
Implementing boundary conditions using high level programming

• Hereafter we will work with high level programming, this is the hard part of

programming in OpenFOAM®.

• High level programming requires some knowledge on C++ and OpenFOAM®

API library.

• Before doing high level programming, we highly recommend you to try with

codeStream, most of the time it will work.

• We will implement the parabolic profile, so you can compare this

implementation with codeStream ad codedFixedValue BCs.

• When we program boundary conditions, we are actually building a new

library that can be linked with any solver. To compile the library, we use the
command wmake (distributed with OpenFOAM®).

• At this point, you can work in any directory. But we recommend you to work

in your OpenFOAM® user directory, type in the terminal,

1. $> cd $WM_PROJECT_USER_DIR/run

• Let us create the basic structure to write the new boundary condition, type in

the terminal,

1. $> foamNewBC –f –v myParabolicVelocity

2. $> cd myParabolicVelocity

• The utility foamNewBC, will create the directory structure and all the files needed to

write your own boundary conditions.

• We are setting the structure for a fixed (the option –f) velocity (the option –v),

boundary condition, and we name our boundary condition ParabolicVelocity .

• If you want to get more information on how to use foamNewBC, type in the terminal,

1. $> foamNewBC –help

Implementing boundary conditions using high level programming

./myParabolicVelocity

├── Make

│ ├── files

│ └── options

├── myParabolicVelocityFvPatchVectorField.C

└── myParabolicVelocityFvPatchVectorField.H

The directory contains the source code of the boundary condition.

• myParabolicVelocityFvPatchVectorField.C: is the actual source code of the

application. This file contains the definition of the classes and functions.

• myParabolicVelocityFvPatchVectorField.H: header files required to compile the

application. This file contains variables, functions and classes declarations.

• The Make directory contains compilation instructions.

• Make/files: names all the source files (.C), it specifies the boundary condition

library name and location of the output file.

• Make/options: specifies directories to search for include files and libraries to link the

solver against.

Directory structure of the new boundary condition

Implementing boundary conditions using high level programming

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

//- Single valued scalar quantity, e.g. a coefficient

scalar scalarData_;

//- Single valued Type quantity, e.g. reference pressure pRefValue_

// Other options include vector, tensor

vector data_;

//- Field of Types, typically defined across patch faces

// e.g. total pressure p0_. Other options include vectorField

vectorField fieldData_;

//- Type specified as a function of time for time-varying BCs

autoPtr<Function1<vector>> timeVsData_;

//- Word entry, e.g. pName_ for name of the pressure field on database

word wordData_;

//- Label, e.g. patch index, current time index

label labelData_;

//- Boolean for true/false, e.g. specify if flow rate is volumetric_

bool boolData_;

// Private Member Functions

//- Return current time

scalar t() const;

• In lines 99-126 different types of

private data are declared.

• These are the variables we will

use for the implementation of the

new BC.

• In our implementation we need

to use vectors and scalars,

therefore we can keep the lines

100 and 104.

• We can delete lines 106-120, as

we do not need those datatypes.

• Also, as we will use two vectors

in our implementation, we can

duplicate line 104.

• You can leave the rest of the file

as it is.

The header file (.H)

• Let us start to do some modifications. Open the header file using your favorite text

editor (we use gedit).

Implementing boundary conditions using high level programming

99

100

101

102

103

104

105

//- Single valued scalar quantity, e.g. a coefficient

scalar scalarData_;

//- Single valued Type quantity, e.g. reference pressure pRefValue_

// Other options include vector, tensor

vector data_;

vector data_;

99

100

101

102

103

104

105

//- Single valued scalar quantity, e.g. a coefficient

scalar maxValue_;

//- Single valued Type quantity, e.g. reference pressure pRefValue_

// Other options include vector, tensor

vector n_;

vector y_;

• Change the name of scalarData_ to maxValue_ (line 100).

• Change the names of the two vectors data_ (lines 104-105). Name the first one n_

and the last one y_.

• At this point, your header file should looks like this one,

• You can now save and close the file.

The header file (.H)

It is recommended to initialize

them in the same order as you
declare them in the header file

Implementing boundary conditions using high level programming

The source file (.C)

• Let us start to modify the source file. Open the source file with your favorite editor.

• Lines 34-37 refers to a private function definition. This function allows us to access

simulation time. Since in our implementation we do not need to use time, we can

safely remove these lines.

34

35

36

37

Foam::scalar Foam::myParabolicVelocityFvPatchVectorField::t() const

{

return db().time().timeOutputValue();

}

• You will get a lot of errors.

• Since we deleted the datatypes fieldData, timeVsData, wordData, labelData and

boolData in the header file, we need to delete them as well in the C file. Otherwise

the compiler complains.

1. $> wmake

• Let us compile the library to see what errors we get. Type in the terminal,

Implementing boundary conditions using high level programming

• At this point, let us erase all the occurrences of the datatypes fieldData, timeVsData,

wordData, labelData, and boolData.

• Locate line 38,

The source file (.C)

38 Foam::myParabolicVelocityFvPatchVectorField::

...

...

...

• Using this line as your reference location in the source code, follow these steps,

• Erase the following lines in incremental order (be sure to erase only the lines that

contain the words fieldData, timeVsData, wordData, labelData and boolData):

48-52, 64-68, 92-96, 105-109, 119-123, 177-180.

• Erase the following lines (they contain the word fieldData), 131, 146, 159-161.

• Replace all the occurrences of the word scalarData with maxValue (11

occurrences).

Implementing boundary conditions using high level programming

The source file (.C)

• Duplicate all the lines where the word data appears (6 lines), change the word data

to n in the first line, and to y in the second line, erase the comma in the last line. For

example,

45

46

47

48

fixedValueFvPatchVectorField(p, iF),

maxValue_(0.0),

data_(Zero),

data_(Zero),

45

46

47

48

fixedValueFvPatchVectorField(p, iF),

maxValue_(0.0),

n_(Zero),

y_(Zero) Remember to erase the comma

Original statements

Modified statements

Implementing boundary conditions using high level programming

The source file (.C)

• We are almost done, we just defined all the datatypes. Now we need to implement

the actual boundary condition.

• Starting in line 156, add the following statements,

150

151

152

153

154

155

156

157

158

159

160

161

162

163

void Foam::myParabolicVelocityFvPatchVectorField::updateCoeffs()

{

if (updated())

{

return;

}

boundBox bb(patch().patch().localPoints(), true);

vector ctr = 0.5*(bb.max() + bb.min());

const vectorField& c = patch().Cf();

scalarField coord = 2*((c - ctr) & y_)/((bb.max() - bb.min()) & y_);A
d

d
 t
h

e
s
e

 l
in

e
s

Find patch bounds (minimum
and maximum points)

Coordinates of patch midpoint

Access patch face centers

Computes scalar field to be used for defining the parabolic profile
x

x

The actual

implementation of

the BC is always
done in this class

Implementing boundary conditions using high level programming

The source file (.C)

• Add the following statement in line 166,

164

165

166

167

168

fixedValueFvPatchVectorField::operator==

(

n_*maxValue_*(1.0 - sqr(coord))

);

The access function operator== is

used to assign the values to the
boundary patches

Our boundary condition

• At this point we have a valid library where we implemented a new BC.

• Try to compile it, we should not get any error (maybe one warning). Type in the

terminal,

1. $> wmake

• If you are feeling lazy or you can not fix the compilation errors, you will find the source

code in the directory,

• $PTOFC/101programming/src/myParabolicVelocity

Implementing boundary conditions using high level programming

• Before moving forward, let us comment a little bit the source file.

• First at all, there are five classes constructors and each of them have a specific task.

• In our implementation we do not use all the classes, we only use the first two classes.

• The first class is related to the initialization of the variables.

• The second class is related to reading the input dictionaries.

• We will not comment on the other classes as it is out of the scope of this example

(they deal with input tables, mapping, and things like that).

• The implementation of the boundary condition is always done using the

updateCoeffs() member function.

• When we compile the source code, it will compile a library with the name specified in
the file Make/file. In this case, the name of the library is libmyParabolicVelocity.

• The library will be located in the directory $(FOAM_USER_LIBBIN), as specified in
the file Make/file.

The source file (.C)

Implementing boundary conditions using high level programming

• The first class is related to the initialization of the variables declared in the header file.

• In line 47 we initialize maxValue with the value of zero. The vectors n and y are

initialized as a zero vector by default or (0, 0, 0).

• It is not a good idea to initialize these vectors as zero vectors by default. Let us use

as default initialization (1, 0, 0) for vector n and (0,1,0) for vector y.

The source file (.C)

38

39

40

41

42

43

44

45

46

47

48

49

50

Foam::myParabolicVelocityFvPatchVectorField::

myParabolicVelocityFvPatchVectorField

(

const fvPatch& p,

const DimensionedField<vector, volMesh>& iF

)

:

fixedValueFvPatchVectorField(p, iF),

maxValue_(0.0),

n_(Zero),

y_(Zero)

{

}

Change to n_(1,0,0)

Change to y_(0,1,0)

Implementing boundary conditions using high level programming

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

77

Foam::myParabolicVelocityFvPatchVectorField::

myParabolicVelocityFvPatchVectorField

(

const fvPatch& p,

const DimensionedField<vector, volMesh>& iF,

const dictionary& dict

)

:

fixedValueFvPatchVectorField(p, iF),

maxValue_(readScalar(dict.lookup("maxValue"))),

n_(pTraits<vector>(dict.lookup("n"))),

y_(pTraits<vector>(dict.lookup("y")))

{

fixedValueFvPatchVectorField::evaluate();

}

• The second class is used to read the input dictionary.

• Here we are reading the values defined by the user in the dictionary U.

• The function lookup will search the specific keyword in the input file.

The source file (.C)

dict.lookup will look for

these keywords in the
input dictionary

Implementing boundary conditions using high level programming

66

67

68

69

70

71

72

73

74

75

76

77

78

if (mag(n_) < SMALL || mag(y_) < SMALL)

{

FatalErrorIn("parabolicVelocityFvPatchVectorField(dict)")

<< "n or y given with zero size not correct"

<< abort(FatalError);

}

n_ /= mag(n_); //This is equivalent to n_ = n_/mag(n_)

y_ /= mag(y_); //This is equivalent to y_ = y_/(mag(y_)

fixedValueFvPatchVectorField::evaluate();

• Since we do not want the vectors n and y to be zero vectors, we add the following

sanity check from lines 67-75.

• These statements check if the given n and y vectors in the input dictionary is zero or

not.

• If any of the vectors are zero it gives the fatal error and terminate the program.

• On the other hand, if everything is ok it will normalize n and y (since in our

implementation they are direction vectors).

The source file (.C)

A
d

d
 t
h

e
s
e

 s
ta

te
m

e
n
ts

Implementing boundary conditions using high level programming

The source file (.C)

1. $> wmake

• At this point, we are ready to go.

• Save files and recompile. Type in the terminal,

• We should not get any error (maybe one warning).

• At this point we have a valid library that can be linked with any solver.

• If you get compilation errors read the screen and try to sort it out, the compiler is

always telling you what is the problem.

• If you are feeling lazy or you can not fix the compilation errors, you will find the source

code in the directory,

• $PTOFC/101programming/src/myParabolicVelocity

Implementing boundary conditions using high level programming

The source file (.C)

• Before using the new BC, let us take a look at the logic behind the implementation.

 a a a e

 e e a e a

 a a e a

 a a e

Implementing boundary conditions using high level programming

• This case is ready to run, the input files are located in the directory
$PTOFC/101programming/src/case_elbow2d

• Go to the case directory,

Running the case

1. $> cd $PTOFC/101programming/src/case_elbow2d

• Open the file 0/U, and look for the definition of the new BC velocity-inlet-5,

velocity-inlet-5

{

type myParabolicVelocity;

maxValue 2.0;

n (1 0 0);

y (0 1 0);

}

Name of the boundary condition

User defined values

max value, n, y

If you set n or y to (0 0 0), the solver will
abort execution

Implementing boundary conditions using high level programming

• We also need to tell the application that we want to use the library we just compiled.

• To do so, we need to add the new library in the dictionary file controlDict,

Running the case

15

16

17

18

19

// * //

libs ("libmyParabolicVelocity.so");

application icoFoam;

Name of the library
You can add as many libraries as you like

• The solver will dynamically link the library.

• At this point, we are ready to launch the simulation.

Implementing boundary conditions using high level programming

• This case is ready to run, the input files are located in the directory
$PTOFC/101programming/src/case_elbow2d

• To run the case, type in the terminal,

1. $> foamCleanTutorials

2. $> fluentMeshToFoam ../../../meshes_and_geometries/fluent_elbow2d_1/ascii.msh

3. $> icoFoam | tee log

4. $> paraFoam

Running the case

• At this point, you can compare the three implementations (codeStream,

codedFixedValue and high level programming).

• All of them will give the same outcome.

Implementing boundary conditions using high level programming

• Let us add some outputs to the BC.

• Starting at line 181 (after the function updateCoeffs), add the following lines,

Adding some verbosity to the BC implementation

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

fixedValueFvPatchVectorField::updateCoeffs();

Info << endl << "Face centers (c):" << endl;

Info << c << endl;

Info << endl << "Patch center (ctr):" << endl;

Info << ctr << endl;

Info << endl << "Patch (c - ctr):" << endl;

Info << c - ctr << endl;

Info << endl << "Patch max bound (bb.max):" << endl;

Info << bb.max() << endl;

Info << endl << "Patch min bound (bb.max):" << endl;

Info << bb.min() << endl;

Info << endl << "Patch coord (2*((c - ctr) & y_)/((bb.max() - bb.min()) & y_)):" << endl;

Info << coord << endl;

Info << endl << "Patch (1.0 - sqr(coord)) :" << endl;

Info << n_*maxValue_*(1.0 - sqr(coord))<< endl;

Info << endl << "Loop for c, BC assigment << endl;

forAll(c, faceI)

{

Info << c[faceI] << " " << n_*maxValue_*(1.0 - sqr(coord[faceI])) << endl;

}

• Recompile, rerun the simulation, look at the output, and do the math.

Implementing boundary conditions using high level programming

• Starting from this boundary condition, try to implement a paraboloid BC.

• If you are feeling lazy or at any point do you get lost, in the directory
$PTOFC/101programming/src/myParaboloid you will find a working

implementation of the paraboloid profile.

• Open the source code and try to understand what we did (pretty much similar to the

previous case).

• In the directory $PTOFC/101programming/src/case_elbow3d you will find a

case ready to use.

Do you take the challenge?

Implementing boundary conditions using high level programming

