
Supplement
Qualitative postprocessing – Coprocessing

1

Coprocessing

• CFD simulations have the potential to overwhelm any

computer with the output obtained from simulations.

• The traditional approach is to run a simulation and save

the solution at given time-steps or intervals for post

processing at a later time.

• An alternative way to do post processing, is to extract

results while the simulation is running (on-the-fly), this is

coprocessing.

• For unsteady and big simulations, coprocessing is an

alternative if we do not want to overflow the system with

tons of data.

• In principle, coprocessing is similar to doing sampling

using functionObjects, but when we do coprocessing we

output pretty pictures (e.g., streamlines, iso-surfaces, cut-

planes).

• An added benefit of coprocessing is that results can be

immediately reviewed, and problems can be immediately

addressed.

• Coprocessing requires that you identify what you want to

see before running the simulation. You need to plan

everything in advanced.

• In OpenFOAM®, you can output on-the-fly streamlines,

cutting planes, iso-surfaces, near surface fields, and

forces data bins.

MESH

SOLVER

POST-PROCESSING

CO-PROCESSING

GEOMETRY

2

Coprocessing

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of

how to run the case. In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh,

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on. These files can be used to run the case

automatically by typing in the terminal, for example, sh run_solver.

• We highly recommend to open the README.FIRST file and type the commands in the terminal, in this way

you will get used with the command line interface and OpenFOAM® commands.

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases.

$PTOFC/advanced_postprocessing/sport_car/

• Let us do some coprocessing. Go to the directory:

3

Coprocessing

Geometry and computational domain

4

• We will use this case to do coprocessing using functionObjects.

• We do not need to run the simulation for a long time, we just need to run a few iterations in

order to do coprocessing.

• We will run the simulation for 100 iterations and then we will visualize the solution.

• In this case we will use the solver potentialFoam to initialize the solution.

• Then we will use the solver simpleFoam with turbulence modeling enabled.

• You can run in serial or parallel.

• To run the case just execute the script run_solver.sh

• All the coprocessing functionObjects are defined in the dictionary controlDict.

Coprocessing

What are we going to do?

5

Coprocessing

The controlDict dictionary

58 functions

59 {

286 isoSurfaces1

332 isoSurfaces2

379 cuttingPlanes1

444 nearWallField1

471 patch_surface1

504 patch_surface2

537 streamlines1

577 streamlines2

614 wallBoundedStreamLines1

717 };

• Let us take a look at the definition of the
functionObjects in the dictionary controlDict.

• In this case, we have defined many functionObjects.

• We will only comment on the functionObjects related to

coprocessing.

• In lines 286 and 332 we defined the functionObjects to

compute iso-surfaces.

• In line 379 we defined the functionObjects to compute

cut-planes.

• In line 444 we defined the functionObjects to compute

near wall fields.

• In lines 471 and 504 we defined the functionObjects to

compute fields on patches.

• In lines 537, 577, and 614 we defined the

functionObjects to compute streamlines released from

different locations.

• It is important to stress that in coprocessing we are only

saving the requested information, we do not save the

whole mesh with all fields.

6

Coprocessing

The controlDict dictionary – Iso-surfaces functionObject

286 isoSurfaces1

287 {

288 type surfaces;

289 functionObjectsLibs (“libsampling.so”)

290

291 enabled true;

295 writeControl timestep;

296 writeInterval 10;

298 surfaceFormat vtk;

299 fields (p U k omega);

301 interpolationScheme cellPoint;

304 surfaces

305 (

306

307 p_constantIso

308 {

309 type isoSurface;

310 isoField p;

311 isoValue 30;

312 Interpolate false;

313 }

...

...

...

323);

325 }

• Let us take a look at the iso-surfaces definition.

• In lines 288-289 we select the library and type of functionObject.

• In line 291 we can turn-on and turn-off the functionObject. This

can be done on-the-fly.

• In lines 295-296 we select the saving frequency. The saving

frequency can be different from the saving frequency of the

solution.

• In line 298 we select the output format (many formats are

available).

• In line 299 we select the fields to save with the iso-surface. No

need to mention that the fields must exist.

• In lines 301 we select the interpolation method.

• In lines 304-323 we define the iso-surfaces. You can add as many

as you like.

• Remember, to define the iso-surface we need to know the iso

value a priori or at least have a rough reference of the value of the

iso-surface.

7

Coprocessing

286 isoSurfaces1

287 {

288 type surfaces;

289 functionObjectsLibs (“libsampling.so”)

290

291 enabled true;

295 writeControl timestep;

296 writeInterval 10;

298 surfaceFormat vtk;

299 Fields (p U k omega);

301 interpolationScheme cellPoint;

304 surfaces

305 (

306

307 p_constantIso

308 {

309 type isoSurface;

310 isoField p;

311 isoValue 30;

312 Interpolate false;

313 }

...

...

...

323);

325 }

• In lines 307-313 we define the p_constantIso object.

• In line 307 we give a unique name to this object.

• In line 309 we define the type (iso-surface).

• In line 310 we select the field to compute the iso-surface.

• In line 311 we select the iso value.

• In this case we are saving an iso-surface of the pressure

field pressure with a value of 30.

• The iso-surfaces contain the information of the fields

defined in line 299.

• The output of this functionObject is saved in the directory
postProcessing/isoSurface1

• The output is saved in this directory because in line 286 we

defined a unique name for the functionObject.

• In this directory, you will find many time directories with the

sampled data.

• Inside each directory you will find a series of files with the VTK

extension, you can open these files in paraFoam/paraview.

• The rest of the iso-surfaces functionObjects are defined in a

similar way.

• As usual, to know all the options available, you can use the

banana trick.

8

The controlDict dictionary – Iso-surfaces functionObject

Coprocessing

• Iso-surfaces sampled using functionObjects.

• By using coprocessing, we only saved this specific iso-surface information.

• There is not need to save the whole solution.

• This can significantly reduce the amount of data stored and help us in doing faster post-

processing.

Iso-surfaces of pressure field

9

Coprocessing

• Iso-surfaces of Q criterion colored using the velocity field.

Iso-surfaces of Q criterion

10

Coprocessing

379 cuttingPlanes1

380 {

381 type surfaces;

382 functionObjectsLibs (“libsampling.so”)

384 enabled true;

388 writeControl timestep;

389 writeInterval 10;

392 surfaceFormat vtk;

393 fields (p U k omega);

395 interpolationScheme cellPoint;

397 surfaces

398 (

399 xNormal

400 {

401 type cuttingPlane;

402 planeType pointAndNormal;

403 pointAndNormalDict

404 {

405 basePoint (0 0 0);

406 normalVector (1 0 0);

407 }

408 Interpolate true;

409 }

...

...

...

435);

437 }

• Let us take a look at the cut planes definition.

• The options in lines 381-395 are similar to the iso-surfaces

functionObject.

• Remember, the saving frequency can be different from the saving

frequency of the solution and other functionObjects.

• In lines 397-435 we define the cut-planes. You can add as many

as you like.

• In lines 399-409 we define the xNormal object.

• In line 399 we give a unique name to this object.

• In lines 402-408 we define the cut-plane.

• To define cut-planes, there are many options available.

• To know all the options, you can use the banana trick or read the

source code.

• Remember, to define the cut-planes we need to know their

location a priori or at least have a rough reference of the domain

dimensions.

11

The controlDict dictionary – Cut-planes functionObject

Coprocessing

379 cuttingPlanes1

380 {

381 type surfaces;

382 functionObjectsLibs (“libsampling.so”)

384 enabled true;

388 writeControl timestep;

389 writeInterval 10;

392 surfaceFormat vtk;

393 fields (p U k omega);

395 interpolationScheme cellPoint;

397 surfaces

398 (

399 xNormal

400 {

401 type cuttingPlane;

402 planeType pointAndNormal;

403 pointAndNormalDict

404 {

405 basePoint (0 0 0);

406 normalVector (1 0 0);

407 }

408 Interpolate true;

409 }

...

...

...

435);

437 }

• The output of this functionObject is saved in the directory
postProcessing/cuttingPlanes1

• The output is saved in this directory because in line 379 we

defined a unique name for the functionObject.

• In this directory, you will find many time directories with the

sampled data.

• Inside each directory you will find a series of files with the VTK

extension, you can open these files in paraFoam/paraview.

• The rest of the cut-planes functionObjects are defined in a

similar way.

• As usual, to know all the options available, you can use the

banana trick.

12

The controlDict dictionary – Cut-planes functionObject

Coprocessing

• By using coprocessing, we only saved this specific information.

• There is not need to save the whole solution.

• This can significantly reduce the amount of data stored and help us in doing faster post-

processing.

Cut-planes location

13

Coprocessing

• Cut-planes colored using field variables (U, p, k, omega).

Cut-planes – Field variables contours

14

Coprocessing

471 patch_surface1

472 {

473 type surfaces;

474 functionObjectsLibs (“libsampling.so”)

475

476 enabled true;

479 writeControl timestep;

480 writeInterval 10;

482 surfaceFormat vtk;

483 fields (p U k omega yPlus);

485 interpolationScheme cellPoint;

487 surfaces

488 (

489

490 patch_car

491 {

492 type patch;

493 Patches (“car”);

494 }

495);

497 }

• Let us see how to save the information at a given patch.

• The options in lines 473-485 are similar to those of the previous

functionObjects.

• In lines 487-495 we define the sampling at a given patch.

• In line 493, we select the patch where we want to save the fields

information.

• The fields used are defined in line 483.

• The patch (or patches) where you want to sample must exist.

• No need to say that the fields must exist as well.

• The output of this functionObject is saved in the directory
postProcessing/patch_surface1

• The output is saved in this directory because in line 471 we

defined a unique name for the functionObject.

• In this directory, you will find many time directories with the

sampled data.

• Inside each directory you will find a series of files with the VTK

extension, you can open these files in paraFoam/paraview.

• The rest of the functionObjects are defined in a similar way.

15

The controlDict dictionary – Patch sampling functionObject

Coprocessing

• Surface patches sampled using functionObjects.

• By using coprocessing, we only saved this specific iso-surface information.

• There is not need to save the whole solution.

• This can significantly reduce the amount of data stored and help us in doing faster post-

processing.

Surface patches – y+ contours

16

Coprocessing

537 streamlines1

538 {

539 functionObjectsLibs (“libfieldFunctionObjects.so”)

540 type streamLine;

542 enabled true;

545 writeControl timestep;

546 writeInterval 20;

548 setFormat vtk;

550 direction forward;

552 U U;

554 fields (U p);

556 lifetime 10000;

560 nSubCycle 5;

562 sedSampleSet

563 {

564 type lineUniform;

565 axis x;

566 start (-2 0.7 4);

567 end (2 0.7 4);

568 nPoints 100;

569 }

570 }

17

• Let us take a look at the streamlines definition.

• In lines 539-540 we select the library and type of functionObject.

• In line 542 we can turn-on and turn-off the functionObject. This

can be done on-the-fly.

• In lines 545-546 we select the saving frequency. The saving

frequency can be different from the saving frequency of the

solution or other functionObjects.

• In line 548 we select the output format (many formats are

available).

• In line 550 we select the tracking direction of the streamlines

(forward, backward, or both).

• In line 552 we select the velocity field used to compute the

streamlines.

• Most of the times you will use the field U, but have in mind

that you can use Umean (computed using average values

functionObject), UNear (computed using nearWallFields

functionObject), and so on.

• In line 554 we select the fields to save with the streamlines. No

need to mention that the fields must exist.

The controlDict dictionary – Streamlines functionObject

Coprocessing

537 streamlines1

538 {

539 functionObjectsLibs (“libfieldFunctionObjects.so”)

540 type streamLine;

542 enabled true;

545 writeControl timestep;

546 writeInterval 20;

548 setFormat vtk;

550 direction forward;

552 U U;

554 fields (U p);

556 lifetime 10000;

560 nSubCycle 5;

562 sedSampleSet

563 {

564 type lineUniform;

565 axis x;

566 start (-2 0.7 4);

567 end (2 0.7 4);

568 nPoints 100;

569 }

570 }

18

• In lines 554-560 we select the options related to the streamlines

tracking.

• lifetime - Steps particles can travel before being removed.

• trackLength - Size of single track segment.

• nSubCycle - Number of steps per cell (estimate). Set to 1

to disable subcycling.

• trackLength and nSubCyce are mutually exclusive.

• In lines 562-569 we define the seeding method. The streamlines

will be released from this location.

• The output of this functionObject is saved in the directory
postProcessing/sets/streamlines1

• The output is saved in this directory because,

• Seeding method belong to sets.

• In line 537 we defined a unique name for the

functionObject,

• In this directory, you will find many time directories with the

sampled data.

• Inside each directory you will find a series of files with the VTK

extension, you can open these files in paraFoam/paraview.

• As usual, to know all the options available, you can use the

banana trick.

• The rest of the functionObjects are defined in a similar way.

The controlDict dictionary – Streamlines functionObject

Coprocessing

• By using coprocessing, we only saved this specific information.

• There is not need to save the whole solution.

• This can significantly reduce the amount of data stored and help us in doing faster post-

processing.

Streamlines

19

Coprocessing

• Streamlines can also be released from a surface and constrained to a patch.

Streamlines

20

