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Conventions used

• The following typographical conventions are used in this training material:

• Text in Courier new font indicates Linux commands that should be typed literally by the user 

in the terminal.

• Text in Courier new bold font indicates directories.

• Text in Courier new italic font indicates human readable files or ascii files.

• Text in Arial bold font indicates program elements such as variables, function names, classes, 

statements and so on.  It also indicate environment variables, and keywords. They also 

highlight important information.

• Text in Arial underline in blue font indicates URLs and email addresses.

• This icon          indicates a warning or a caution.

• This icon          indicates a tip, suggestion, or a general note.

• This icon          indicates a folder or directory.

• This icon          indicates a human readable file (ascii file).

• This icon          indicates that the figure is an animation (animated gif).

• These characters $> indicate that a Linux command should be typed literally by the user in the 

terminal.
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Conventions used

• To improve readability, the text might be colored.

• The font can be Courier new or Arial bold.

• And when required, the line number will be shown.

• The following typographical conventions are used in this training material:

• Large code listing, ascii files listing, and screen outputs can be written in 

a square box, as follows:

1 #include <iostream>

2 using namespace std;

3

4 // main() is where program execution begins.  It is the main function.

5 // Every program in c++ must have this main function declared

6

7 int main ()

8 {

9 cout << "Hello world";   //prints Hello world

10 return 0; //returns nothing

11 }
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Before we begin

• This training is based on OpenFOAM® version 7. 

• You can extract the training material wherever you want. From now on, this directory will 

become:

• $TM

• To uncompress the training material go to the directory where you copied it and then type in the 

terminal,

• $> tar –zxvf file_name.tar.gz

• In every single tutorial, you will find the file README.FIRST. In this file you will find the general 

instructions of how to run the case. In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to 

run the case automatically by typing in the terminal, for example, 

• $> sh run_solver. 

• If you are a beginner, we highly recommend to open the README.FIRST file and type the 

commands in the terminal, in this way, you will get used with the command line interface and 

OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

On the training material
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• In this training, we will focus our eyes 

to train our brain. 

Before we begin



Roadmap

1. Important concepts to remember

2. The Finite Volume Method: An overview

3. The FVM in OpenFOAM®: some 

implementation details and computational 

pointers

4. Some kind of conclusion

5. What else we did not cover?

6. Goodbye
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Important concepts to remember

• Let us recall linear interpolation. 

• In reference to the figure below, to find the value of the quantity       in f, using the 

known values of       in P and N, we can proceed as follows,

9



Important concepts to remember

• Let us recall the Gauss theorem (also know as Divergence theorem or Ostrogradsky 

theorem),

where           is a closed surface bounding the control volume        and           

represents an infinitesimal surface element with associated normal       pointing 

outwards of the surface           , and                     .

• The Gauss or Divergence theorem simply states that the outward flux of a vector field 

through a closed surface is equal to the volume integral of the divergence over the 

region inside the surface.
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Important concepts to remember

• Let us recall Taylor series expansions (TSE), they are used to define our profile 

assumptions, to reconstruct cell centered variables to face center variables, to 

compute derivatives, to determine truncation errors and so on.

• According to TSE, any continuous differentiable function 

can be expressed as an infinite sum of terms that are 

calculated from the values of the function derivatives at a 

single point.

• For example, using TSE the node center E in the figure can 

be approximated as,

• And the face center e can be approximated as,
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Important concepts to remember

• During this discussion, we will use the general transport equation to explain the 

fundamentals of the finite volume method.

• But have in mind that starting from the general transport equation we can write down 

the Navier-Stokes equations (NSE). For example, by setting the variables to,

• We can obtain the continuity equation,
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Important concepts to remember

• During this discussion, we will use the general transport equation to explain the 

fundamentals of the finite volume method.

• We can obtain the momentum equations,

• But have in mind that starting from the general transport equation we can write down 

the Navier-Stokes equations (NSE). For example, by setting the variables to,

13



Important concepts to remember

• During this discussion, we will use the general transport equation to explain the 
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Important concepts to remember

• Contrary to commercial CFD solvers, in OpenFOAM® 

there are no default values.

• It is up to the user to find those values.

• However, following good standard practices and knowing 

a little bit the theory is a very good starting point.

• Our goal is to give you the best standard practices and 

default values (ours) to be used with OpenFOAM®. 
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The Finite Volume Method: An overview

• Let us use the general transport equation as the starting point to explain the FVM,

• We want to solve the general transport equation for the transported quantity        in a 

given domain, with given boundary conditions BC and initial conditions IC.  

• This is a second order equation.  For good accuracy, it is necessary that the order of 

the discretization is equal or higher than the order of the equation that is being 

discretized.  

• Remember, starting from this equation we can write down the Navier-Stokes 

equations (NSE). So everything we are going to address also applies to the NSE.
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The Finite Volume Method: An overview

• Let us use the general transport equation as the starting point to explain the FVM,

• Hereafter we are going to assume that the discretization practice is at least second 

order accurate in space and time.

• As consequence of the previous requirement, all dependent variables are assumed 

to vary linearly around a point P in space and instant t in time,

Profile assumptions using Taylor expansions around point P (in space) and point t (in time)
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The Finite Volume Method: An overview

Mesh data, geometrical information,                          

and variable arrangement
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The Finite Volume Method: An overview

• Let us divide the solution domain into a finite number of arbitrary control volumes or cells, such 

as the one illustrated below.

• The control volumes can be of any shape (e.g., tetrahedrons, hexes, prisms, pyramids, 

dodecahedrons, and so on). 

• The only requirement is that the faces that made up the control volume need to be planar.

• Inside each control volume the solution is sought.

• We also know which control volumes are internal and which control volumes lie on the 

boundaries.

• We know all the geometrical information of all cells.  That is, cell centers, face centers, cells 

neighbors, face connectivity, cells volume, faces area, vectors connecting cells centers, and so 

on.
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The Finite Volume Method: An overview

• In the control volume illustrated, the centroid  P and face center f  are known, and computed as,
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• We also assume that the values of all variables are computed and stored in the centroid of the 

control volume Vp, this is known as the collocated arrangement.

• We also assume that all variables are represented by a piecewise constant profile (the mean 

value),

• All approximations and assumptions taken so far are at least second order accurate.



The Finite Volume Method: An overview

• Putting all together, it is a lot geometrical information that we need to track.

• A lot of overhead goes into the data book-keeping.

• At the end of the day, the FVM simply consist in conservation of the transported 

quantities and interpolating information from cell centers to face centers.

Summary:

• The control volume        has a volume V and is constructed 

around point P, which is the centroid of the control volume.  

Therefore the notation       . 

• The vector from the centroid P of          to the centroid N of          

is named d. 

• We also know all neighbors       of the control volume

• The control volume faces are labeled f, which also denotes the 

face center. 

• The location where the vector d intersects a face is     .

• The face area vector         point outwards from the control 

volume, is located at the face centroid, is normal to the face and 

has a magnitude equal to the area of the face.

• The vector from the centroid P to the face center f  is named Pf.
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The Finite Volume Method: An overview

• Have in mind that there are different FVM formulations based on the variable 

arrangement (e.g., cell centered, node/vertex based).

• Hereafter we will address the cell centered collocated arrangement, which is the one 

implemented in OpenFOAM® and many commercial CFD software (e.g., Ansys 

Fluent and StarCCM+).

• Remember, for good accuracy we want a method that is at least second order 

accurate (as the equations we are solving are second order).

• All the previous approximations are at least second order accurate.

• So far, we have talked about geometric requirements of the FVM.

• Let us explore how to interpolate from cell center to face center and computation of 

the face fluxes.

• But before moving on, let us mention something about one of the elephants in the 

room, mesh quality.
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The Finite Volume Method: An overview

• In CFD, the mesh is everything.

• As we will see later, the matrix coefficients of the 

discretized system of algebraic equations depends on 

the geometry quantities shown in the figure.

• Specifically, on the dot product of S (vector normal to 

face passing by the face center) and d (vector 

connecting two cell centers).

• This dependence on the dot product            is due to 

the fact that the coefficients contain the following term,

• For perfect cells (orthogonal meshes), the dot 

product is equal to one (there is no deviation 

between the vectors S and d).

• The more a cell deviates from its perfect shape, the 

smaller the dot product becomes, and this results in 

large values of the matrix coefficients which 

increases the system stiffness.

• For very bad quality cells (e.g., very skew cells or 

cells with zero volume), this vector product may 

become zero, producing an undefined system 

(throwing a division by zero error).

In the figure:

• S is the vector normal to face and anchored at the face center

• d is the vector connecting two cell centers.

• f is the vector from the cell center to the face center.

• If all these vectors are aligned, we are in the presence of a perfect 

mesh. In practice, this does not happen very often.
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The Finite Volume Method: An overview

• Different meshes and their respective matrix of coefficients.

• The quality of all meshes is excellent; however, the matrix of coefficients is different in all cases.

Orthogonal mesh (perfect mesh) Non-orthogonal mesh Unstructured triangular mesh
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The Finite Volume Method: An overview

Gauss theorem and face fluxes computation
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The Finite Volume Method: An overview

where           is a closed surface bounding the control volume        and           

represents an infinitesimal surface element with associated normal       pointing 

outwards of the surface           , and

• Let us recall the Gauss or Divergence theorem,

• The Gauss or Divergence theorem simply states 

that the outward flux of a vector field through a 

closed surface is equal to the volume integral of 

the divergence over the region inside the surface.

• This theorem is fundamental in the FVM, it is 

used to convert the volume integrals appearing in 

the governing equations into surface integrals.  

 

 

 

  

 

   

27



The Finite Volume Method: An overview

• Let us use the Gauss theorem to convert the volume integrals into surface integrals,

• At this point the problem reduces to interpolating 

somehow the cell centered values (known quantities) 

to the face centers.

• Any deviation when interpolating the cell centered 
values to the face centers (Di) is a source of error.
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The Finite Volume Method: An overview

Convective, diffusive, gradients and source 

terms approximations

29



The Finite Volume Method: An overview

• Integrating in space each term of the general transport equation and by using Gauss 

theorem,  yields to the following discrete equations for each term

Convective term:

where we have approximated the integrant 

by means of the mid point rule, which is 

second order accurate

By using Gauss theorem we convert 

volume integrals into surface integrals

Gauss theorem:

 

 

 

 

  

 

   

30



The Finite Volume Method: An overview

• Integrating in space each term of the general transport equation and by using Gauss 

theorem,  yields to the following discrete equations for each term

Diffusive term:

where we have approximated the integrant 

by means of the mid point rule, which is 

second order accurate

By using Gauss theorem we convert 

volume integrals into surface integrals

Gauss theorem:
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The Finite Volume Method: An overview

• Integrating in space each term of the general transport equation and by using Gauss 

theorem,  yields to the following discrete equations for each term

Gradient term:

where we have approximated the centroid gradients by using the Gauss theorem.

This method is second order accurate

Gauss theorem:

 

 

 

 

  

 

   

Note:

There are more methods for 

gradients computation, e.g., least 

squares, node-based reconstruction, 

and so on. 32



The Finite Volume Method: An overview

• Integrating in space each term of the general transport equation and by using Gauss 

theorem,  yields to the following discrete equations for each term

Source term:

This approximation is exact if        is either constant or varies linearly within the control 

volume; otherwise is second order accurate. 

Sc is the constant part of the source term and Sp is the non-linear part

Gauss theorem:
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The Finite Volume Method: An overview

• Integrating in space each term of the general transport equation and by using Gauss 

theorem,  yields to the following discrete equations for each term

Convective term:

Diffusive term:

Source term:

Gradient term:
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The Finite Volume Method: An overview

• And recall that all variables are computed and stored at the centroid of the control 

volumes.  

• The face values appearing in the convective and diffusive fluxes have to be 

computed by some form of interpolation from the centroid values of the control 

volumes at both sides of face f.

• Using the previous equations to evaluate the general transport equation over all the 

control volumes, we obtain the following semi-discrete equation

where is the convective flux and              is the 

diffusive flux. 
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The Finite Volume Method: An overview

Interpolation of the convective fluxes
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The Finite Volume Method: An overview

Interpolation of the convective fluxes

• This type of interpolation scheme is known as linear interpolation or central differencing and it is 

second order accurate.  

• However, it may generate oscillatory solutions (unbounded solutions).

• By looking the figure below, the face values appearing in the convective flux can be computed 

as follows,
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The Finite Volume Method: An overview

• By looking the figure below, the face values appearing in the convective flux can be computed 

as follows,

• This type of interpolation scheme is known as upwind differencing and it is first order accurate.  

• This scheme is bounded (non-oscillatory) and diffusive.

Interpolation of the convective fluxes

38



The Finite Volume Method: An overview

• By looking the figure below, the face values appearing in the convective flux can be computed 

as follows,

• This type of interpolation scheme is known as second order upwind differencing (SOU), linear 

upwind differencing (LUD) or Beam-Warming (BW), and it is second order accurate.  

• For highly convective flows or in the presence of strong gradients, this scheme is oscillatory 

(unbounded).

Interpolation of the convective fluxes
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• By adding a well-designed limiter function          , we get a high resolution (second order 

accurate), and bounded scheme.  This is a TVD scheme.

• When the limiter detects strong gradients or changes in slope, it switches locally to low 

resolution (upwind).

• The concept of the limiter function            is based on monitoring the ratio of successive 

gradients, e.g.,

The Finite Volume Method: An overview

Interpolation of the convective fluxes

• To prevent oscillations in the SOU, we add a limiter function           , often referred to as flux or 

gradient (slope) limiter.
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The Finite Volume Method: An overview

TVD Schemes
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The Finite Volume Method: An overview

Interpolation of the convective fluxes – TVD schemes

• A TVD scheme, is a scheme that does not create 

new local undershoots and/or overshoots in the 

solution or amplify existing extremes. 

• In CFD we want stable, non-oscillatory, bounded, 

high order schemes. 

• The Sweby diagram [1], gives the necessary and 

sufficient conditions for a scheme to be TVD.  

• In the figure, the shaded area represents the 

admissible TVD region.  However, not all limiter 

functions are second order. 

• The choice of the limiter function          dictates the 

order of the scheme and its boundedness.

• High-resolution schemes falls in the blue area and 

low-resolution schemes falls in the grey area.

• The drawback of the limiters is that they reduce the 

accuracy of the scheme locally to first order (low 

resolution scheme), when r < 0 (sharp gradient, 

opposite slopes or zero gradient).  However, this is 

justified when it serves to suppress oscillations.

• No particular limiter has been found to work well for 

all problems, and a particular choice is usually made 

on a trial and error basis.

UD = upwind

SOU = second order upwind

CD = central differencing

D = downwind

[1] P. K. Sweby. High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws. SIAM Journal on Numerical Analysis, Vol. 21, No. 5, pp. 995-1011, 1984.
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The Finite Volume Method: An overview

• Sweby diagram and TVD limiters.

• The fact that some limiters are non differentiable, and some others are differentiable can have an influence on the solution 

behavior (accuracy and convergence rate), specially when dealing with steady simulations.

Interpolation of the convective fluxes – TVD schemes

Limiter functions overlaid onto second-order TVD region
https://en.wikipedia.org/wiki/File:LimiterPlots1.png

This work is licensed under a Creative Commons License (CC BY-SA 3.0)

minmod (by Roe, 1986)

superbee (by Roe, 1986)
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N
o
n

 d
if
fe

re
n
ti
a
b
le

 l
im

it
e

rs

Differentiable limiter

Differentiable limiter

(except at r = 0)

43



The Finite Volume Method: An overview

TVD schemes in action – A numerical schemes 

killer test case
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The Finite Volume Method: An overview

• Let us see how the superbee, minmod and vanleer TVD schemes behave in a 

numerical schemes killer test case:

• The oblique double step profile in a uniform vector field (pure convection).

• By the way, this problem has an exact solution.

Interpolation of the convective fluxes – TVD schemes
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The Finite Volume Method: An overview

• Comparison of non-linear limiter functions.

• All of the following TVD schemes are second order accurate. However, the Minmod is 

a little bit more dissipative.

SuperBee - Compressive Minmod - Diffusive vanLeer - Smooth

Interpolation of the convective fluxes – Linear and non-linear limiter functions
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The Finite Volume Method: An overview

• Comparison of linear limiters (upwind and linear upwind) and non-linear limiters 

(SuperBee).

• Recall that the linear upwind method is 2nd order and the upwind method is 1st order. 

• The upwind method is extremely stable and non-oscillatory. However, it is highly 

diffusive.

• On the other side, the linear upwind method is accurate but oscillatory in the 

presence of strong gradients.

• Remember, TVD methods switch locally to upwind when they detect strong gradients.

Upwind – 1st order Linear Upwind  – 2nd order

Interpolation of the convective fluxes – Linear and non-linear limiter functions

SuperBee – TVD
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The Finite Volume Method: An overview

• Let us see how the linear and non-linear limiter functions compare. 

Interpolation of the convective fluxes – Linear and non-linear limiter functions
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The Finite Volume Method: An overview

Interpolation of the convective fluxes –

Unstructured meshes
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The Finite Volume Method: An overview

• All the high-order (HO) and high-resolution (HR) schemes we have seen so far, assume line 

structure (figure A). That is, the cell centers PP, P, and N are all aligned.

• In other words, they are formulated for structured meshes (orthogonal meshes).

• In orthogonal meshes, the cell centers PP, P, and N are all aligned (colinear). Therefore, 

constructing wide stencils is relative straightforward.

• In unstructured meshes or when the cell centers are not colinear, it is not straightforward to use 

the previous schemes as the cell center PP is not aligned with the vector connecting cells P and 

N (figure B).

• High-order and high-resolution schemes for unstructured meshes are an area of active research 

and new ideas continue to emerge.

Interpolation of the convective fluxes – Unstructured meshes
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The Finite Volume Method: An overview

• A simple way around this problem is to redefine HO and HR schemes in 

terms of gradients at the control volume center P and face center f.

• For example, using the gradient at P and f, we can compute the face 

values as follows (upwind bias formulations),

Interpolation of the convective fluxes – Unstructured meshes

Upwind  → 

Central difference  → 

Second order upwind differencing  → 

• Notice that in this new formulation the cell PP does not appear anymore.

• The problem now turns in the accurate evaluation of the gradients at the cell and face centers.  So if the 

computation of the gradients is second order accurate, it does not matter the way they are computed.

• For example, the gradients at the cell centers can be computed using the Gauss method, and then 

interpolated to the face centers.

• At this point, we are only missing the reconstruction of the cell center gradients at the face centers, this is 

explained latter.
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The Finite Volume Method: An overview

Interpolation of the convective fluxes – Unstructured meshes

• In unstructured meshes, as often the value of the node PP (of NN) is not available or 

straightforward to compute, the ratio of successive gradients r can be computed as follows [1],

• As you can see, the value of r depends on the flow direction.

• There are many ways to compute r.  This is an area of active research

[1] Darwish, M. S., Moukalled, F., “TVD schemes for unstructured grids”

U → Upwind

D → Downwind
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The Finite Volume Method: An overview

Interpolation of the convective fluxes – Unstructured meshes

• Another popular reconstruction technique is the Barth and Jespersen method [1]. Here, it is 

assumed that the solution is piecewise linearly distributed over the control volume. 

• According to the flow direction, the left or right state at the face f can be found using the 

following relations,

• In the previous relations,        denotes a limiter function at the face (gradient or slope limiter), 

which is used to avoid over and under shoots on the gradient computations.

• Popular limiter functions are: Minmod, Barth-Jespersen, Venkatakrishnan.

• This linear reconstruction is likely the most popular among the reconstruction methods, and it is 

implemented in most commercial CFD solvers.

[1] Barth, T. J., Jespersen, D. C., “The Design and Application of Upwind Schemes on Unstructured Meshes”

if

if

53



The Finite Volume Method: An overview

Interpolation of the convective fluxes – Unstructured meshes

• It worth mentioning that the slope limiter function and the flux limiter (as in TVD schemes), are 

related according to the following relationship [1],

• Where        is the flux limiter and       is the slope limiter function.

• It can be easily seen that the method of Barth and Jespersen [2] corresponds to a Taylor-series 

expansion around the face center.

• This linear reconstruction is formally second order accurate provided the gradient          is 

evaluated accurately.

• The superbee and Barth-Jespersen limiters are the most compressive and are known to turn 

smooth waves into square waves. 

• In multiple dimensions their overly compressive nature may lead to staircasing of discontinuities 

that are not aligned with the grid.

[1] Spekreijse, S., “Multigrid Solution of Monotone Second-Order Discretizations of Hyperbolic Conservation Laws”

[2] Barth, T. J., Jespersen, D. C., “The Design and Application of Upwind Schemes on Unstructured Meshes” 54



The Finite Volume Method: An overview

Interpolation of diffusive fluxes
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The Finite Volume Method: An overview

Interpolation of diffusive fluxes in orthogonal and non-orthogonal meshes

• By looking the figure below, the face values 

appearing in the diffusive flux in an orthogonal 

mesh can be computed as follows,

• This is a central difference approximation of the 

first order derivative. This type of 

approximation is second order accurate.

• By looking the figure below, the face values 

appearing in the diffusive flux in a non-orthogonal 

mesh (20°) can be computed as follows,

• This type of approximation is second order accurate 

but involves a larger truncation error.  It also uses a 

larger numerical stencil, which make it less stable.

• Remember, the non-orthogonal angle is the angle between the vector S and the vector d
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The Finite Volume Method: An overview

• By looking the figures below, the face values appearing in the diffusive flux in a non-

orthogonal mesh (       ) can be computed as follows.

• Using the over-relaxed approach, the diffusive fluxes can be corrected as follow,

Over-relaxed approach

Correction of diffusive fluxes in non-orthogonal meshes
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The Finite Volume Method: An overview

• Notice that non-orthogonality gives rise to secondary face gradients that somehow 

needs to be reconstructed from the cell center.

Correction of diffusive fluxes in non-orthogonal meshes

• Secondary gradient  due to mesh non-orthogonality.

• This gradient needs to be evaluated at face center.

• We presented the over relaxed approach, have in mind that there are many more 

methods to deal with mesh non-orthogonality, this is an area of active research. 

• It is clear that if the mesh is orthogonal you do not need to do any correction. 

Therefore, you can compute the gradients using centered differences.

• When solving the NSE, non-orthogonality mainly affects the pressure equation, and in 

the case of compressible flows, it also affects the energy equation.

• From this discussion, it is clear why we want to avoid large non-orthogonal angles.

Implicit part Explicit part
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The Finite Volume Method: An overview

Gradient computation at cell centers and  

gradient reconstruction at face centers
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The Finite Volume Method: An overview

Gradients computation at cell centers

• There are many methods for the computation of the cell centered gradients, e.g., 

least squares, Gauss, node-based reconstruction, and so on.

• Using the Gauss method, the cell centered gradients can be computed as follows,

 

 

 

 

  

 

   

• This approximation is second order accurate given that the mesh quality is 

acceptable, and the volume of the cell is finite.

• In general, the least squares method tends to be more accurate.
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The Finite Volume Method: An overview

Gradients reconstruction at face centers

• Face gradients           arise from the discretization process of the convective and 

diffusive terms.

• These secondary gradients are due to non-orthogonality and skewness in the 

pressure and energy equations (or any equation containing the diffusion term).

• They also appear when computing the face quantities in unstructured meshes.

• Have in mind that there are many methods to reconstruct (or interpolate) the face 

gradients, this is an area of active research. 

• Hereafter, we are going to show a few ways to do so.
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The Finite Volume Method: An overview

Gradients reconstruction at face centers

• The easiest way to reconstruct the face gradient            is by taking the average of the 

cell centered gradients            and           .

• However, this approach may be inaccurate in non-uniform, non-orthogonal and skew 

meshes (general unstructured meshes).
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Gradients reconstruction at face centers

• Another way to reconstruct the face gradient            is by using weighted interpolation 

of the cell centered quantities           and           .

• Again, this approach may be inaccurate in meshes with high degree of non-

orthogonality and skewness.

where
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• Yet another approach more accurate than the previous ones is by reconstructing the 

cell centered quantities in such a way that they create a vector that is normal to the 

face and passes thru its center. 

• Starting from the cell centered quantities, the face gradients           can be 

reconstructed as follows:

• First, reconstruct the cell centered quantities at the points P* and N*, as follows,

The Finite Volume Method: An overview

Gradients reconstruction at face centers

• Then evaluate the face gradient along the vector dP*N* (which is normal to the 

face f), as follows (you can also use weighted interpolation),
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The Finite Volume Method: An overview

Gradients reconstruction at face centers

• In the previous formulation, recall that any cell centered quantity         can be 

reconstructed in a new location P* (within the cell volume), as follows,

• All the previous approximations are second order accurate in good quality meshes.

• Also, the use of non-orthogonal corrections suggests the adoption of an iterative 

method to compute better face gradient approximations.
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Gradients reconstruction at face centers

• As for cell centered variables, when reconstructing the gradients at the face centers it might 

happen that they become unbounded.

• So to avoid over and under shoots on the gradient computations, we use gradient limiters (or 

slope limiters). This increases the stability of the method but might add diffusion due to clipping.  

• The idea behind gradient limiters is similar to that of the limiters used in TVD schemes.
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The Finite Volume Method: An overview

Effect of gradient limiters on solution accuracy 

and convergence to steady state
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The Finite Volume Method: An overview

• The non-differentiable nature of some limiters can adversely affect convergence to steady state.

• In some cases, they are responsible for the stalled residuals even if the solution is converging.

• In some other cases, they can add a lot of numerical diffusion to the solution.

Effect of gradient limiters on solution accuracy and convergence to steady state

Computed drag for different limiter formulations, in order 

of increasing dissipation associated with the limiter.

Onera M6 Wing (Ma = 0.5, AOA = 3.06)

Reference:

M. Berger, M. Aftosmis, S. Murman, “Analysis of Slope 

Limiters on Irregular Grids”
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The Finite Volume Method: An overview

• Illustration of gradient limiters effect on the convergence to steady state of a sample case – Viscous flow over sphere at low 

Reynolds number (Steady simulation).

• The use of limiters (for gradients and fluxes) to obtain second-order TVD schemes is a powerful and robust approach. There are 

further issues to be considered, such as accuracy and convergence issues resulting from clipping, systems of equations, multiple

dimensions, unstructured meshes, higher-order time-marching methods and so on.

Reference:

K. Kitamura, E. Shima, “Simple and Parameter-Free Second Slope Limiter for Unstructured Grid Aerodynamic Simulations”

Effect of gradient limiters on solution accuracy and convergence to steady state
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The Finite Volume Method: An overview

Mesh induced errors

70



The Finite Volume Method: An overview

• In order to maintain second order accuracy and to avoid unboundedness, we need to correct 

non-orthogonality and skewness errors.

• Non-orthogonality and skewness errors can be avoided by having a good quality mesh.

• Or can be corrected (or minimized) numerically, but at the risk of adding numerical diffusion.

• The ideal case is to have an orthogonal and non skew mesh, but this is the exception rather 

than the rule.

Orthogonal and non skew mesh Non-orthogonal and non skew mesh

Orthogonal and skew mesh Non-orthogonal and skew mesh

Mesh induced errors
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The Finite Volume Method: An overview

Time discretization
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The Finite Volume Method: An overview

• Using the previous equations to evaluate the general transport equation over all the 

control volumes, we obtain the following semi-discrete equation,

• After spatial discretization, we can proceed with the temporal discretization.  By 

proceeding in this way we are using the Method of Lines (MOL).

• The main advantage of the MOL method, is that it allows us to select numerical 

approximations of different accuracy for the spatial and temporal terms.  Each 

term can be treated differently to yield to different accuracies.

Time discretization

where is the convective flux and             is the 

diffusive flux. 
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The Finite Volume Method: An overview

• Now, we evaluate in time the semi-discrete general transport equation

• At this stage, we can use any time discretization scheme, e.g., Crank-Nicolson, Euler 

implicit, forward Euler, backward differencing, adams-bashforth, adams-moulton.

• It should be noted that the order of the temporal discretization of the transient term 

does not need to be the same as the order of the discretization of the spatial terms.  

• Each term can be treated differently to yield different accuracies.  

• So, as long as the individual terms are at least second order accurate, the overall 

accuracy will also be second order.

Time discretization
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The Finite Volume Method: An overview

Linear system solution – Crunching numbers
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The Finite Volume Method: An overview

in every control volume         of the domain, a system of differential algebraic 

equations (DAE) for the transported quantity       is assembled,

• After spatial and temporal discretization and by using the following equation,

Linear system solution
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The Finite Volume Method: An overview

• In CFD, the fast and efficient solution of the following system is of paramount 

importance.

Linear system solution

Boundary conditions and source terms vectorMatrix of coefficients

Solution vector

• This system can be solved by using any iterative or direct method.  

• But in practice, iterative methods are used most of the times.

• An equation for each cell is assemble, where the contribution in the diagonal of A

corresponds to ap, and the off-diagonal contribution corresponds to the neighboring 

elements anp (elements that shares a face with ap).

Equation for cell 1

Equation for cell P

Equation fir cell N 77



The Finite Volume Method: An overview

• The matrix of coefficients A of the discretized system of algebraic equations                    mostly 

depends on the geometry quantities.

• Specifically, on the dot product of S (vector normal to face passing by the face center) and d

(vector connecting two cell centers), that is,

• This dependence on the dot product            is because the coefficients contain the following term,

Linear system solution

• For orthogonal meshes (perfect ones), the dot 

product is equal to one (there is no deviation 

between the vectors S and d).

• The more a cell deviates from its perfect shape, the 

smaller the dot product becomes, and this results in 

large values of the matrix coefficients which 

increases the system stiffness.

• For very bad quality cells (e.g., very skew cells or 

cells with zero volume), this vector product may 

become zero, producing an undefined system 

(throwing a division by zero error).

• One single bad quality cell can make the solution 

diverge.
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Linear system solution

• The matrices arising from the discretization of the governing equations are usually very large 

and sparse (they contain only a few non-zero elements).

• Banded sparse matrices tends to help convergence rate.

• In the figures below, the unknow quantity          is distributed along the diagonal.  

• The off-diagonal entries, represent the contribution of the neighboring cells 

Sparse matrix – Banded type

Typical of orthogonal meshes
Sparse matrix – Non-banded structure

Typical of general unstructured meshes 79



The Finite Volume Method: An overview

Linear system solution

• As we are solving a sparse matrix, the more diagonal the matrix is, the best the convergence 

rate will be. 

• Linear solvers can be accelerated by using matrix reordering techniques that make the 

matrices more diagonally dominant.

80

Matrix structure plot before reordering Matrix structure plot after reordering

Note:

This is the actual pressure matrix from an OpenFOAM® model case



The Finite Volume Method: An overview

Linear system solution

• In CFD, it is extremely important that the matrix A is diagonally dominant.

• A matrix is diagonally dominant if in each row the sum of the off-diagonal coefficient magnitude 

is equal or smaller than the diagonal coefficient,

• Diagonal dominance is a very desirable feature for satisfying the boundedness criterion.

• To achieve diagonal dominance we need large values of net coefficient (coefficients of the 

diagonal).

• This can be controlled by using under-relaxation, reducing the time-step, by assuring that any 

source term in the RHS is negative, and by having good quality meshes.

• If a matrix is diagonally dominant, it also satisfy the Scarborough criterion.

• And at least one i,
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Linear system solution

• If a matrix is diagonally dominant, it also satisfy the Scarborough criterion [1].

[1] James Blaine Scarborough (1958). Numerical Mathematical Analysis. Johns Hopkins Press.

• The satisfaction of this criterion ensures that the equations will converge by at least one iterative method.

• This is a sufficient condition, not a necessary one.  This means that we can get convergence, even if, at times, 

we violate this criterion.

• For example, if Scarborough criterion is not satisfied, then Gauss–Seidel method iterative procedure is not 

guaranteed to converge to a solution.

• The finite volume method uses this criterion to set some basic discretization rules related to obtaining a 

convergent solution, implementing boundary conditions, and adding source terms. 

• When linearizing the source terms they must be negative, so when they are added to ap in the 

LHS, they help increasing the diagonal dominance.

• All coefficients in the LHS and RHS of the linear system should have the same sign (essential 

requirement for boundedness).

• If the boundedness requirement is not satisfied, it is possible that the solution does not converge at 

all, or if it does, the solution is oscillatory (contains wiggles).
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Linear system solution

Matrix of coefficients

Solution vector Boundary conditions and source terms

• After assembly the linear system, the solver will spend a great amount of time solving it.

• This system is solved using iterative solvers, where the algorithm starts from an initial guess 

and keeps iteration until reaching the desired convergence criterion.

• Basically, iterative solvers incrementally reduce the error, until reaching a given residual r

(absolute or relative tolerance),

• The convergence rate of iterative solvers greatly depends on the matrix of coefficients A. 83
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Linear system solution

• To get a better idea of how iterative methods work, and what are initial residuals and final 

residuals, let us take another look at a residual plot. 

• is the initial guess used to start the iterative method. 

• Iteration 0 defines the initial residual, and greatly influence the convergence rate.  

• You can use any value at iteration 0, but usually is a good choice to take the previous solution 

vector. 

• Remember, the closest you are to the actual solution, the faster the convergence rate will be. 84
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Linear system solution

• To get a better idea of how iterative methods work, and what are initial residuals and final 

residuals, let us take another look at a residual plot. 

• If the following condition is fulfilled, the linear solver will stop iterating and will advance to the 

next time-step. 

• This condition defines the final residual, where r is the tolerance or convergence criterion 

(defined by the user). 85
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Linear system solution

• To get a better idea of how iterative methods work, and what are initial residuals and final 

residuals, let us take another look at a residual plot. 

• By working in an iterative way, every single iteration           is a better approximation of the 

previous iteration

• Sometimes the linear solver might stop iterating because it has reached the maximum number 

of iterations, you should be careful of this because we are talking of unconverged iterations.

• Also, it is recommended to do at least one iteration as it helps at linearizing the equations. 86



The Finite Volume Method: An overview

Linear system solution

• To get a better idea of how iterative methods work, and what are initial residuals and final 

residuals, let us take another look at a residual plot. 

• It is clear that if the initial residual                  is the same as the final residual                                  

(we are converging in one iteration), we can say that we have reached a steady solution (this 

does not happen very often).

• Every iterative linear solver has different properties.  Also, depending on the matrix type 

(symmetric or asymmetric), they might have different convergence rates.
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Linear system solution

• Visualization of the pressure coefficient matrix A coming from a CFD simulation. 

• Notice that in this case the matrix has a banded diagonal structure and is symmetric.

• In this case linear solvers perform extremely well.

Boundary conditions and source termsMatrix of coefficients

Solution vector
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Multigrid and Newton-Krylov linear solvers – Some remarks

• The development of multigrid (MG) solvers (GAMG in OpenFOAM®), together with 

the development of high-resolution TVD schemes and parallel computing, are among 

the most remarkable achievements of the history of CFD.

• Most of the time using MG linear solver is fine (for symmetric matrices).  

• However, if you observe that the MG linear solver is taking too long to converge or is 

converging in more than 100 iterations, it is better to use a Newton-Krylov linear 

solver (e.g., preconditioned conjugate gradient or PCG in OpenFOAM®).

• Particularly, we have found that the GAMG linear solver in OpenFOAM® does not 

perform very well when you scale your computations to more than 1000 processors.

• Also, we have found that for some multiphase cases the PCG method outperforms 

the GAMG. 

• But again, this is problem and hardware dependent. 

• As you can see, you need to always monitor your simulations (stick to the screen for 

a while). Otherwise, you might end-up using a solver that is performing poorly (slow 

convergence rate), and this translate in increased computational time and costs.
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The Finite Volume Method: An overview

So, what does an FVM solver do?
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The Finite Volume Method: An overview

So, what does an FVM solver do?

91

• It simply discretizes in space and time the governing equations in arbitrary polyhedral control 

volumes over the whole domain.  

• Assembling in this way a large set of linear differential algebraic equations (DAE), and then it 

solves this system of DAE to find the solution of the transported quantities. 

• Therefore, the following information must be readily available to the solver:

• The mesh.

• Boundary conditions and initials conditions. 

• Physical properties such as density, gravity, diffusion coefficient, viscosity, etc. 

• Physical models, such as turbulence, mass transfer, etc. 

• How to discretize in space each term of the governing equations (diffusive, convective, 

gradient and source terms). 

• How to discretize in time the obtained semi-discrete governing equations. 

• How to solve the linear system of equations (crunching numbers). 

• Set runtime parameters and general instructions on how to run the case (such as time step, 

under-relaxation factors, and maximum CFL number). 

• Additionally, we may set monitors for post-processing.  

• Every CFD solver will have a different way to ask for this information. 

• Some of them use a GUI (e.g., Fluent, StarCCM+, CFX, NUMECA), and others interacts via ascii 

files using the command line interface (e.g., OpenFOAM® and SU2).



Roadmap

1. Important concepts to remember

2. The Finite Volume Method: An overview

3. The FVM in OpenFOAM®: some 

implementation details and computational 

pointers

4. Some kind of conclusion

5. What else we did not cover?

6. Goodbye
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The FVM in OpenFOAM® 

So, what does OpenFOAM® do?

• It simply discretize in space and time the governing equations in arbitrary polyhedral control volumes 

over the whole domain.  Assembling in this way a large set of linear discrete algebraic equations (DAE), 

and then it solves this system of DAE to find the solution of the transported quantities. 

• Therefore, we need to give to OpenFOAM® the following information:

• Discretization of the solution domain or the mesh. This information is contained in the directory 
constant/polyMesh

• Boundary conditions and initials conditions. This information is contained in the directory 0

• Physical properties such as density, gravity, diffusion coefficient, viscosity, etc. This information is 
contained in the directory constant

• Physical models, such as turbulence modeling, mass transfer, source terms, etc. This information 
is contained in the directories constant and/or system

• How to discretize in space each term of the governing equations (diffusive, convective, gradient 
and source terms).  This information is set in the system/fvSchemes dictionary.

• How to discretize in time the obtained semi-discrete governing equations. This information is set in 
the system/fvSchemes dictionary.

• How to solve the linear system of discrete algebraic equations (crunch numbers). This information 
is set in the system/fvSolution dictionary.

• Set runtime parameters and general instructions on how to run the case (such as time step and 
maximum CFL number). This information is set in the system/controlDict dictionary.

• Additionally, we may set sampling and functionObjects for post-processing.  This information is 
contained in the specific dictionaries contained in the directory system/
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The FVM in OpenFOAM® 

Are there default options in OpenFOAM®?

• When you use commercial CFD applications, they will use the best possible 

options or default options (stable and accurate).

• Even if you choose the wrong options, the commercial solvers will do some 

black magic to stabilize the solution and get the best results.

• In OpenFOAM®, such default options do not exist.  

• It is to the user to choose the best options; therefore, it is important to 

understand the theory.
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Are there default options in OpenFOAM®?

• Hereafter we are going to give you what we think are the best options. 

• The recipes that we are going to give you, are based on commercial 

software, extensive validation, and experience.

• A small warning, do not take the options in the tutorials that come with 

OpenFOAM® as the default or best options.  

• If you go through the tutorials, you will realize that some of them uses upwind 

or do not do any kind of correction.  Remember, those tutorials are there just 

to show you how to setup a case.
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ddtSchemes

{

default backward;

}

gradSchemes

{

default Gauss linear;

grad(p)         Gauss linear;

}

divSchemes

{

default none;

div(phi,U)      Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

Where do we set all the discretization schemes in OpenFOAM®?

• The fvSchemes dictionary contains the information related to 

the discretization schemes for the different terms appearing in 

the governing equations.

• The discretization schemes can be chosen in a term-by-term 

basis.

• The keyword ddtSchemes refers to the time discretization.

• The keyword gradSchemes refers to the gradient term 

discretization.

• The keyword divSchemes refers to the convective term 

discretization.

• The keyword laplacianSchemes refers to the Laplacian 

terms  discretization.

• The keyword interpolationSchemes refers to the method 

used to interpolate values from cell centers to face centers. It 

is unlikely that you will need to use something different from 

linear.

• The keyword snGradSchemes refers to the discretization of 

the surface normal gradients evaluated at the faces.

• Remember, if you want to know the options available for each 

keyword you can use the banana method.
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Time discretization schemes

• These are the time discretization schemes available in OpenFOAM®:

• backward

• bounded

• CoEuler

• CrankNicolson

• Euler

• localEuler

• SLTS

• steadyState

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/ddtSchemes
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Time discretization schemes

• These are the time discretization schemes that you will use most of the times:

• steadyState: for steady state simulations (implicit/explicit).

• Euler: time dependent first order (implicit/explicit), bounded.

• backward: time dependent second order (implicit), bounded/unbounded.

• CrankNicolson: time dependent second order (implicit), 

bounded/unbounded.

• First order methods are bounded and stable, but diffusive. 

• Second order methods are accurate, but they might become oscillatory.

• At the end of the day, we always want a second order accurate solution.

• If you keep the CFL less than one when using the Euler method, numerical diffusion 

is not that much.
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Time discretization schemes

• The Crank-Nicolson method as it is implemented in OpenFOAM®, uses a blending 

factor. 

ddtSchemes

{

default        CrankNicolson       ;

}

• Setting       to 0 is equivalent to running a pure Euler scheme (robust but first order 

accurate). 

• By setting the blending factor equal to 1 you use a pure Crank-Nicolson (accurate 

but oscillatory, formally second order accurate).  

• If you set the blending factor to 0.5, you get something in between first order accuracy 

and second order accuracy, or in other words, you get the best of both worlds.

• A blending factor of 0.7-0.9 is safe to use for most applications (stable and accurate).
99



The FVM in OpenFOAM® 

Convective terms discretization schemes

• There are many convective terms discretization schemes available in OpenFOAM® (more than 

50 last time we checked). 

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/interpolation/surfaceInterpolation

• These are the convective discretization schemes that you will use most of the times:

• upwind: first order accurate.

• linearUpwind: second order accurate, bounded.

• linearUpwindV: second order accurate, bounded, formulation for vector fields.

• linear: second order accurate, unbounded. 

• limitedLinear: second order accurate, unbounded, but more stable than pure linear 

((better boundedness). Recommended for LES simulations (kind of similar to the 

Fromm method).

• A good TVD scheme (vanLeer or Minmod): at least second order accurate, bounded.

• LUST: blended 75% linear and 25% linearUpwind scheme.

• First order methods are bounded and stable but diffusive.

• Second order methods are accurate, but they might become oscillatory.

• At the end of the day, we always want a second order accurate solution.
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Convective terms discretization schemes

• When you use linearUpwind and LUST for div(phi,U), you need to tell OpenFOAM® how to 

compute the velocity gradient or grad(U),

gradSchemes

{

grad(U) cellMDLimited Gauss linear 1.0;

}

divSchemes

{

div(phi,U) Gauss linearUpwind grad(U);

}

• Same applies for scalars (e.g., k, epsilon, omega, T, e, h) or other vector fields.
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Gradient terms discretization schemes

• These are the gradient discretization schemes available in OpenFOAM®:

• edgeCellsLeastSquares

• fourth

• Gauss

• leastSquares

• pointCellsLeastSquares

• All of them are at least second order accurate.

• Some of the gradient discretization methods will require information on how to 

interpolate the cell-centered value to the face-center, e.g.,

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/gradSchemes

grad(U) Gauss linear;

Gradient computation method

Cell-center to face-center interpolation methodCompute the gradient of this field variable,

e.g., U, p, T, alpha, k, omega, and so on
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Gradient terms discretization schemes

• These are the gradient limiter schemes available in OpenFOAM®:

• cellLimited

• cellMDLimited

• faceLimited

• faceMDLimited

• Gradient limiters will avoid over and under shoots on the gradient computations. This 

increases the stability of the method but will add diffusion due to clipping.  

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/gradSchemes/limitedGradSchemes

103



The FVM in OpenFOAM® 

Gradient terms discretization schemes

• Additionally, you have the option to change the gradient limiter method. 

• The following options are available:

• The default method is the minmod.

• You can use the cubic or Venkatakrishnan method only for the cellLimited option.

• Recall that the cubic or Venkatakrishnan are differentiable limiters, whereas the 

minmod is non-differentiable.

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/gradSchemes/limitedGradSchemes/

cellLimitedGrad/gradientLimiters

• cubic

• minmod

• Venkatakrishnan

• To use the cubic method you need to define the following keyword: 

cellLimited<cubic>

• To use the Venkatakrishnan method you need to define the following keyword: 

cellLimited<Venkatakrishnan> 104
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Gradient terms discretization schemes

• These are the gradient discretization schemes that you will use most of the times:

• Gauss (use with interpolation method, i.e., Gauss linear)

• leastSquares (no interpolation method information required)

• These are the gradient limiter schemes that you will use most of the times:

• cellLimited or cellMDLimited

• All of the gradient discretization schemes are at least second order accurate.

• It is recommended not to add too aggressive limiters to all field variables.

• Most of the times is fine to add limiters only for velocity (U) and the turbulent 

quantities (k, omega, epsilon, and so on).

• Avoid adding aggressive limiters to pressure (p), temperature (T), internal energy (e), 

volume-of-fraction (alpha), interface curvature (nHat); as they may add too much 

numerical diffusion.

• If you add too aggressive limiters to all field variables you will add numerical diffusion 

due to clipping, smear the solution, or stalled the residuals (in steady simulations).
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Gradient terms discretization schemes

• According to their diffusivity, the gradient limiter schemes available in OpenFOAM® are 

classified as follows:

cellMDLimited

cellLimited

faceMDLimited

faceLimited

• Cell limiters will limit cell-to-cell values.

• Face limiters will limit cell-to-face values.

• The multi-directional (or multi-dimensional) limiters (cellMDLimited and faceMDLimited), will 

apply the limiter in each face direction separately (that is, only in the unbounded direction).

• The standard limiters (cellLimited and faceLimited), will apply the limiter to all components of 

the gradient.

• The default method is the Minmod.

Less diffusive

More diffusive

Note: for smooth field variation, 

cell limiting may provide less 

numerical dissipation on meshes 

with skewed cells.
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Gradient terms discretization schemes

• Limiting direction:

• Cell-to-cell direction limiting,

• Cell-to-face direction limiting,

• Cell based limiters will limit cell-to-cell values. That is, in the direction dPN.

• Face based limiters will limit cell-to-face values. That is, in the direction dPf.

• The more skewed the mesh is, the bigger the different between these methods.

• In good quality meshes both limiters will give 2nd order accuracy. However, in highly skewed 

meshes the face limiters might give 1st order accuracy.

• The method should be selected based in accuracy, smooth field variation, and the need of 

unnecessary limiting. 107
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Gradient terms discretization schemes

• The gradient limiter implementation in OpenFOAM®, uses a blending factor      . 

gradSchemes

{

default        cellMDLimited Gauss linear        ;

}

• Setting       to 0 is equivalent to turning off the gradient limiter. You gain accuracy but the solution 

might become unbounded.

• By setting the blending factor equal to 1 the limiter is always on. You gain stability but you give 

up accuracy (due to gradient clipping).

• If you set the blending factor to 0.5, you get the best of both worlds.

• You can use limiters with all gradient discretization schemes.

It can be any method

Gradient limiter scheme
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Laplacian terms discretization schemes

• These are the Laplacian terms discretization schemes available in OpenFOAM®:

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/snGradSchemes

• corrected

• faceCorrected

• limited

• linearFit

• orthogonal

• quadraticFit

• uncorrected
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Laplacian terms discretization schemes

• These are the Laplacian terms discretization schemes that you will use most of the 

times:

• orthogonal: mainly limited for hexahedral meshes 

with no grading (a perfect mesh). Second order 

accurate, bounded on perfect meshes, without non-

orthogonal corrections.

• corrected: for meshes with grading and non-

orthogonality. Second order accurate, bounded 

depending on the quality of the mesh, with non-

orthogonal corrections.

• limited: for meshes with grading and non-

orthogonality. Second order accurate, bounded 

depending on the quality of the mesh, with non-

orthogonal corrections.

• uncorrected: usually limited to hexahedral meshes 

with very low non-orthogonality. Second order 

accurate, without non-orthogonal corrections. Stable 

but more diffusive than the limited and corrected 

methods.

Can be computed using the over-relaxed approach

Can be computed using the over-relaxed approach
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Laplacian terms discretization schemes

• According to the mesh, the Laplacian discretization can be chosen as follows:

Perfect orthogonal mesh with no strectching

laplacianSchemes → orthogonal

Orthogonal mesh with strectching

laplacianSchemes → limited 1 or corrected

Mesh with some degree of non-orthogonality (low to medium)

laplacianSchemes → limited 1 to limited 0.5

General unstructured meshes

laplacianSchemes → limited 0.5 111
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Laplacian terms discretization schemes

• The limited method uses a blending factor      . 

laplacianSchemes

{

default        Gauss linear limited          ;

}

• Setting       to 1 is equivalent to using the corrected method. You gain accuracy, but the solution 

might become unbounded.

• By setting the blending factor equal to 0 is equivalent to using the uncorrected method. You 

give up accuracy but gain stability.

• If you set the blending factor to 0.5, you get the best of both worlds. In this case, the non-

orthogonal contribution does not exceed the orthogonal part. You give up accuracy but gain 

stability.

• By setting the blending factor to 0.333 you get more stability at the cost of losing accuracy. 

Interpolation method of the diffusion coefficient

Only option

Surface normal gradients discretization 
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Laplacian terms discretization schemes

• For meshes with non-orthogonality less than 70, you can set the blending factor to 1.

• For meshes with non-orthogonality between 70 and 85, you can set the blending factor to 0.5. Also, you will 

need to increase the number of non-orthogonal corrections.

• For meshes with non-orthogonality more than 85, it is better to get a better mesh. But if you definitely want to 

use that mesh, you can set the blending factor to 0.333, and increase the number of non-orthogonal 

corrections.

• If you are doing LES or DES simulations, use a blending factor of 1 (this means that you need good meshes).

• These are conservative indications based on our experience, and the values may change according to the 

application.

laplacianSchemes

{

default        Gauss linear limited          ;

}

Interpolation method of the diffusion coefficient

Only option

Surface normal gradients discretization 

• The limited method uses a blending factor      . 
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The FVM in OpenFOAM® 

Laplacian terms discretization schemes

• Just to make it clear, the blending factor       is used to avoid the non-orthogonal contribution 

exceeding the orthogonal part, that is, non-orthogonal contribution ≤ orthogonal contribution.

114

The blending factor works as a limiter acting on this term (non-orthogonal contribution)

Implicit part Explicit part

• In meshes with large non-orthogonality, the explicit term can lead to unboundedness and 

eventually divergence.

• This limiting is local, similar to the treatment done for the connective terms when using slope 

limiters and TVD schemes.

• The explicit contribution is added to the RHS of the linear system (source term), so if this term 

becomes too large it will lead to convergence problems.

• It becomes harder to guarantee diagonal dominance of the matrix of coefficient; therefore, the 

Scarborough criterion might not be satisfied.
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Laplacian terms discretization schemes

• It is unlikely that you will need to use something different from linear to interpolate the 

diffusion coefficient.

• If that situation arises (e.g. if you are dealing with CHT where you have different 

diffusion coefficients in each region), the following options are valid:

• cubic

• harmonic

• linear

• midPoint

• pointLinear

• reverseLinear

laplacianSchemes

{

default        Gauss linear limited          ;

}

Interpolation method of the diffusion coefficient

Only option

Surface normal gradients discretization 

• The limited method uses a blending factor      . 
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Laplacian terms discretization schemes

• The surface normal gradients terms usually use the same method as the one chosen for the 

Laplacian terms.

• For instance, if you are using the limited 1 method for the Laplacian terms, you can use the 

same method for snGradSchemes:

laplacianSchemes

{

default        Gauss linear limited 1;

}

snGradSchemes

{

default        limited 1;

}
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What method should I use?
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The FVM in OpenFOAM® 

Recommended setup for most cases

ddtSchemes

{

default CrankNicolson 0;   //0-0.333

}

gradSchemes

{

default cellLimited Gauss linear 0.5;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U)      Gauss linearUpwindV grad(U);

div(phi,omega) Gauss linearUpwind default;

div(phi,k) Gauss linearUpwind default;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1;

}

• This setup is recommended for most of            

the cases.

• It is very similar to the default method you will find in 

commercial solvers.

• In overall, this setup is second order accurate and 

fully bounded.

• According to the quality of your mesh, you will need 

to change the blending factor of the 

laplacianSchemes and snGradSchemes

keywords.

• To keep time diffusion to a minimum, use a CFL 

number less than 2.

• If during the simulation the turbulence quantities 

become unbounded, you can safely change the 

discretization scheme to upwind.  After all, 

turbulence is diffusion.

• For gradient discretization the leastSquares

method is more accurate. But we have found that it 

is a little bit oscillatory in tetrahedral meshes.
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A very accurate but oscillatory numerics

ddtSchemes

{

//default         backward;

default CrankNicolson 0.7;

}

gradSchemes

{

default Gauss leastSquares;

}

divSchemes

{

default none;

div(phi,U)      Gauss linear;    //limitedLinear

div(phi,omega) Gauss linear; //limitedLinear

div(phi,k) Gauss linear; //limitedLinear

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1;

}

• If you are looking for more accuracy, you can use 

this method.

• In overall, this setup is second order accurate but 

oscillatory.

• Use this setup with LES simulations or laminar 

flows with no complex physics and meshes with 

overall good quality.

• Use this method with good quality meshes.

• According to the quality of your mesh, you will need 

to change the blending factor of the 

laplacianSchemes and snGradSchemes

keywords.
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A very stable but too diffusive numerics

ddtSchemes

{

default Euler;

}

gradSchemes

{

default cellLimited Gauss linear 1;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U)      Gauss upwind;

div(phi,omega) Gauss upwind;

div(phi,k) Gauss upwind;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 0.5;

}

• If you are looking for extra stability, you can use this 

method.

• This setup is very stable but too diffusive.

• This setup is first order in space and time.

• You can use this setup to start the solution in the 

presence of bad quality meshes or strong 

discontinuities.

• Remember, you can start using a first order method 

and then switch to a second order method.

• According to the quality of your mesh, you will need 

to change the blending factor of the 

laplacianSchemes and snGradSchemes

keywords.

• Start robustly, end with accuracy.

• You can use this method for troubleshooting. If the 

solution diverges, you better check boundary 

conditions, physical properties, and so on.
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Some kind of conclusion

• Good mesh – good results.

• Start robustly and end with accuracy.

• Stability, accuracy and boundedness, play 

by these terms and you will succeed.

• Do not sacrifice accuracy and stability 

over computing speed.
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What else we did not cover?
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A lot!
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• Just to give you an idea,

• Linear solvers and acceleration techniques.

• Pressure-velocity coupling.

• CFL number.

• Under-relaxation factors.

• Unsteady and steady simulations.

• Understanding the residuals and solution monitoring.

• Boundary conditions and initials conditions.

• Advanced physics. Turbulence modeling, multiphase flows, 

compressible flows, moving bodies, source terms, passive scalars, 

combustions, and so on.

• Solution stabilization techniques.

• Parallel issues.

• Of all these topics, let me address briefly pressure-velocity coupling.
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Pressure-velocity coupling

• Many numerical methods exist to solve the Navier-Stokes equations, just to name a few:

• Pressure-correction methods (Predictor-Corrector type).

• SIMPLE, SIMPLEC, SIMPLER, PISO.

• Projection methods.

• Fractional step (operator splitting), MAC, SOLA.

• Density-based methods and preconditioned solvers.

• Riemann solvers, ROE, HLLC, AUSM+, ENO, WENO.

• Artificial compressibility methods.

• Artificial viscosity methods.

• Methods Based on Derived Variables

• Stream Function-Vorticity, Vorticity-Velocity Method

• Historically speaking, the pressure-based approach was developed for low-speed 

incompressible flows, while the density-based approach was mainly developed for high-speed 

compressible flows.

• However, both methods have been extended and reformulated to solve and operate for a wide 

range of flow conditions beyond their original intent.
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Pressure-velocity coupling

• In OpenFOAM®, you will find segregated pressure-based solvers.

• In the segregated algorithm, the individual governing equations for the primitive 

variables are solved one after another.

• In the pressure-based approach the velocity field is obtained from the momentum 

equations. 

• Then, the pressure is obtained by solving the pressure-Poisson equation. 

• There is some mathematical manipulation involved.

• Coupled solvers are under development in OpenFOAM®.

• The  coupled approach solves the continuity, momentum, and energy equation 

simultaneously, that is, coupled together. 

• They are very efficient when used with steady solvers.

• However, the memory requirements are much higher than segregated solvers.

• Pressure-based methods (segregated or coupled) are intrinsically implicit.
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Pressure-velocity coupling

• In OpenFOAM®, the following segregated pressure-based methods are available: 

• SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)

• SIMPLEC (SIMPLE Corrected/Consistent)

• PISO (Pressure Implicit with Splitting Operators)

• Additionally, you will find something called PIMPLE, which is a hybrid between SIMPLE and 

PISO.

• Also known as iterative PISO or ITA-PISO.

• The ITA-PISO formulation can give you more accuracy and stability when using very large time-

steps, pseudo-transient simulations, or when dealing with complex physics.

• In OpenFOAM®, the PISO and PIMPLE methods are formulated for unsteady simulations.

• Whereas, the SIMPLE and SIMPLEC methods are formulated for steady simulations.
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Pressure-velocity coupling references

• SIMPLE

• S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional 

parabolic flows”, Int. J. Heat Mass Transfer, 15, 1787-1806 (1972).

• SIMPLEC or SIMPLE consistent

• J. P. Van Doormaal and G. D. Raithby, “Enhancements of the SIMPLE method for predicting incompressible fluid flows”, 

Numerical Heat Transfer, 7, 147-163 (1984).

• PISO

• R. I. Issa, “Solution of the implicitly discretized fluid flow equations by operator-splitting”, J. Comput. Phys., 62, 40-65 

(1985).

• PIMPLE

• Unknown origins outside OpenFOAM® ecosystem (we are referring to the semantics).

• It is equivalent to PISO with outer iterations (iterative time-advancement of the solution).

• Useful reference (besides PISO reference):

• I. E. Barton, “Comparison of SIMPLE and PISO-type algorithms for transient flows, Int. J. Numerical methods in 

fluids, 26,459-483 (1998).

• P. Oliveira and R. I. Issa, “An improved piso algorithm for the computation of buoyancy-driven flows”, Numerical 

Heat Transfer, 40, 473-493 (2001).

• Rhie-Chow interpolation

• C. M. Rhie and W. L. Chow, “Numerical study of the turbulent flow past an airfoil with trailing edge separation”, AIAA 

Journal, Vol. 21, 1525-1532 (1983).
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Equations used in the SIMPLE and PISO loops

• The pressure equation is derived starting from the momentum equation,

• Then, by taking the divergence of the momentum equation and setting                     , 

we obtain,

• Then, the final form of the pressure equation is as follows,

where
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Equations used in the SIMPLE and PISO loops

• In the pressure-based approach, the actual equations that are being solved are,

where

This system of equations is 

equivalent to the original 

Navier-Stokes equations.

• The previous equations are solved in a given domain, with boundary conditions BCs, and initial 

condition ICs.

• In this set of equations, continuity                     is enforced while deriving the pressure equation 

(referred to as pressure-Poisson equation) and in all boundaries of the domain.

• We use these equations because in the original incompressible Naiver-Stokes equations, 

pressure does not appear in the continuity equation, so is not possible to link the equations.

• Therefore, we derive an alternative set of equations where pressure appears

• So now we can use the velocity obtained in the momentum equation (momentum predictor 

step) to compute the pressure using the pressure-Poisson equation (pressure corrector step), 

and then correct the velocity with the new pressure value (momentum corrector step). 

• This is referred to as pressure-velocity coupling (P-V coupling).
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Equations used in OpenFOAM® SIMPLE and PISO loops

• The equations used in the loops implemented in OpenFOAM® are divided by A.

• The matrix A contains the diagonal coefficients of the momentum equations corresponding to 

the SIMPLE or PISO loops.  

• By dividing by A, makes the equations more convergent.

• In the momentum equation, add and subtract the term AU,

• Then, divide by A, take divergence and apply
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Equations used in OpenFOAM® SIMPLE and PISO loops

• Then, the pressure equation is expressed as follows (pay attention that is divided by A),

• The momentum corrector (also divided by A), is expressed as follows,

• Notice that the momentum corrector equation is obtained from equation, 
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Equations used in OpenFOAM® SIMPLE and PISO loops

• As we have seen, mesh non-orthogonality introduces secondary gradients into the pressure equation (the   

term              in the equation below).

where

• To reduce any error introduced by secondary gradients, we 

need to correct the pressure equation for non-orthogonality.  

• That is, we solve for pressure and then we correct it, 

obtaining in this way better approximations.

• After correcting momentum with the previous pressure 

value, we can substitute the new value in the pressure 

equation and solve again (additional passes through 

pressure and momentum corrector equations).

• By looping in this way we gain more stability and accuracy 

by getting better approximations. 

• Notice that mesh non-orthogonality and skewness 

introduces secondary gradients in every equation where a 

diffusion term arises.  

• For example, energy equation (             ). 

• This equation tends to be more sensitive to secondary 

gradients than the pressure equation.  
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The SIMPLE loop in OpenFOAM®

fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

U = HbyA – rAU*fvc::grad(p);
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The SIMPLE loop in OpenFOAM®

• The SIMPLE loop in OpenFOAM is controlled using the sub-dictionary fvSolution.

• The SIMPLE method only makes one correction. 

• An additional correction to account for mesh non-orthogonality is available when using the 

SIMPLE method. The number of non-orthogonal correctors is specified by the 

nNonOrthogonalCorrectors keyword. 

• The number of non-orthogonal correctors is chosen according to the mesh quality. 

• For orthogonal meshes you can use 0 non-orthogonal corrections. However, it is strongly 

recommended to do at least 1 non-orthogonal correction (this helps stabilizing the solution).

• For non-orthogonal meshes, it is recommended to do at least 1 correction. 

SIMPLE

{

nNonOrthogonalCorrectors    1;

}
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The SIMPLE loop in OpenFOAM®

• The SIMPLE loop in OpenFOAM uses under-relaxation factors (URF).

• The under-relaxation factors control the change of the variable     .

• If                we are using under-relaxation. 

• Under-relaxation is a feature typical of steady solvers using the SIMPLE method.

• If you do not set URF values, OpenFOAM® will not under-relax (this feature is off).

• If you set URF to 1, OpenFOAM ® will apply some under-relaxation to ensure diagonal 

dominance (this is not equivalent to off). 

• The under-relaxation factors are bounded between 0 and 1.

• Selecting the under-relaxation factors it is kind of equivalent to selecting the right time step.
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The SIMPLE loop in OpenFOAM®

• These are the typical (or industry standard) under-relaxation factors for the SIMPLE and 

SIMPLEC methods.  

• Remember the under-relaxation factors are problem dependent.

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U    0.7;

k 0.7; 

omega 0.7;

}

}

relaxationFactors

{

fields

{

p 1.0;

}

equations

{

p 1.0;

U    0.9;

k 0.9; 

omega 0.9;

}

}

SIMPLE SIMPLEC

Explicit under-relaxation

Implicit under-relaxation

Usually there is no need to under-relax 

pressure; however, it is advisable.
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The PISO loop in OpenFOAM®

fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

U = HbyA – rAU*fvc::grad(p);
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The PISO loop in OpenFOAM®

• The PISO loop in OpenFOAM is controlled using the sub-dictionary fvSolution.

• The PISO method requires at least one correction (nCorrectors).  To improve the accuracy and 

stability you can increase the number of corrections. 

• For good accuracy and stability, it is recommended to use al least 2 nCorrectors. 

• An additional correction to account for mesh non-orthogonality is available when using the PISO 

method. The number of non-orthogonal correctors is specified by the 

nNonOrthogonalCorrectors keyword. 

• The number of non-orthogonal correctors is chosen according to the mesh quality. 

• For orthogonal meshes you can use 0 non-orthogonal corrections. However, it is strongly 

recommended to do at least 1 non-orthogonal correction (this helps stabilizing the solution).

• For non-orthogonal meshes, it is recommended to do at least 1 correction. 

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}



What else we did not cover?

141

The PISO loop in OpenFOAM®

• You can use the optional keyword momentumPredictor to enable or disable the momentum 

predictor step. 

• The momentum predictor helps in stabilizing the solution as we are computing better 

approximations for the velocity. 

• It is clear that this will add an extra computational cost, which most of the times is negligible. 

• In most of the solvers, this option is enabled by default.

• It is recommended to use this option for highly convective flows (high Reynolds number). If you 

are working with low Reynolds flow or creeping flows it is recommended to turn it off.

• Note that when you enable the option momentumPredictor, you will need to define the linear 

solvers for the variables .*Final (we are using regex notation). 

• Also, if you want to use URF you will need to apply then to all field variables (including .*Final).

PISO

{

momentumPredictor yes;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}
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The PISO loop in OpenFOAM®

(PISO with non-iterative marching – NITA – )

fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

U = HbyA – rAU*fvc::grad(p);
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The PIMPLE loop in OpenFOAM®

(PISO with iterative marching – ITA – )

fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

U = HbyA – rAU*fvc::grad(p);
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PISO-NITA and PISO-ITA comparison

PISO-NITA PISO-ITA (PIMPLE in OpenFOAM®)

• The main difference between both methods is the outer loop in the PISO-ITA.

• This outer loop gives more stability and allow the use of very large time-steps (CFL numbers).

• The recommended CFL number of the PISO-NITA is below 2 (for good accuracy and stability).
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The PIMPLE loop in OpenFOAM®

• The PIMPLE loop in OpenFOAM is controlled using the sub-dictionary fvSolution.

• The PIMPLE method works very similar to the PISO method. 

• In fact, setting the keyword nOuterCorrectors to 1 is equivalent to running using the PISO

method. 

• The keyword nOuterCorrectors controls a loop outside the PISO loop.

• To gain more stability, especially when using large time-steps or when dealing with complex 

physics (combustion, chemical reactions, shock waves, and so on), you can use more outer 

correctors (nOuterCorrectors).  Usually between 2 and 3.

• Have in mind that increasing the number of nOterCorrectors will highly increase the 

computational cost.

PIMPLE

{

momentumPredictor yes;

nOuterCorrectors 1;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}
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The PIMPLE loop in OpenFOAM®

• You can use under-relaxation factors (URF) with the PIMPLE solvers.

• By using URF, you will gain more stability in time dependent solutions (as they control the amount 

of change of field variables within the time-step). 

• However, if you use too low URF values, your solution might not be time-accurate anymore

• You can use the same or larger URF values as for steady simulation.

• Note that when you enable the option momentumPredictor, you will need to define the linear 

solvers for the variables .*Final (we are using regex notation). 

• You can assign URF to all variables (including .*Final), to only the intermediate field variables (U, 

p, k, and so on), or to only the .*Final variables (UFinal, pFinal, kFinal, and so on).

• We recommend to use URF in all variables.

PIMPLE

{

momentumPredictor yes;

nOuterCorrectors 1;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}
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The PIMPLE loop in OpenFOAM®

• You can use the following guidelines to define the URF with the PIMPLE family of solvers.

• These guidelines also applies for the SIMPLE family of solvers.

relaxationFactors

{

//Nothing in here

}

• URF switch-off.

relaxationFactors

{

fields

{

“.*” 1.0;

}

equations

{

“.*” 1.0;

}

}

• URF set to ensure diagonally dominance.

• The wildcard .* will apply the URF factors 

to all fields (including .*Final).
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The PIMPLE loop in OpenFOAM®

• You can use the following guidelines to define the URF with the PIMPLE family of solvers.

• These guidelines also applies for the SIMPLE family of solvers.

relaxationFactors

{

fields

{

“p.*” 0.3;

}

equations

{

“U.*”    0.7;

“k.*” 0.7; 

“omega.*” 0.7;

}

}

• Recommended URF values with the 

PIMPLE method (SIMPLE formulation).

• The wildcard .* will apply the URF factors 

to all fields (including .*Final).

relaxationFactors

{

fields

{

“p.*” 0.7;

}

equations

{

“p.*” 0.7;

“U.*”    0.7;

“k.*” 0.7; 

“omega.*” 0.7;

}

}

• Recommended URF values with the 

PIMPLE method (SIMPLEC formulation).

• The wildcard .* will apply the URF factors 

to all fields (including .*Final).
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This is the end
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That was only the tip of the iceberg

Now the rest is on you



Some FVM/CFD references

• There is vast amount of literature in the field of FVM/CFD and numerical analysis. We will give you some of our 

favorite references, which are closed related to what you will find in OpenFOAM®.  

• The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction With 

OpenFOAM and Matlab

F. Moukalled, L. Mangani, M. Darwish. 2015, Springer-Verlag

• Finite Volume Methods for Hyperbolic Problems 

R. Leveque. 2002, Cambridge University Press

• Computational Gasdynamics 

C. Laney. 1998, Cambridge University Press

• Computational Techniques for Multiphase Flows 

G. H. Yeoh, J. Tu. 2009, Butterworth-Heinemann

• An Introduction to Computational Fluid Dynamics                                

H. K. Versteeg, W. Malalasekera. 2007, Prentice Hall

• Computational Fluid Dynamics: Principles and Applications             

J. Blazek. 2006, Elsevier Science

• Computational Methods for Fluid Dynamics                                      

J. H. Ferziger, M. Peric. 2001, Springer

• Numerical Heat Transfer and Fluid Flow

S. Patankar. 1980, Taylor & Francis

• Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods                        

S. Mazumder. 2015, Academic Press.

• Iterative Methods for Sparse Linear Systems 

Y. Saad. 2003, SIAM.
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Some FVM/CFD references

• There is vast amount of literature in the field of FVM/CFD and numerical analysis. We will give you some of our 

favorite references, which are closed related to what you will find in OpenFOAM®.  

• Matrix analysis and applied linear algebra 

C. D. Meyer. 2010, SIAM.

• A Finite Volume Method for the Prediction of Three-Dimensional Fluid Flow in Complex Ducts

M. Peric. PhD Thesis. 1985. Imperial College, London

• Error analysis and estimation in the Finite Volume method with applications to fluid flows

H. Jasak. PhD Thesis. 1996. Imperial College, London

• Computational fluid dynamics of dispersed two-phase flows at high phase fractions       

H. Rusche. PhD Thesis. 2002. Imperial College, London

• High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws

P. K. Sweby. SIAM Journal on Numerical Analysis, Vol. 21, No. 5, pp. 995-1011, 1984.

• A Pressure-Based Method for Unstructured Meshes                               

S. R. Mathur, J. Y. Murthy. Numer. Heat Transfer, Vol. 31, pp. 195-216, 1997.

• A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic 

flows        

S. V. Patankar, D. B. Spalding. Int. J. Heat Mass Transfer, 15, pp. 1787-1806, 1972.

• Solution of the implicitly discretized fluid flow equations by operator-splitting            

R. I. Issa. J. Comput. Phys., 62, pp. 40-65, 1985.

• Further discussion of numerical errors in CFD                                                                                

J. H. Ferziger, M. Peric. Int. J. Numer. Methods in Fluids, Vol. 23, pp. 1263-1274, 1996.

• Limiters for Unstructured Higher-Order Accurate Solutions of the Euler Equations                       

K.Michalak, C. Ollivier-Gooch. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, 2008.
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CFD best practices guidelines

• ERCOFTAC best practice guidelines (aerospace CFD, automotive CFD, turbomachinery CFD, 

electronic cooling CFD, heat transfer).

• NAFEMS best practice guidelines.

• MARNET CFD best practice guidelines for marine applications of CFD.

• NPARC alliance CFD verification and validation archive.

• NASA Turbulence Modeling Resource.

• ERCOFTAC classic collection database for validation and verification.

• NASA CFL3D documentation and validation cases.

• Documentation of commercial CFD solver (e.g., Ansys Fluent, Ansys CFX, Star-CCM+, 

NUMECA, and so on).

• Verification and validation in computational science and engineering

P. J. Roache, Hermosa Publishers

• Verification and Validation in Scientific Computing                                                                 

W. L. Oberkampf , C. J. Roy, Cambridge University Press.
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FYI – Useful links

• You can download the tutorials at this link:

• http://www.wolfdynamics.com/training/OF_WS2020/OF2020training.tar.gz

• The tutorials are based on OpenFOAM® version 7.

• To run some of the postprocessing script you will need Python version 3.7,  and the 

following Python libraries:

• Numpy

• Pandas

• Matplotlib.
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