword internalField in

line 19).

• For the in patch we are using a fixedValue boundary

condition.

• For the out patch we are using a inletOutlet

boundary condition (in case of backflow).

• For the cylinder patch we are using a zeroGradient

boundary condition.

• The rest of the patches are constrained.

Flow past a cylinder – From laminar to turbulent flow

The system directory

• The system directory consists of the following compulsory dictionary files:

• controlDict

• fvSchemes

• fvSolution

• controlDict contains general instructions on how to run the case.

• fvSchemes contains instructions for the discretization schemes that will be

used for the different terms in the equations.

• fvSolution contains instructions on how to solve each discretized linear

equation system.

Flow past a cylinder – From laminar to turbulent flow

17 application icoFoam;

18

19 startFrom startTime;

20 //startFrom latestTime;

21

22 startTime 0;

23

24 stopAt endTime;

25 //stopAt writeNow;

26

27 endTime 0.3;

28

29 deltaT 0.00001;

30

31 writeControl adjustableRunTime;

32

33 writeInterval 0.0025;

34

35 purgeWrite 0;

36

37 writeFormat ascii;

38

39 writePrecision 10;

40

41 writeCompression off;

42

43 timeFormat general;

44

45 timePrecision 6;

46

47 runTimeModifiable true;

48

49 adjustTimeStep yes;

50 maxCo 1;

51 maxDeltaT 1;

The controlDict dictionary

• This case will start from the last saved solution (startFrom). If there is

no solution, the case will start from time 0 (startTime).

• It will run up to 0.3 seconds (endTime).

• The initial time step of the simulation is 0.00001 seconds (deltaT).

• It will write the solution every 0.0025 seconds (writeInterval) of

simulation time (adjustableRunTime). The option adjustableRunTime

will adjust the time-step to save the solution at the precise intervals. This

may add some oscillations in the solution as the CFL is changing.

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat).

• And as the option runTimeModifiable is on, we can modify all these

entries while we are running the simulation.

• In line 49 we turn on the option adjustTimeStep. This option will

automatically adjust the time step to achieve the maximum desired

courant number (line 50).

• We also set a maximum time step in line 51.

• Remember, the first time step of the simulation is done using the value

set in line 28 and then it is automatically scaled to achieve the desired

maximum values (lines 66-67).

• The feature adjustTimeStep is only present in the PIMPLE family

solvers, but it can be added to any solver by modifying the source code.

Flow past a cylinder – From laminar to turbulent flow

55 functions

56 {

178 forceCoeffs_object

179 {

188 type forceCoeffs;

189 functionObjectLibs ("libforces.so");

190 patches (cylinder);

191

192 pName p;

193 Uname U;

194 //rhoName rhoInf;

195 rhoInf 1.205;

196

197 //// Dump to file

198 log true;

199

200 CofR (0.0 0 0);

201 liftDir (0 1 0);

202 dragDir (1 0 0);

203 pitchAxis (0 0 1);

204 magUInf 1.5;

205 lRef 0.001;

206 Aref 0.000002;

207

208 outputControl timeStep;

209 outputInterval 1;

210 }

235

236 };

• As usual, at the bottom of the controlDict dictionary file

we define the functionObjects (lines 55-236).

• Of special interest is the functionObject

forceCoeffs_object.

• As we changed the domain dimensions and the inlet

velocity we need to update the reference values (lines 204-

206).

• It is also important to update the reference density (line

195).

The controlDict dictionary

Flow past a cylinder – From laminar to turbulent flow

17 ddtSchemes

18 {

19 default Euler;

20 }

21

22 gradSchemes

23 {

29 default cellLimited leastSquares 1;

34 }

35

36 divSchemes

37 {

38 default none;

39 div(phi,U) Gauss linearUpwindV default;

40

41 div(phi,K) Gauss linear;

42 div(phi,h) Gauss linear;

43

44 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

45 }

46

47 laplacianSchemes

48 {

49 default Gauss linear limited 1;

50 }

51

52 interpolationSchemes

53 {

54 default linear;

55 }

56

57 snGradSchemes

58 {

59 default limited 1;

60 }

• In this case, for time discretization (ddtSchemes) we are

using the Euler method.

• For gradient discretization (gradSchemes) we are using the

leastSquares method.

• For the discretization of the convective terms (divSchemes)

we are using linearUpwind interpolation with no slope limiters

for the term div(phi,U).

• For the terms div(phi,K) (kinetic energy) and div(phi,h)

(enthalpy) we are using linear interpolation method with no

slope limiters.

• For the term div(((rho*nuEff)*dev2(T(grad(U))))) we are

using linear interpolation (this term is related to the turbulence

modeling).

• For the discretization of the Laplacian (laplacianSchemes

and snGradSchemes) we are using the Gauss linear limited

1 method.

• This method is second order accurate.

The fvSchemes dictionary

Flow past a cylinder – From laminar to turbulent flow

17 solvers

18 {

20 p

21 {

22 solver PCG;

23 preconditioner DIC;

24 tolerance 1e-06;

25 relTol 0.01;

26 minIter 2;

27 }

46 pFinal

47 {

48 $p;

49 relTol 0;

50 minIter 2;

51 }

53 "U.*"

54 {

55 solver PBiCGStab;

56 preconditioner DILU;

57 tolerance 1e-08;

58 relTol 0;

59 minIter 2;

60 }

74 hFinal

75 {

76 solver PBiCGStab;

77 preconditioner DILU;

78 tolerance 1e-08;

79 relTol 0;

80 minIter 2;

81 }

83 "rho.*"

84 {

85 solver diagonal;

86 }

87 }

• To solve the pressure (p) we are using the PCG method with

an absolute tolerance of 1e-6 and a relative tolerance relTol

of 0.01.

• The entry pFinal refers to the final correction of the PISO

loop. Notice that we are using macro expansion ($p) to copy

the entries from the sub-dictionary p.

• To solve U and UFinal (U.*) we are using the solver

PBiCGStab with an absolute tolerance of 1e-8 and a relative

tolerance relTol of 0.

• To solve hFinal (enthalpy) we are using the solver

PBiCGStab with an absolute tolerance of 1e-8 and a relative

tolerance relTol of 0.

• To solve rho and rhoFinal (rho.*) we are using the diagonal

solver (remember rho is found from the equation of state, so

this is a back-substitution).

• FYI, solving for the velocity is relative inexpensive, whereas

solving for the pressure is expensive.

• Be careful with the enthalpy, it might cause oscillations.

The fvSolution dictionary

Flow past a cylinder – From laminar to turbulent flow

88

89 PIMPLE

90 {

91 momentumPredictor yes;

92 nOuterCorrectors 1;

93 nCorrectors 2;

94 nNonOrthogonalCorrectors 1;

95 rhoMin 0.5;

96 rhoMax 2.0;

97 }

• The PIMPLE sub-dictionary contains entries related to the

pressure-velocity coupling (in this case the PIMPLE method).

• Setting the keyword nOuterCorrectors to 1 is equivalent to

running using the PISO method.

• Hereafter we are doing 2 PISO correctors (nCorrectors) and

1 non-orthogonal corrections (nNonOrthogonalCorrectors).

• In lines 95-96 we set the minimum and maximum physical

values of rho (density).

• If we increase the number of nCorrectors and

nNonOrthogonalCorrectors we gain more stability but at a

higher computational cost.

• The choice of the number of corrections is driven by the

quality of the mesh and the physics involve.

• You need to do at least one PISO loop (nCorrectors).

The fvSolution dictionary

Flow past a cylinder – From laminar to turbulent flow

• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c24

• Feel free to use the Fluent mesh or the mesh generated with blockMesh. In this case we will use

blockMesh.

• To run this case, in the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> transformPoints –scale ‘(0.001 0.001 0.001)’

4. $> renumberMesh -overwrite

5. $> rhoPimpleFoam | tee log

6.
$> pyFoamPlotWatcher.py log

You will need to launch this script in a different terminal

7.
$> gnuplot scripts0/plot_coeffs

You will need to launch this script in a different terminal

8. $> rhoPimpleFoam –postProcess –func MachNo

9. $> paraFoam

Running the case – Using a compressible solver

Flow past a cylinder – From laminar to turbulent flow

• In step 3 we scale the mesh.

• In step 4 we use the utility renumberMesh to make the linear system more diagonal

dominant, this will speed-up the linear solvers.

• In step 5 we run the simulation and save the log file. Notice that we are sending the

job to background.

• In step 6 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly. As the

job is running in background, we can launch this utility in the same terminal tab.

• In step 7 we use the gnuplot script scripts0/plot_coeffs to plot the force

coefficients on-the-fly. Besides monitoring the residuals, is always a good idea to

monitor a quantity of interest. Feel free to take a look at the script and to reuse it.

• In step 8 we use the utility MachNo to compute the Mach number.

Flow past a cylinder – From laminar to turbulent flow

Running the case – Using a compressible solver

Courant Number mean: 0.1280224248 max: 0.9885863338

deltaT = 3.816512052e-05

Time = 0.3

diagonal: Solving for rho, Initial residual = 0, Final residual = 0, No Iterations 0

PIMPLE: iteration 1

DILUPBiCG: Solving for Ux, Initial residual = 0.003594731129, Final residual = 3.026673755e-11, No Iterations 5

DILUPBiCG: Solving for Uy, Initial residual = 0.01296036298, Final residual = 1.223236662e-10, No Iterations 5

DILUPBiCG: Solving for h, Initial residual = 0.01228951539, Final residual = 2.583236461e-09, No Iterations 4

DICPCG: Solving for p, Initial residual = 0.01967621449, Final residual = 8.797612158e-07, No Iterations 77

DICPCG: Solving for p, Initial residual = 0.003109422612, Final residual = 9.943030465e-07, No Iterations 69

diagonal: Solving for rho, Initial residual = 0, Final residual = 0, No Iterations 0

time step continuity errors : sum local = 6.835363016e-11, global = 4.328592697e-12, cumulative = 2.366774797e-09

rho max/min : 1.201420286 1.201382023

DICPCG: Solving for p, Initial residual = 0.003160602108, Final residual = 9.794177338e-07, No Iterations 69

DICPCG: Solving for p, Initial residual = 0.0004558492254, Final residual = 9.278622052e-07, No Iterations 58

diagonal: Solving for rho, Initial residual = 0, Final residual = 0, No Iterations 0

time step continuity errors : sum local = 6.38639685e-11, global = 1.446434866e-12, cumulative = 2.368221232e-09

rho max/min : 1.201420288 1.201381976

ExecutionTime = 480.88 s ClockTime = 490 s

faceSource inMassFlow output:

sum(in) of phi = -7.208447027e-05

faceSource outMassFlow output:

sum(out) of phi = 7.208444452e-05

fieldAverage fieldAverage output:

Calculating averages

Writing average fields

forceCoeffs forceCoeffs_object output:

Cm = -0.001269886395

Cd = 1.419350733

Cl = 0.6247248606

Cl(f) = 0.3110925439

Cl(r) = 0.3136323167

fieldMinMax minmaxdomain output:

min(p) = 101322.7878 at location (-0.0001215826043 0.001027092827 0)

max(p) = 101326.4972 at location (-0.001033408037 -4.061934599e-05 0)

min(U) = (-0.526856427 -0.09305459972 -8.110485132e-25) at location (0.002039092041 -0.0004058872656 -3.893823418e-20)

max(U) = (2.184751599 0.2867627526 4.83091257e-25) at location (0.0001663574444 0.001404596295 0)

min(T) = 293.1487423 at location (-5.556854517e-05 0.001412635233 0)

max(T) = 293.1509903 at location (-0.00117685237 -4.627394552e-05 3.016083257e-20)

rhoPimpleFoam output screen

Time step
Courant number

Solving for density

(rho)

Max/min density values

pFinal

Force coefficients
Minimum and
maximum values

Solving for density (rhoFinal)

h residuals

Flow past a cylinder – From laminar to turbulent flow

• In the directory $PTOFC/101OF/vortex_shedding, you will find 28 variations of the cylinder case involving

different solvers and models. Feel free to explore all them.

• This is what you will find in each directory,

• c1 = blockMesh – icoFoam – Re = 200.

• c2 = fluentMeshToFoam – icoFoam – Re = 200.

• c3 = blockMesh – icoFoam – Field initialization – Re = 200.

• c4 = blockMesh – potentialFoam – Re = 200.

• c5 = blockMesh – mapFields – icoFoam – original mesh – Re = 200.

• c6 = blockMesh – mapFields – icoFoam – Finer mesh – Re = 200.

• c7 = blockMesh – pimpleFoam – Re = 200 – No turbulent model.

• c8 = blockMesh – pisoFoam – Re = 200 – No turbulent model.

• c9 = blockMesh – pisoFoam – Re = 200 – K-Omega SST turbulent model.

• c10 = blockMesh – simpleFoam – Re = 200 – No turbulent model.

• c11 = blockMesh – simpleFoam – Re = 40 – No turbulent model.

• c12 = blockMesh – pisoFoam – Re = 40 – No turbulent model.

• c14 = blockMesh – pimpleFoam – Re = 10000 – K-Omega SST turbulent model with wall functions.

• c15 = blockMesh – pimpleFoam – Re = 100000 – K-Omega SST turbulent model with wall functions.

Flow past a cylinder – From laminar to turbulent flow

• This is what you will find in each directory,

• c16 = blockMesh – simpleFoam – Re = 100000 – K-Omega SST turbulent model with no wall functions.

• c17 = blockMesh – simpleFoam – Re = 100000 – K-Omega SST turbulent model with wall functions.

• c18 = blockMesh – pisoFoam – Re = 100000, LES Smagorinsky turbulent model.

• c19 = blockMesh – pimpleFoam – Re = 1000000 – Spalart Allmaras turbulent model with no wall

functions.

• c20 = blockMesh – sonicFoam – Mach = 2.0 – Compressible – Laminar.

• c21 = blockMesh – sonicFoam – Mach = 2.0 – Compressible – K-Omega SST turbulent model with wall

functions.

• c22 = blockMesh – pimpleFoam – Re = 200 – No turbulent model – Source terms (momentum)

• c23 = blockMesh – pimpleFoam – Re = 200 – No turbulent model – Source terms (scalar transport)

• c24 = blockMesh – rhoPimpleFoam – Re = 200 – Laminar, isothermal

• c25 = blockMesh – rhoPimpleFoam – Re = 20000 – Turbulent, compressible

• c26 = blockMesh – pimpleDyMFoam – Re = 200 – Laminar, moving cylinder (oscillating).

• c27 = blockMesh – pimpleDyMFoam/pimpleFoam – Re = 200 – Laminar, rotating cylinder using AMI

patches.

• c28 = blockMesh – interFoam – Laminar, multiphase, free surface.

• c29 = blockMesh – pimpleFoam laminar with source terms and AMR.

Flow past a cylinder – From laminar to turbulent flow

