
CFM-1

2017 Online Training – Advanced session

Advanced meshing using

OpenFOAM® technology:

cfMesh

Copyright and disclaimer

© 2014-2017 Wolf Dynamics.

All rights reserved. Unauthorized use, distribution or duplication is prohibited.

Contains proprietary and confidential information of Wolf Dynamics.

Wolf Dynamics makes no warranty, express or implied, about the completeness, accuracy,

reliability, suitability, or usefulness of the information disclosed in this training material. This

training material is intended to provide general information only. Any reliance the final user

place on this training material is therefore strictly at his/her own risk. Under no

circumstances and under no legal theory shall Wolf Dynamics be liable for any loss, damage

or injury, arising directly or indirectly from the use or misuse of the information contained in

this training material.

Revision 1-2017

This offering is not approved or endorsed by OpenCFD Limited, the producer of the

OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.

CFM-2

Before we begin

• This training is based on OpenFOAM 4.x and cfMesh 1.1.2

• In the USB key you will also find all the training material in a compressed file.

• You can extract the training material wherever you want. From now on, this directory

will become:

• $TM

• To uncompress the training material go to the directory where you copied it and then

type in the terminal,

• $> tar –zxvf file_name.tar.gz

• In each tutorial directory there is a README.FIRST file. In this file you will find

general comments and the instructions of how to run the case

On the training material

CFM-3

Conventions used

• The following typographical conventions are used in this training material:

• Courier new

Indicates Linux commands that should be typed literally by the

user in the terminal

• Courier new bold

Indicates directories

• Courier new italic

Indicates human readable files or ascii files

• Arial bold

Indicates program elements such as variables, function names,

classes, databases, data types, environment variables,

statements and keywords. They also highlight important

information.

• Arial underline in blue

Indicates URLs and email addresses

CFM-4

Conventions used

• To improve readability, the text might be colored.

• The font can be Courier new or Arial bold.

• And when required, the line number will be shown.

• The following typographical conventions are used in this training material:

• Large code listing, ascii files listing, and screen outputs can be written in

a square box, as follows:

1 #include <iostream>

2 using namespace std;

3

4 // main() is where program execution begins. It is the main function.

5 // Every program in c++ must have this main function declared

6

7 int main ()

8 {

9 cout << "Hello world"; //prints Hello world

10 return 0; //returns nothing

11 }

CFM-5

Conventions used

• The following typographical conventions are used in this training material:

This icon indicates a warning or a caution

This icon indicates a tip, suggestion, or a general note

This icon indicates that more information is available in the

referred location

This icon indicates a folder or directory

This icon indicates an ascii file

This symbol indicates that a Linux command should be typed

literally by the user in the terminal

This icon indicates that the figure is an animation (animated gif)

$>

CFM-6

1. Mesh quality assessment in CFD

2. Mesh generation using cfMesh

3. The cylinder tutorial

4. The 2D airfoil tutorial

5. The static mixer tutorial

6. The Ahmed body tutorial

7. The mixing elbow comparison

8. The moving quadcopter tutorial

Roadmap

CFM-7

1. Mesh quality assessment in CFD

2. Mesh generation using cfMesh

3. The cylinder tutorial

4. The 2D airfoil tutorial

5. The static mixer tutorial

6. The Ahmed body tutorial

7. The mixing elbow comparison

8. The moving quadcopter tutorial

Roadmap

CFM-8

Mesh quality assessment in CFD

CFM-9

• In CFD, the mesh is everything.

• So try to always get good quality meshes.

• With that in mind, remember to always

check the quality of the mesh.

• Do not go into the solution stage unless you

have an acceptable/good mesh.

• So, what is a good mesh?

What is a good mesh?

22rd IMR Meshing Maestro Contest Winner

Travis Carrigan, John Chawner and Carolyn Woeber. Pointwise.

http://imr.sandia.gov/22imr/MeshingContest.html

Mesh quality assessment in CFD

• There is no written theory when it comes to mesh generation and mesh quality

assessment.

• Basically, the whole process depends on user experience and trial-and-error (it is an

iterative process).

• A standard rule of thumb is that the elements shape and distribution should be

pleasing to the eye.

CFM-10

Coarse mesh Medium mesh Fine mesh Extra fine mesh

Cells ≈ 3 500 000 ≈ 11 000 000 ≈ 36 000 000 ≈ 105 000 000

0.0282 0.0270 0.0268 0.0269

-0.0488 -0.0451 -0.0391 -0.0391

Mesh quality assessment in CFD

What is a good mesh?

• The user can rely on grid dependency studies, but they are time consuming and

expensive.

CFM-11Results from AIAA CFD Drag Prediction Workshop

Mesh quality assessment in CFD

What is a good mesh?

CFM-12

• No single standard benchmark or metric exists that can effectively assess

the quality of a mesh, but the user can rely on suggested best practices.

• Hereafter, we will present the most common mesh quality metrics:

• Orthogonality.

• Skewness.

• Aspect Ratio.

• Smoothness.

• After generating the mesh, we measure these quality metrics and we use

them to assess mesh quality.

• Have in mind that there are many more mesh quality metrics out there,

some of them are not very easy to interpret (e.g., jacobian matrix,

determinant, flatness, equivalence, condition number, and so on).

• It seems that it is much easier diagnosing bad meshes than good meshes.

Mesh quality assessment in CFD

• Mesh orthogonality is the angular deviation of the vector S (located at the face center

f) from the vector d connecting the two cell centers P and N. In this case is .

• Affects the gradient of the face center f.

• It adds diffusion to the solution.

• It mainly affects the diffusive terms.

Mesh quality metrics. Mesh orthogonality

CFM-13

Mesh quality assessment in CFD

• Skewness is the deviation of the vector d that connects the two cells P and N, from

the face center f.

• The deviation vector is represented with and is the point where the vector d

intersects the face f .

• Affects the interpolation of the cell centered quantities to the face center f.

• It adds diffusion to the solution.

• It affects the convective terms.

Mesh quality metrics. Mesh skewness

CFM-14

Mesh quality assessment in CFD

• Mesh aspect ratio AR is the ratio between the longest side and the shortest

side .

• Large AR are ok if gradients in the largest direction are small.

• High AR smear gradients.

Mesh quality metrics. Mesh aspect ratio AR

CFM-15

Smooth transitionSteep transition

Mesh quality assessment in CFD

Mesh quality metrics. Smoothness
• Smoothness, also known as expansion rate, growth factor or uniformity, defines the

transition in size between contiguous cells.

• Large transition ratios between cells add diffusion to the solution.

• Ideally, the maximum change in mesh spacing should be less than 20%:

CFM-16

Mesh quality assessment in CFD

Element type close to the walls - Cell/Flow alignment

• Hexes, prisms, and quadrilaterals can be stretched easily to resolve boundary layers

without losing quality.

• Triangular and tetrahedral meshes have inherently larger truncation error.

• Less truncation error when faces aligned with flow direction and gradients.

Flow direction

CFM-17

Mesh quality assessment in CFD

CFM-18

• Each cell type has its very own properties when it comes to approximating the gradients and interpolating the

fluxes.

• Generally speaking, hexahedrons meshes will give more accurate solutions under certain conditions.

• But for complex flows without dominant flow direction, quad and hex meshes loose their advantages.

• Polyhedral cells approximates better the gradients, but skewness can be a problem on these cells. The more

faces polyhedral cells have, the more likely your solution will become oscillatory due to skewness.

• Also, it is quite difficult to control the growth rate and volumetric refinement on polyhedral cells.

• Among all cell types tetrahedron have the minimum number of faces, so gradient are less accurate. However,

they can be easily adapted to any kind of geometry.

• On tetra meshes, the growth rate can be controlled relatively easy and they can be easily adapted using

volumetric refinement with conforming cells (cells with faces that share only two neighbors, so there is no need

to split the fluxes across the faces).

• What cell type do I use? It is up to you, at the end of the day the overall quality of the final mesh should be

acceptable and your mesh should resolve the physics.

What cell type do I use?

http://www.wolfdynamics.com/wiki/cells/ani_tetra.gif http://www.wolfdynamics.com/wiki/cells/ani_hexa.gif http://www.wolfdynamics.com/wiki/cells/ani_poly.gif

http://www.wolfdynamics.com/wiki/cells/ani_tetra.gif
http://www.wolfdynamics.com/wiki/cells/ani_hexa.gif
http://www.wolfdynamics.com/wiki/cells/ani_poly.gif

Mesh quality assessment in CFD

Striving for quality

CFM-19

• In the early years of CFD, there was a huge

gap between the outcome of tetra and hex

meshes.

• But with time and thanks to developments in

numerical methods and computer science

(software and hardware), today all cell types

give the same results.

Year

Q
O

I

Hexa

Tetra

• For the same cell count, hexahedral meshes will give more accurate solutions,

especially if the grid lines are aligned with the flow.

• But this does not mean that tetrahedral meshes are not good, by carefully choosing

the numerical scheme you can get the same level of accuracy as in hexahedral

meshes.

• The problem with tetrahedral meshes is mainly related to the way gradients are

computed.

Mesh quality assessment in CFD

Striving for quality

CFM-20

• And by the way, you can combine all cell types to get a hybrid mesh.

Mesh quality assessment in CFD

Striving for quality

• The mesh density should be high enough to capture all relevant flow features. In

areas where the solution change slowly, you can use larger elements.

• A good mesh does not rely in the fact that the more cells we use the better the

solution.

23rd IMR Meshing Maestro Contest Winner

Zhoufang Xiao , Jianjing Zheng, Dawei Zhao, Lijuan Zeng, Jianjun Chen, Yao Zheng

Center for Engineering & Scientific Computation, Zhejiang University, China.

http://www.sandia.gov/imr/MeshingContest.html
CFM-21

Striving for quality

CFM-22

Mesh quality assessment in CFD

• Hexes, prisms, and quadrilaterals can be easily aligned with the flow.

• They can also be stretched to resolve boundary layers without losing much quality.

• Triangular and tetrahedral meshes can easily be adapted to any kind of geometry. The mesh

generation process is almost automatic.

• Triangular and tetrahedral meshes have inherently larger truncation error.

• Tetrahedral meshes normally need more computing resources during the solution stage. But

this can be easily offset by the time saved during the mesh generation stage.

• Increasing the cells count will likely improve the solution accuracy, but at the cost of a higher

computational cost.

• But attention, a finer mesh does not mean a good or better mesh.

• To keep cell count low, use non-uniform meshes to cluster cells only where they are needed.

Use local refinements and solution adaption to further refine only on selected areas.

• In boundary layers, quads, hexes, and prisms/wedges cells are preferred over triangles,

tetrahedrons, or pyramids.

• If you are not using wall functions (turbulence modeling), the mesh adjacent to the walls should

be fine enough to resolve the boundary layer flow. Have in mind that this will rocket the cell

count and increase the computing time.

Striving for quality

CFM-23

Mesh quality assessment in CFD

• Use hexahedral meshes whenever is possible, specially if high accuracy in predicting forces is

your goal (drag prediction) or for turbo machinery applications.

• For complex flows without dominant flow direction, quad and hex meshes loose their

advantages.

• Keep orthogonality, skewness, and aspect ratio to a minimum.

• Change in cell size should be smooth.

• Always check the mesh quality. Remember, one single cell can cause divergence or give you

inaccurate results.

• Plan your meshing approach.

• When you strive for quality, you avoid the GIGO syndrome (garbage in, garbage out).

• Just to end for good the mesh quality talk:

• A good mesh is a mesh that serves your project objectives.

• So, as long as your results are physically realistic, reliable and accurate; your mesh is

good.

• Know your physics and generate a mesh able to resolve the physics involve, without over-

doing.

CFM-24

Mesh quality assessment in CFD

A good mesh might not lead to the ideal solution, but a bad

mesh will always lead to a bad solution.

P. Baker – Pointwise

Who owns the mesh, owns the solution.

H. Jasak – Wikki Ltd.

Avoid the GIGO syndrome (Garbage In – Garbage Out).

As I am a really positive guy I prefer to say,

good mesh – good results.

J. Guerrero – WD

Mesh quality metrics in OpenFOAM®

• In the file primitiveMeshCheck.C located in the directory

$WM_PROJECT_DIR/src/OpenFOAM/meshes/primitiveMesh/primitiveMeshCheck/

you will find the quality metrics used in OpenFOAM®. Their maximum (or minimum) values are

defined as follows:

36 Foam::scalar Foam::primitiveMesh::closedThreshold_ = 1.0e-6;

37 Foam::scalar Foam::primitiveMesh::aspectThreshold_ = 1000;

38 Foam::scalar Foam::primitiveMesh::nonOrthThreshold_ = 70; // deg

39 Foam::scalar Foam::primitiveMesh::skewThreshold_ = 4;

40 Foam::scalar Foam::primitiveMesh::planarCosAngle_ = 1.0e-6;

CFM-25

Mesh quality assessment in CFD

Mesh quality metrics in OpenFOAM®

• Our own personal quality metrics maximum values are:

• Non-orthogonality = 80

• Skewness = 8

• If we get values higher than these, we inspect the mesh and depending on

the physics involved and the number and location of the bad quality

cells/faces, we decide to redo the mesh or proceed with the simulation.

• If we proceed with the simulation, we choose a numerical scheme able to

reduce the numerical errors introduced due to the low quality cells/faces.

CFM-26

Mesh quality assessment in CFD

Checking mesh quality in OpenFOAM®

CFM-27

Mesh quality assessment in CFD

• To check the mesh quality and validity, OpenFOAM® comes with the utility
checkMesh.

• To use this utility, just type in the terminal checkMesh, and read the screen

output.

• checkMesh will look for/check for:

• Mesh stats and overall number of cells of each type.

• Check topology (boundary conditions definitions).

• Check geometry and mesh quality (bounding box, cell volumes,

skewness, orthogonality, aspect ratio, and so on).

• If for any reason checkMesh finds errors, it will give you a message and it

will tell you what check failed.

• It will also write a set with the faulty cells, faces, and/or points.

• These sets are saved in the directory constant/polyMesh/sets/

Checking mesh quality in OpenFOAM®

CFM-28

Mesh quality assessment in CFD

• Mesh topology and patch topology errors must be repaired.

• You will be able to run with mesh quality errors such as skewness, aspect

ratio, minimum face area, and non-orthogonality.

• But remember, they will severely tamper the solution accuracy, might give

you strange results, and eventually can made the solver blow-up.

• Unfortunately, checkMesh does not repair these errors.

• You will need to check the geometry for possible errors and generate a new

mesh.

• You can visualize the failed sets directly in paraFoam or you can use the

utility foamToVTK.

• The utility foamToVTK converts the failed sets to VTK format.

Visualizing the failed sets in OpenFOAM®

• To visualize the failed sets directly within paraFoam

you can proceed as follows.

• Use the utility checkMesh to check the mesh

quality.

• If there are problems in the mesh, checkMesh

will automatically save the sets in the directory
constant/polyMesh/sets

• The following are a few of the possible faulty
sets checkMesh can detect:

highAspectRatioCells, nonOrthoFaces,

wrongOrientedFaces, skewFaces, unusedPoints.

• In paraFoam, simply select the option Include

Sets and then select the sets you want to

visualize.

• Just to be clear, this method only works with
paraFoam. It does not work in paraview. Failed sets

CFM-29

Mesh quality assessment in CFD

Roadmap

CFM-30

1. Mesh quality assessment in CFD

2. Mesh generation using cfMesh

3. The cylinder tutorial

4. The 2D airfoil tutorial

5. The static mixer tutorial

6. The Ahmed body tutorial

7. The mixing elbow comparison

8. The moving quadcopter tutorial

Mesh generation using cfMesh

• cfMesh (now at version 1.1.2) is a library for automatic mesh generation built

on top of OpenFOAM®.

• Two versions of cfMesh are available, an opensource and a commercial

version (cfMeshPRO).

• Both versions have the same capabilities when it comes to mesh generation

using the command line interface or CLI.

• cfMeshPRO has some additional features like a graphical user interface,

automatic refinements, advanced boundary layer options, topology controls,

and others.

• For more information on cfMesh, please refer to the official website:

http://cfmesh.com/

CFM-31

http://cfmesh.com/

Mesh generation using cfMesh

• cfMesh supports both 3D and 2D meshes.

• cfMesh comes with the following meshers or meshing algorithms:

• cartesianMesh: generates hex dominant 3D meshes

• cartesian2DMesh: generates quad dominant 2D meshes

• tetMesh: generates tetra dominant 3D meshes

• pMesh: generates polyhedral dominant 3D meshes

• By default cfMesh runs in parallel using all threads available in the system.

• Contrary to snappyHexMesh, there is no need to decompose the domain

before meshing.

• If you need to limit the amount of cores to use, you can set the following

environment variable:

$> export OMP_NUM_THREADS=2

CFM-32

Mesh generation using cfMesh

• The meshing algorithm starts the meshing process by creating a so-called

mesh template from the input geometry and the user-specified settings.

• The template is later on adjusted to match the input geometry. The process

of fitting the template to the input geometry is designed to be tolerant to poor

quality input data, which does not need to be watertight.

• However, a good quality input geometry model is always recommended to

obtain an optimal body-fitted surface mesh.

• cfMesh uses one single mesh configuration file, the meshDict dictionary.

• This mesh configuration file is located in the system directory.

CFM-33

cfMesh workflow and input dictionary

Mesh generation using cfMesh

• If you are already familiar with snappyHexMesh, you will find the following
similarities/differences between both meshers:

CFM-34

Similarities Differences

• Text input files (dictionaries).

• Geometry is provided as a STL file.

• Global and local parameters to control

mesh refinement.

• Lines, surfaces, and volumes refinement.

• Boundary layer meshing.

• The quality of the mesh is check using

checkMesh.

• No need to generate a background mesh

• The input STL file must contain the

enclosure of the domain.

• Meshing is done in one single step.

• No need to use surfaceFeatureExtract.

• Boundary layer meshing is very reliable.

• It is super fast.

Mesh generation using cfMesh

CFM-35

• Let us explain cfMesh workflow by meshing this geometry.

• The objective is to mesh a rectangular region surrounding an object described by a

STL surface.

Mesh generation using cfMesh

CFM-36

surfaceFile “…";

maxCellSize …;

boundaryCellSize …;

objectRefinements{

…

}

localRefinement{

…

}

surfaceMeshRefinement{

…

}

boundaryLayers{

…

}

renameBoundary{

…

}

Location of the input geometry file

• The cfMesh input file meshDict is located in the directory system,

Mesh generation using cfMesh

CFM-37

surfaceFile “…";

maxCellSize …;

boundaryCellSize …;

objectRefinements{

…

}

localRefinement{

…

}

surfaceMeshRefinement{

…

}

boundaryLayers{

…

}

renameBoundary{

…

}

Global mesh refinement options

• The cfMesh input file meshDict is located in the directory system,

Mesh generation using cfMesh

CFM-38

surfaceFile “…";

maxCellSize …;

boundaryCellSize …;

objectRefinements{

…

}

localRefinement{

…

}

surfaceMeshRefinement{

…

}

boundaryLayers{

…

}

renameBoundary{

…

}

Set the refinement level of given

mesh zones

• The cfMesh input file meshDict is located in the directory system,

Mesh generation using cfMesh

CFM-39

surfaceFile “…";

maxCellSize …;

boundaryCellSize …;

objectRefinements{

…

}

localRefinement{

…

}

surfaceMeshRefinement{

…

}

boundaryLayers{

…

}

renameBoundary{

…

}

Set the refinement of a patch as

defined by the geometry file

• The cfMesh input file meshDict is located in the directory system,

Mesh generation using cfMesh

CFM-40

surfaceFile “…";

maxCellSize …;

boundaryCellSize …;

objectRefinements{

…

}

localRefinement{

…

}

surfaceMeshRefinement{

…

}

boundaryLayers{

…

}

renameBoundary{

…

}

Allows the use of surface meshes

provided by additional surface

files as refinement zones in the

mesh

• The cfMesh input file meshDict is located in the directory system,

Mesh generation using cfMesh

CFM-41

surfaceFile “…";

maxCellSize …;

boundaryCellSize …;

objectRefinements{

…

}

localRefinement{

…

}

surfaceMeshRefinement{

…

}

boundaryLayers{

…

}

renameBoundary{

…

}

Set the boundary layers refinement

• The cfMesh input file meshDict is located in the directory system,

Mesh generation using cfMesh

CFM-42

surfaceFile “…";

maxCellSize …;

boundaryCellSize …;

objectRefinements{

…

}

localRefinement{

…

}

surfaceMeshRefinement{

…

}

boundaryLayers{

…

}

renameBoundary{

…

}

Rename the patches and specify their

Type according to the user needs.

• The cfMesh input file meshDict is located in the directory system,

Mesh generation using cfMesh

CFM-43

• With a fairly simple input dictionary you can easily obtain high quality meshes.

• You will find this example in the directory cfMesh/tutorials/CF_extra1_wolf

Mesh generation using cfMesh

CFM-44

• The minimum information required in the input dictionary system/meshDict is:

• surfaceFile: the location of the input geometry

• maxCellSize: the maximum cell size

• The volume that will be meshed is the volume enclosed in the supplied geometry.

• The preferred surface format of cfMesh is fms. This proprietary format stores

patches, subsets, and feature edges in a single file.

• The fms surface file is typically generated from a STL file using the following cfMesh

utility:

$> surfaceFeatereEdsges <.stl file> <.fms file>

which also detects the geometry features for edges refinement.

• You can inspect the feature edges by using the following cfMesh utility:

$> FMSToSurface <input fms> <surface file> -exportFeatureEdges

where the option -exportFeatureEdges writes feature edges to a vtk file.

Mesh generation using cfMesh

CFM-45

• In the input dictionary, the following keywords control:

• boundaryCellSize: specifies the size of all boundary cells (global option).

• boundaryCellSizeRefinementThickness: specifies at which distance the

boundaryCellSize option is still active (global option).

• minCellSize: it sets the minimum cell size.

• localRefinement: it overwrites the boundaryCellSize option for a particular

patch (named as in the input surface). Can be specified thought the cellSize or

the additionalRefinementLevels keywords.

localRefinement

{

solid

{

//cellSize 1;

additionalRefinementLevels 4;

}

}

Mesh generation using cfMesh

CFM-46

additionalRefinementLevels 0

Number of cells Maximum non-orthogonality Maximum skewness

4348 62 6.0

Mesh generation using cfMesh

CFM-47

Number of cells Maximum non-orthogonality Maximum skewness

4714 62 4.7

additionalRefinementLevels 1

Mesh generation using cfMesh

CFM-48

Number of cells Maximum non-orthogonality Maximum skewness

5818 45 4.1

additionalRefinementLevels 2

Mesh generation using cfMesh

CFM-49

Number of cells Maximum non-orthogonality Maximum skewness

9262 43 3.3

additionalRefinementLevels 3

Mesh generation using cfMesh

CFM-50

Number of cells Maximum non-orthogonality Maximum skewness

20298 52 3.4

additionalRefinementLevels 4

Mesh generation using cfMesh

CFM-51

Number of cells Maximum non-orthogonality Maximum skewness

51342 52 2.9

additionalRefinementLevels 5

Mesh generation using cfMesh

CFM-52

• In the input dictionary, the following keywords control:

• objectRefinement: it specifies refinement zones inside the volume (lines,

spheres, boxes, and truncated cones). No support for STL so far.

left_wing

{

type cone;

p0 (27.5 -10 2);

p1 (37.5 -37.5 2);

radius0 5;

radius1 2;

cellSize 0.5;

refinemntThickness 1;

}

Mesh generation using cfMesh

CFM-53

• In the input dictionary, the following keywords control:

• keepCellsIntersectingBoundary: global option to keep cells in the template mesh which

are intersected by the boundary (default value is false).

• keepCellsIntersectingPatches: local option that overwrites

keepCellsIntersectingBoundary on specified patches.

• removeCellsIntersectingBoundary: local option that overwrites

keepCellsIntersectingBoundary on specified patches.

• boundaryLayers: controls the boundary layer parameters in all patches

• nLayers: global option that controls the number of layers which will be grow from all

the patches.

• thicknessRatio: global option that controls the growth rate of the inflation layer.

• maxFirstLayerThickness: global option that controls the thickness of the first layer.

boundaryLayers

{

nLayers 3;

thicknessRatio 1.2;

maxFirstLayerThickness 0.5;

allowDiscontinuity 1;

}

Mesh generation using cfMesh

CFM-54

• In the input dictionary, the following keywords control:

• patchBoundaryLayers: local option that specifies the local properties of the

boundary layer for individual patches according to the names given in the input

file. The keyword allowDiscontinuity, ensures that the number of layers

required in a patch does not spread to the other patches in the same layer (1 is

on and 0 is off).

patchBoundaryLayers

{

sur2

{

nLayers 4;

thicknessRatio 1.2;

maxFirstLayerThickness 5;

allowDiscontinuity 1;

}

sur3

{

nLayers 2;

thicknessRatio 1.2;

maxFirstLayerThickness 5;

allowDiscontinuity 1;

}

}

Mesh generation using cfMesh

CFM-55

Boundary layer meshing

nLayers thicknessRatio maxFirstLayerThickness

3 1.2 0.5

Mesh generation using cfMesh

CFM-56

• In the input dictionary, the following keywords control:

• renameBoundary: this option overwrite both the name and the type of the
patches in the file constant/polyMesh/boundary

renameBoundary

{

defaultName myWalls;

defaultType wall;

newPatchNames

{

“sur.*”

{

newName sides;

type slip;

}

}

}

Mesh generation using cfMesh

CFM-57

Boundary patches names

Mesh generation using cfMesh

CFM-58

• The two previous cases are located in the following directories:

• $TM/CFMESH/c_extra1_wolf

• $TM/CFMESH/c_extra2_bwb

• To run the cases go the case directory and type in the terminal:

1. $> foamCleanTutorials

2. $> cp -rp system/meshDict.org system/meshDict

3. $> cartesianMesh

4. $> checkMesh

5. $> paraFoam

Mesh generation using cfMesh

CFM-59

• The standard installation of cfMesh contains several complementary utilities to

perform some geometry and mesh manipulation operations. It is worth mentioning the

following:

• checkSurfaceMesh: performs basic topology and geometric checks on

the input surface mesh. It reports potential problems that could affect the

quality of the mesh.

• FMSToSurface: this utility converts the data in a fms file into several files

which can be imported into ParaView.

• FMSToVTK: converts a fms file into vtk format.

• improveMeshQuality: it applies a smoother to the mesh in order to

improve the overall quality. The number of iterations is controllable via

optional parameters.

Mesh generation using cfMesh

CFM-60

• The standard installation of cfMesh contains several complementary utilities to

perform some geometry and mesh manipulation operations. It is worth mentioning the

following:

• mergeSurfacePatches: this utility allow the user to specify the patches

in the surface mesh which shall be merge together.

• scaleMesh: it scales the mesh by a given factor.

• surfaceToFMS: it converts a common surface triangulation (STL) into fms

format.

• surfaceFeatureEdges: it is used for extracting feature edges (sharp

angles). If the output is a fms file, the extracted edges are stored as feature

edges. Otherwise, it generates patches bounded by the selected feature

edges.

Roadmap

CFM-61

1. Mesh quality assessment in CFD

2. Mesh generation using cfMesh

3. The cylinder tutorial

4. The 2D airfoil tutorial

5. The static mixer tutorial

6. The Ahmed body tutorial

7. The mixing elbow comparison

8. The moving quadcopter tutorial

CFM-62

Cylinder tutorial

• Meshing with cfMesh.

• Meshing tutorial 1. The 3D Cylinder (external mesh).

$TM/CFMESH/c1_cyl/

• From this point on, please follow me.

• We are all going to work at the same pace.

• Remember, $TM is pointing to the path where you

unpacked the tutorials.

• The geo/cylinder.stl file to be used contains the original cylinder STL that can

be visualized with Paraview

• The STL file is composed by one single surface for the whole cylinder geometry.

• This is also recognizable in Paraview that, by default, colors the cylinder with a single

color (blue in this case).

CFM-63

Cylinder tutorial

• In order to create an external aero-dynamic mesh we need to define the

computational bounding box.

• The geometry file provided in this tutorial does not contain the bounding box.

• Conversely to blockMesh, cfMesh dictionary does not include the definition

of the bounding box patches in its dictionary.

• In the next slides, we will learn how to use complementary STL utilities

included in OpenFOAM and cfMesh to perform the necessary geometry

manipulations.

• As a first step, we have to consolidate our understanding of the STL data

structure.

CFM-64

Cylinder tutorial

• An STL file (STereo Lithography interface format or Standard Triangulation Language)

is a simple list of triangles called facets with an outward normal versor (needed to

recognize what is inside and what is outside),

facet normal -1 0 0

outer loop

vertex -1.5 1.5 -1.5

vertex -1.5 -1.5 -1.5

vertex -1.5 -1.5 1.5

endloop

endfacet

• The union of different facets form a solid that, after the mesh generation, will be

associated with a patch.

CFM-65

Ahmed body tutorialCylinder tutorial

solid solid1

facet normal -1 0 0

outer loop

vertex -1.5 1.5 -1.5

vertex -1.5 -1.5 -1.5

vertex -1.5 -1.5 1.5

endloop

endfacet

…

facet normal -1 0 0

outer loop

...

endloop

endfacet

endsolid solid1

solid solid2

facet normal 0 1 0

outer loop

...

endloop

endfacet

…

facet normal 0 1 0

outer loop

...

endloop

endfacet

endsolid solid2

solid1

solid2

Facet 1

CFM-66

Cylinder tutorial

Facet N

Facet M

Facet 1

• An STL file can be stored in two different formats:

• ASCII (human readable)

• Binary format (machine format)

• Binary format is lighter (usually ~ 1/3 of hard drive space) but cannot be edited via a

text editor.

• Now, let us define a proper bounding box by taking advantage of the
surfaceGenerateBoundingBox cfMesh utility as follows:

• $> surfaceGenerateBoundingBox <input stl file>

<output stl file> xNeg xPos yNeg yPos zNeg zPos

• The xNeg, xPos, yNeg, yPos, zNeg and zPos arguments are the distances

from the STL geometry surfaces and must be expressed with non-negative values.

CFM-67

Cylinder tutorial

• The output STL files now contains six new surfaces named with the following

convention:

CFM-68

Cylinder tutorial

xMin

xMax

zMax

yMax

yMin

zMin

• We have seen how the new STL

solids are automatically created

and defined by means of the
surfaceGenerateBoundingBox

utility.

• The respective mesh patches can

be easily renamed in the
system/meshDict dictionary as

in the following example …

renameBoundary

{

newPatchNames

{

xMin

{

newName inlet;

type patch;

}

xMax

{

newName outlet;

type patch;

}

...

...

...

CFM-69

Cylinder tutorial

CFM-70

Cylinder tutorial

1. $> foamCleanTutorials

2. $> cp -rp system/meshDict.org system/meshDict

3.
$> surfaceGenerateBoundingBox geo/cylinder.stl

constant/triSurface/boxCylinder.stl 9 9 9 9 9 9

4. $> ls –l geo/

5. $> cartesianMesh

6. $> checkMesh

7. $> paraFoam

• Now we are ready to perform an initial mesh. The following commands can be

provided in the terminal shell:

• To check the result of this initial mesh we can use Paraview and highlight the spatial

discretization by means of the “Surface with Edge” view. The internal region of the

mesh is usually inspected by using the Slice filter.

CFM-71

Cylinder tutorial

CFM-72

• The edges of the geometries must be treated accordingly when calculating the

computational grid.

• Conversely to blockMesh + snappyHexMesh, cfMesh has no explicit edge

refinement controls in its dictionary.

• That is, when working with cfMesh we have to pay a lot of attention in preparing

the STL geometry file accordingly to obtain optimal mesh refinements.

Cylinder tutorial

Missing edge

refinement

CFM-73

Cylinder tutorial

• Our strategy is to split the original cylinder solid into different solids inside the STL

file.

• This will improve the capabilities of cfMesh in identifying edges for refinement.

• Please remember that in the STL language the word solid means a group of surface

triangles.

Missing edge

refinement

• With the aim of obtaining a new STL file composed by multiple solids (surfaces) we
will use an additional cfMesh utility: surfaceFeatureEdges

• The utility needs the following arguments:

$> surfaceFeatureEdges <input> <output> -angle <sFE_angle>

CFM-74

Cylinder tutorial

• The command surfaceFeatureEdges will

read the <input> .STL file (in ASCII or binary

form) and produce an ASCII <output> .STL (or

.FMS) file in which every couple of facets that
form an angle greater than <sFE_angle> will

be split in different solids.

• To choose the right angle we suggest to open the

original STL in paraview and to use the Feature

Edge filter to check the edge identification by

varying angle value.

$> surfaceFeatureEdges <input> <output> -angle <sFE_angle>

CFM-75

Cylinder tutorial

angle

0: mark the whole surface for refinement

180: do not mark any STL face for

refinement

sFE_angle

If angle is more than sFE_angle

the adjacent STL faces will be marked

for refinement

angle < sFE_angle

No curvature refinement

How does surfaceFeatureEdges works?

Edges of the STL

facets

CFM-76

Cylinder tutorial

angle

sFE_angle

If angle is more than sFE_angle

the adjacent STL faces will be marked

for refinement

angle > sFE_angle

Curvature refinement

$> surfaceFeatureEdges <input> <output> -angle <sFE_angle>

How does surfaceFeatureEdges works?

0: mark the whole surface for refinement

180: do not mark any STL face for

refinement

Edges of the STL

facets

• And remember, when it comes to define boundary refinements with incremental

names (e.g. , parentSolid_1, parentSolid_2, etc) we can simply refer to all of them by
using regular expressions inside the system/meshDict dictionary:

CFM-77

"parentSolid_.*"

{

cellSize 0.001;

}

• You may also want to group all patches of your input .stl in a unique patch. You can
do it within the renameBoundary sub-dictionary system/meshDict.

renameBoundary

{

newPatchNames

{

"parentSolid_.*"

{

newName newSolid;

type wall;

}

}

}

Cylinder tutorial

CFM-78

• Let us use the utility surfaceFeatureEdges, type in the terminal window:

$> surfaceFeatureEdges geo/cylinder.stl geo/cylinderSplit.stl

-angle 90

surfaceFeatureEdges will subdivide your original STL solid into several STL

solids depending on the angle between the single faces as we have seen before.

• The solids that share the same parent solid will have a common naming syntax in

the form of parent_solid_name+i where i is an incremental number starting from 0.

• Now, we are ready to generate the mesh with cartesianMesh

Cylinder tutorial

CFM-79

Cylinder tutorial

1. $> foamCleanTutorials

2. $> cp -rp system/meshDict.org system/meshDict

3.
$> surfaceFeatureEdges geo/cylinder.stl

geo/cylinderSplit.stl -angle 90

4.
$> surfaceGenerateBoundingBox geo/cylinderSplit.stl

constant/triSurface/boxCylinder.stl 9 9 9 9 9 9

5. $> cartesianMesh

6. $> checkMesh

7. $> paraFoam

• To compute the final mesh, type in the terminal:

CFM-80

Cylinder tutorial

• Meshing with cfMesh.

• Meshing tutorial 2. The 3D Cylinder with boundary

layer refinements.

$TM/CFMESH/c2_cyl_bl/

• From this point on, please follow me.

• We are all going to work at the same pace.

• Remember, $TM is pointing to the path where you

unpacked the tutorials.

• In many applications we have to perform an additional volume refinement close to the

wall boundaries according to the near-wall treatment adopted in your CFD case (a

topic addressed in the Turbulence modelling lesson).

CFM-81

Cylinder tutorial

Near-wall regions

• cfMesh requires to specify the

number of layers, the growth ratio

and the maximum thickness of

the first layer.

• The boundary layer refinement

settings can be global or local

• In order to provide patch-specific

refinements we can use the

patchBoundaryLayers sub-

dictionary

boundaryLayers

{

patchBoundaryLayers

{

"cyl_.*"

{

nLayers 3;

thicknessRatio 1.2;

maxFirstLayerThickness 0.06;

allowDiscontinuity 1;

}

}

}

CFM-82

Cylinder tutorial

The allowDiscontinuity option ensures that the

number of layers required for a patch shall not spread

to other patches in the same layer

• To achieve the desired boundary layer refinement, we set the boundaryLayers
settings in the system/meshDict dictionary

CFM-83

Cylinder tutorial

• cfMesh requires to specify the

number of layers, the growth ratio

and the maximum thickness of

the first layer.

boundaryLayers

{

patchBoundaryLayers

{

"cyl_.*"

{

nLayers 3;

thicknessRatio 1.2;

maxFirstLayerThickness 0.06;

allowDiscontinuity 1;

}

}

}

• To achieve the desired boundary layer refinement, we set the boundaryLayers
settings in the system/meshDict dictionary

nLayers 6;

thicknessRatio 1.2;

maxFirstLayerThickness 0.03;

allowDiscontinuity 1;

CFM-84

Cylinder tutorial

• Sometimes we need a higher level of refinement in the near-wall region. We suggest

to play around with the boundary layers settings and to check the resulting mesh
quality with the checkMesh utility and paraFoam.

nLayers 3;

thicknessRatio 1.2;

maxFirstLayerThickness 0.06;

allowDiscontinuity 1;

CFM-85

Cylinder tutorial

• In the terminal window we provide the following commands:

1. $> foamCleanTutorials

2. $> cp -rp system/meshDict.org system/meshDict

3.
$> surfaceFeatureEdges geo/cylinder.stl

geo/cylinderSplit.stl -angle 90

4.
$> surfaceGenerateBoundingBox geo/cylinderSplit.stl

constant/triSurface/boxCylinder.stl 9 9 9 9 9 9

5. $> surfaceCheck

6. $> cartesianMesh

7. $> checkMesh

8. $> paraFoam

Roadmap

CFM-86

1. Mesh quality assessment in CFD

2. Mesh generation using cfMesh

3. The cylinder tutorial

4. The 2D airfoil tutorial

5. The static mixer tutorial

6. The Ahmed body tutorial

7. The mixing elbow comparison

8. The moving quadcopter tutorial

CFM-87

Cylinder tutorial

• Meshing with cfMesh.

• Meshing tutorial 3. The 2D airfoil (external mesh)

$TM/CFMESH/c3_2Dairfoil

• From this point on, please follow me.

• We are all going to work at the same pace.

• Remember, $TM is pointing to the path where you

unpacked the tutorials.

• To generate this mesh, type in the terminal:

CFM-88

2D airfoil tutorial

1. $> foamCleanTutorials

2.
$> surfaceGenerateBoundingBox geo/naca0012.stl

geo/naca2D.stl 10 20 10 10 0 0

3. $> cartesian2DMesh

4. $> checkMesh

5. $> paraFoam

• To generate 2D meshes with cfMesh we use the cartesian2DMesh utility that

performs spatial discretizations in the x-y plane by using hexahedral cells.

• The z direction will be ignored by OpenFOAM solvers since is not subdivided in

multiple cells.

• cartesian2DMesh reads the system/meshDict dictionary. The information

provided in the dictionary are the same illustrated for the cartesianMesh cases.

• An important requirement of cartesian2DMesh is to input geometries in a form of a

ribbon in the x-y plane and extruded in the z direction. As usual, stl and fms formats

are valid options for the geometry input file.

CFM-89

2D airfoil tutorial

• This tutorial starts from the geo/naca0012.stl airfoil geometry file.

CFM-90

2D airfoil tutorial

• Similarily to the previous case, we need to build a 2D bounding box around the airfoil

spatial domain in order to set-up this external aero-dynamics case.

• In order to generate the bounding box we use the surfaceGenerateBoundingBox

utility as follows:

$> surfaceGenerateBoundingBox geo/naca0012.stl geo/naca2D.stl

10 20 10 10 0 0

CFM-91

2D airfoil tutorial

• The system/meshDict dictionary contains the following instructions:

CFM-92

2D airfoil tutorial

…

maxCellSize 0.25; //[m]

surfaceFile "geo/naca2D.stl";

objectRefinements

{

wake

{

cellSize 0.05; // [m]

type box; // or box or sphere or line

centre (11 0 0);

lengthX 24;

lengthY 1.6;

lengthZ 1;

}

}

We are defining a rectangular

regions that will be refined with

A 0.05 m size

CFM-93

2D airfoil tutorial

localRefinement

{

patch0

{

additionalRefinementLevels 6;

}

}

boundaryLayers

{

patchBoundaryLayers

{

patch0

{

nLayers 5;

thicknessRatio 1.2;

maxFirstLayerThickness 1;

allowDiscontinuity 1;

}

}

}

Refinement along specific

patches defined in the input

geometry file

Local boundary layers

refinement

• The system/meshDict dictionary contains the following instructions:

• Visualizing the mesh with paraview:

CFM-94

2D airfoil tutorial

In order to perform a 2D

visualization of the airfoil mesh

it may be useful to load only

the bottomEmptyFaces

mesh part.

The result is represented in
the left figures.

CFM-95

2D airfoil tutorial

Note that the actual internal mesh has a third dimension (along

the coordinate z) that does not present any cells subdivision.

This is the standard OpenFOAM way to set-up a bi-dimensional

case.

• Visualizing the mesh with paraview:

• In case it is necessary to enlarge the airfoil patch refinement region, a solution is to

use the refinementThickness instruction in the localRefinement section of the

cfMesh dictionary as follows:

CFM-96

2D airfoil tutorial

localRefinement

{

patch0

{

additionalRefinementLevels 6;

refinementThickness 0.02; //cm

}

}

CFM-97

2D airfoil tutorial

no refinementThickness;

refinementThickness 0.02;

Roadmap

CFM-98

1. Mesh quality assessment in CFD

2. Mesh generation using cfMesh

3. The cylinder tutorial

4. The 2D airfoil tutorial

5. The static mixer tutorial

6. The Ahmed body tutorial

7. The mixing elbow comparison

8. The moving quadcopter tutorial

CFM-99

• Meshing with cfMesh.

• Meshing tutorial 4. The 3D static mixer tank and

geometry surfaces manipulation

$TM/CFMESH/c4_staticMixer

• From this point on, please follow me.

• We are all going to work at the same pace.

• Remember, $TM is pointing to the path where you

unpacked the tutorials.

Static mixer tank tutorial

CFM-100

At the end of this tutorial we will be able to mesh a static mixer tank like this:

Static mixer tank tutorial

For this internal aero-dynamic problem we have a STL geometry composed by

one solid. Try now to check the geometry by using paraview.

$> paraview geo/staticMixer.stl

CFM-101

Static mixer tank tutorial

CFM-102

We will provide different names for the wall surfaces and inlet/outlet patches

inside the STL file. In this manner we will be able to specify local meshing

operations with cfMesh.

Again, the idea is to split the STL solid into multiple solids by using
surfaceFeatureEdges utility.

Static mixer tank tutorial

CFM-103

As seen during the cylinder tutorial, another fundamental advantage of using the

STL splitting technique is to help cfMesh in recognizing the mixing tank feature

edges for refinements.

Static mixer tank tutorial

CFM-104

Before doing that, we suggest to open the geo/staticMixer.stl geometry

in paraview and to select the Feature Edge filter.

Static mixer tank tutorial

CFM-105

Playing around with the Feature Angle toggle will help you in identifying the
correct angle value to be used in the surfaceFeatureEdges operation.

According to the Feature Angle level, different edges will be highlighted in the

static mixed viewer.

Static mixer tank tutorial

CFM-106

solid solid_0
facet normal 0 0 1

outer loop
vertex 1.43357 1.39459 2
…

endloop
endfacet

endsolid solid_0
solid solid_1

facet normal 0 0 1
outer loop
…

After the solid split operation, we

obtain an STL file composed by

several solids automatically

renamed with an incremental

number.

In order to handle the different

surface parts in cfMesh (or

snappyHexMesh) it is convenient

to rename them directly in the

STL ASCII file.

Static mixer tank tutorial

We can easily deal with an high number of solids to be renamed by using the

Linux stream text editor utility as follows:

$> sed -i 's/<string_to_replace>/<new_string>/g'

<file_name>

Remember, this operation is possible only if your .stl geometry has been

exported as an ASCII file.

The results of this kind of surface manipulation can be easily monitored by taking
advantage of the OpenFOAM surfaceCheck utility:

$> surfaceCheck <file_name>

CFM-107

Static mixer tank tutorial

CFM-108

This is the result of our geometry manipulation:

Static mixer tank tutorial

In the terminal window we provide the following commands:

CFM-109

Static mixer tank tutorial

1. $> foamCleanTutorials

2. $> cp -rp system/meshDict.org system/meshDict

3. $> export OMP_NUM_THREADS=2

4.
$> surfaceFeatureEdges -angle 40 geo/staticMixer.stl

geo/smsplit.stl

5. $> paraFoam

In the terminal window we provide the following commands:

CFM-110

Static mixer tank tutorial

6. $> sed -i 's/solid_0/wall_0/g' geo/smsplit.stl

7. $> sed -i 's/solid_1/wall_1/g' geo/smsplit.stl

8. $> sed -i 's/solid_2/wall_2/g' geo/smsplit.stl

9. $> sed -i 's/solid_3/wall_3/g' geo/smsplit.stl

10. $> sed -i 's/solid_4/wall_4/g' geo/smsplit.stl

11. $> sed -i 's/solid_5/wall_5/g' geo/smsplit.stl

12. $> sed -i 's/solid_6/inlet_1/g' geo/smsplit.stl

13. $> sed -i 's/solid_7/inlet_2/g' geo/smsplit.stl

14. $> sed -i 's/solid_8/outlet/g' geo/smsplit.stl

The export OMP_NUM_THREADS=2 (step 3) command instruct cfMesh to perform

the mesh computations in a parallel mode over 2 different threads. This parameter

can be changed arbitrarily in order to exploit the computing capabilities of your

hardware.

CFM-111

And finally:

Static mixer tank tutorial

15. $> surfaceCheck geo/smsplit.stl

16. $> cartesianMesh

17. $> checkMesh

CFM-112

Static mixer tank tutorial

The Clip and Slice paraview filters may help you in supervise the internal spatial

discretization and the result of wall refinements

Roadmap

CFM-113

1. Mesh quality assessment in CFD

2. Mesh generation using cfMesh

3. The cylinder tutorial

4. The 2D airfoil tutorial

5. The static mixer tutorial

6. The Ahmed body tutorial

7. The mixing elbow comparison

8. The moving quadcopter tutorial

CFM-114

• Meshing with cfMesh.

• Meshing tutorial 5. Dealing with edge features and

the 3D Ahmed body (external mesh)

$TM/CFMESH/c5_ahmed

• From this point on, please follow me.

• We are all going to work at the same pace.

• Remember, $TM is pointing to the path where you

unpacked the tutorials.

Ahmed body tutorial

At the end of this tutorial the final mesh should look like this

CFM-115

Ahmed body tutorial

The Ahmed body tutorial can be run by following these steps:

CFM-116

Ahmed body tutorial

1. $> foamCleanTutorials

2. $> cp system/meshDict.stl system/meshDict

3.
$> surfaceGenerateBoundingBox

constant/triSurface/abscale.stl abb.stl 4 6 1 1 0 2

4.
$> surfaceFeatureEdges -angle 80 abb.stl

constant/triSurface/abb.stl

5. $> surfaceCheck constant/triSurface/abb.stl

6. $> cartesianMesh

7. $> checkMesh

We start from our constant/triSurface/ab.stl surface file generated

during the solid modelling lesson by using the Salome suite.

CFM-117

Please, remember that our CAD model was made in mm units. In this case, we
will use the surfaceTransformPoints utility to scale our geometry in meter

units.

Ahmed body tutorial

surfaceTransformPoints can handle several STL transformations, check the

help option to get a quick overview of its capabilities.

In our case we may entry the following command in the Linux shell:

surfaceTransformPoints -scale '(0.001 0.001 0.001)'

constant/triSurface/ab.stl constant/trisurface/abscale.stl

CFM-118

Ahmed body tutorial

CFM-119

Ahmed body tutorial

Do not forget to split the STL solid into multiple parts with
surfaceFeatureEdges in order to improve the edge reinfements made by

cfMesh.

CFM-120

Ahmed body tutorial

It is also necessary do add the bounding box surfaces by using
surfaceGenerateBoundingBox for the external aero-dynamics

Our tutorial performs boundary layer refinement close to the Ahmed body walls.

The choice of the depth and the number of refinements of the boundary layer

refinement depends on the CFD model to be performed.

CFM-121

Ahmed body tutorial

However, in this case it is difficult to perform a precise body-fitted mesh since the

Ahmed body surface can not be completely splitted in all the faces that compose

the main body. This affects the quality of the edges as showed in this slide.

CFM-122

Ahmed body tutorial

To solve this kind of problem it is recommended to work with a fms surface file

instead of a standard stl geometry.

Let us take a look at the content of a fms file:

CFM-123

Ahmed body tutorial

16

(

OpenSCAD_Model_0

empty

OpenSCAD_Model_1

empty

OpenSCAD_Model_2

empty

…

zMin_14

empty

zMax_15

empty

)

The first section of the fms file

contains the declaration of the patch

number, name and type.

Please note that the order of the

patches declaration is important and

must be consistent with the following
sections of the file.

CFM-124

Ahmed body tutorial

920

(

(0 -0.1945 0.05)

(0 0.1945 0.05)

(0 -0.1945 0.262072)

(0 0.1945 0.262072)

(-0.358428 -0.157113 0)

(-0.358428 0.157113 0)

(-0.358053 -0.157978 0)

(-0.358053 0.157978 0)

(-0.358855 -0.156274 0)

(-0.358855 0.156274 0)

(-0.357734 -0.158865 0)

…

(6 -1.1945 0)

(6 1.1945 0)

(6 1.1945 2.338)

(6 -1.1945 2.338)

)

To solve this kind of problem it is recommended to work with a fms surface file

instead of a standard stl geometry.

Let us take a look at the content of a fms file:

In the second section we find the list

of the surface mesh points (vertex of

the triangles).

The points coordinates

correspond with the original stl

triangles definition. That is, the fms

file contains the same triangular
surface mesh of the original stl file.

CFM-125

Ahmed body tutorial

1832

(

((873 888 862) 0)

((862 888 883) 0)

((862 883 889) 0)

((862 889 874) 0)

((888 873 871) 0)

((888 871 892) 0)

((873 874 872) 0)

((873 872 871) 0)

…

((913 918 917) 13)

((913 914 918) 13)

((912 913 917) 14)

((912 917 916) 14)

((915 918 914) 15)

((915 919 918) 15)

)

To solve this kind of problem it is recommended to work with a fms surface file

instead of a standard stl geometry.

Let us take a look at the content of a fms file:

The third section is composed by the

declaration of the triangles. The

triangles are identified by the

vertexes positional identifier as

defined in the previous section.

In addition, each triangle is

accompanied with the patch

identification number.

Please note that the order of the

patches and vertexes affects the

triangle definitions.

CFM-126

Ahmed body tutorial

918

(

(0 1)

(0 2)

(0 807)

(1 3)

(1 806)

(2 3)

(2 404)

…

(916 917)

(916 919)

(917 918)

(918 919)

)

0()

0()

To solve this kind of problem it is recommended to work with a fms surface file

instead of a standard stl geometry.

Let us take a look at the content of a fms file:

The fourth section is optional and is

composed by the declaration edges.

The edges are identified by the

triangles vertexes ID.

The last two sections are optional

and define subsets of points and

facets.

The fms surface can be easily generated starting from an existing stl (in our case
constant/triSurface/abb.stl) by using the cfMesh conversion utility

surfaceToFMS.

$> surfaceToFMS <inputFile.stl>

After having converted the constant/triSurface/abb.stl geometry the

new file will be stored in the same directory.

The fms geometry file can contain patch names definition, the triangles vertex

coordinates, the declaration of the lines connecting the vertexes and geometrys

edges marked for refinement.

You can inspect the feature edges by using:

$> FMSToSurface <input fms> <surface file> -

exportFeatureEdges

where -exportFeatureEdges writes feature edges in a vtk file

CFM-127

Ahmed body tutorial

Another option for generating fms geometries is to use again the
surfaceFeatureEdge utility by adopting the .fms extension in the output file

name.

In this manner we will generate a fms file that includes the geometry edges

information. In our case, we can apply this method by using the splitted
constant/triSurface/abb.stl file as input as follows:

$> surfaceFeatureEdges -angle 1 constant/triSurface/abb.stl

constant/triSurface/abb.fms

We can inspect the feature edges by using:

$> FMSToSurface <inputFile.fms> <surface file name>

-exportFeatureEdges

where -exportFeatureEdges writes feature edges in a vtk file. CFM-128

Ahmed body tutorial

To generate the mesh starting from the fms surface file we modify our original

workflow in the following manner:

CFM-129

Ahmed body tutorial

1. $> foamCleanTutorials

2. $> cp system/meshDict.stl system/meshDict

3.
$> surfaceGenerateBoundingBox

constant/triSurface/abscale.stl abb.stl 4 6 1 1 0 2

4.
$> surfaceFeatureEdges -angle 80 abb.stl

constant/triSurface/abb.stl

5.
$> surfaceFeatureEdges -angle 1

constant/triSurface/abb.stl constant/triSurface/abb.fms

6. $> cp system/meshDict.fms system/meshDict

7. $> cartesianMesh

The result is an improved edges surface mesh. This is particularly evident when

looking at the 90° angles of the object main body.

CFM-130

Ahmed body tutorial

In our tutorial we included a steady RANS simulation setup for a fully turbulent case

Re=106 to be solved with a SST k-Omega model.

In this case, we want to apply a boundary layer refinement that results in a maxium

wall unit value y+ < 300 in the Ahmed body surface.

Topics like the boundary layer refinement, turbulence modelling and parallel

processing will be addressed in a specific module.

In the terminal window type:

CFM-131

Ahmed body tutorial

1. $> decomposePar

2. $> mpirun -np 4 simpleFoam -parallel > log.yPlus

3. $> reconstructPar -latestTime

4. $> rm -rf processor*

5. $> simpleFoam -postProcess -func yPlus > log.yPlus

The velocity magnitude and the pressure fields can be easily represented in

paraview.

CFM-132

Ahmed body tutorial

The execution of the RANS simulation included in this tutorial will provide a

maximum y+ = 122 around the Ahmed body surface. We suggest to try different

mesh refinements and to check the effects on the wall unit.

CFM-133

Ahmed body tutorial

Ahmed body tutorial

⚫ You will find the tutorial in the CFMESH/c5_ahmed folder.

⚫ The cfMesh case is accompained by a blockMesh + snappyHexMesh set-

up. Both the set-ups share a similar number of cell and refiniment level.

⚫ Try to compare the mesh quality and the execution time.

CFM-134

Roadmap

CFM-135

1. Mesh quality assessment in CFD

2. Mesh generation using cfMesh

3. The cylinder tutorial

4. The 2D airfoil tutorial

5. The static mixer tutorial

6. The Ahmed body tutorial

7. The mixing elbow comparison

8. The moving quadcopter tutorial

CFM-136

• Meshing with cfMesh.

• Meshing tutorial 6. Comparison of different open

source meshing techniques

$TM/CFMESH/c6_mixingElbow

• From this point on, please follow me.

• We are all going to work at the same pace.

• Remember, $TM is pointing to the path where you

unpacked the tutorials.

The mixing elbow comparison

CFM-137

The mixing elbow comparison

We start from the mixing elbow geometry file created during the solid modelling

lessons.

In this tutorial we are going to mesh the same geometry with 5 mesh generators

1. Tetrahedral NETGEN, tetra-dominant mesher from salome

2. blockMesh + snappyHexMesh, the combination of a background

mesh plus castellation, snap and layer addition

3. cartesianMesh, hexa-dominant mesher from cfMesh

4. tetMesh, tetra-dominant mesher from cfMesh

5. polyDualMesh, conversion of a tetrahedral mesh to its dual mesh

CFM-138

The mixing elbow comparison

So, go into the main folder

$> cd $TM/CFMESH/c6_mixingElbow

Choose a sub-folder according to the mesher you want to test and run

$> foamCleanTutorials

CFM-139

to clean the case.

The mixing elbow comparison

The first case is the salome tetra mesh, you can open salome and view the
mixingElbow.hdf project. Then export the .unv file in OpenFOAM with

$> ideasUnvToFoam mixingElbow.unv

To compute a snappyHexMesh mesh, go to the snappy directory and type:

$> blockMesh

$> snappyHexMesh -overwrite -noFunctionObjects

To compute a cartesian mesh, go to the cartestianMesh directory and type:

$> cartesianMesh

To compute a tetrahedral mesh, go to the tetMesh directory and type:

$> tetMesh

It is important to note that tetMesh is part of the cfMesh suite and it uses the

system/meshDict in the same way of cartesianMesh. The content of this

dictionary remains the same.

CFM-140

The mixing elbow comparison

Lastly, we compute a polyhedral mesh starting from an existing tetrahedral grid.
The strategy of polyDualMesh is to compute the dual elements of the base

tetrahedral grid in order to obtain cell elements characterized by multiple faces.

To start with this case we can use a tetrahedral mesh generated by means of
tetMesh or Salome.

Go to the polyDual directory and type:

$> polyDualMesh

CFM-141

The mixing elbow comparison

NETGEN

CFM-142

By following correctly the instructions you should have get something like this

NETGEN

The mixing elbow comparison

blockMesh + snappyHexMesh

CFM-143

BlockMesh + SnappyHexMesh

The mixing elbow comparison

By following correctly the instructions you should have get something like this

cartesianMesh

CFM-144

cfMesh - cartesian

The mixing elbow comparison

By following correctly the instructions you should have get something like this

tetMesh

CFM-145

cfMesh - tetrahedral

The mixing elbow comparison

By following correctly the instructions you should have get something like this

polyDualMesh

CFM-146

cfMesh - polyhedral

The mixing elbow comparison

By following correctly the instructions you should have get something like this

The mixing elbow comparison

NETGEN

(Salome)

blockMesh +

snappyHM

cfMesh

cartesian

cfMesh

tetrahedral

polyDualMesh

Hexahedrons - 89% 98.8% 2% 29%

Polyhedron - 8% - - 71%

Wedges - - - - -

Prisms 66% 3% 0.2% 42% -

Pyramids - - 0.4% - -

Tetrahedrons 33% - 0.3% 55%

Tet-wedges - - - - -

Meshes elements type budget

CFM-129

The mixing elbow comparison

Meshes quality

Number of

cells
Non-orthogonality

Max.

skewness

Execution time

(sec)

NETGEN

(Salome)
54k

Max. 72

Avg. 12.1
3.3 3

blockMesh +

snappyHM
55k

Max. 61

Avg.7.1
1.6 5

cfMesh

cartesian
48k

Max 59

Avg. 6.7
1.6 3

cfMesh

tetrahedral
158k

Max. 69

Avg. 16
1.7 8

polyDualMesh 55k
Max. 76

Avg. 15
2.2

3

(in addition to

tetMesh)

CFM-130

CFM-149

28.6 sec 36.6 sec 17.6 sec

123.65 sec312.2 sec

The mixing elbow comparison

NETGEN
blockMesh +

snappyHexMesh
cartesianMesh

tetMesh polyDualMesh

Pressure fields after 0.5 sec (icoFoam)

CFM-150

NETGEN
blockMesh +

snappyHexMesh
cartesianMesh

tetMesh polyDualMesh

28.6 sec 36.6 sec 17.6 sec

123.65 sec312.2 sec

The mixing elbow comparison

Velocity fields after 0.5 sec (icoFoam)

cfMesh comes with an additional automatic mesher that performs a 3D spatial
discretization using polyhedral cells: pMesh.

Similarly to tetMesh, the dictionary that governs the computation of the

polyhedral grid is always system/meshDict and the settings are the same

illustrated for cartesianMesh.

Go to the $TM/CFMESH/c6_mixingElbow/pMesh sub-folder to test the

performance of pMesh against the other meshing tools showed in this tutorial.

In the following slide we show a brief comparison between the result of different
pMesh settings and polyDualMesh.

CFM-151

The mixing elbow comparison

polyDualMesh

CFM-152

The mixing elbow comparison

N. Of cells: 55k

Mesh generation time: 11 sec

Quality check failures: 5 non-ortho faces

N. Of cells: 270k

Mesh generation time: 606 sec

Quality check failures: 163 non-ortho faces

pMesh

CFM-153

The mixing elbow comparison

N. Of cells: 270k

Mesh generation time: 606 sec

Boundary cells size: 0.1 m

N. Of cells: 440k

Mesh generation time: 204 sec

Boundary cells size: 0.075 m

Several attempts to perform a polyhedral mesh by means of the pMesh utility

showed poor performance with respect to polyDualMesh in terms of execution

time, geometrical quality metrics and body-fitting.

The largest part of the mesh computation time is due to the iterative process of

the boundary meshing iterations that has to balance the overall mesh quality

with the goodness of the geometry fitting.

CFM-154

The mixing elbow comparison

N. Of cells: 270k

Mesh generation time: 606 sec

Boundary cells size: 0.1 m

N. Of cells: 440k

Mesh generation time: 204 sec

Boundary cells size: 0.075 m

To improve the quality of the surface elements computed by the current version
of pMesh (cfMesh release 1.1.2), it may be necessary to reduce the size of the

local refinement with the downside of increasing the total number of cells.

Yet, the result is not always satisfactory.

Roadmap

CFM-155

1. Mesh quality assessment in CFD

2. Mesh generation using cfMesh

3. The cylinder tutorial

4. The 2D airfoil tutorial

5. The static mixer tutorial

6. The Ahmed body tutorial

7. The mixing elbow comparison

8. The moving quadcopter tutorial

CFM-156

• Meshing with cfMesh.

• Meshing tutorial 7. The moving quadcopter tutorial

(dynamic mesh)

$TM/CFMESH/c7_quad

• From this point on, please follow me.

• We are all going to work at the same pace.

• Remember, $TM is pointing to the path where you

unpacked the tutorials.

Moving quad tutorial – dynamic mesh

CFM-157

The result of the tutorial is a dynamic mesh that looks like this:

Moving quad tutorial – dynamic mesh

Moving quad tutorial – dynamic mesh

CFM-158

The quadcopter model is composed by four different rotors that spins around

their rotation axis.

OpenFOAMOpenFOAM® has the capability to handle this problem in two ways:

1) sliding interfaces, i.e. one part of the mesh will move effectively with

respect to the other one,

2) moving (or multiple) reference frame (MRF), i.e. the mesh will not move

and the rotation will be simulated thorugh the addition of a volume force

representing both centripetal and Coriolis forces.

Moving quad tutorial – dynamic mesh

CFM-159

• The mesh that we are going to produce is suitable for both simulations.

• The strategy is to subdivide the domain into the fixed spatial grid and four

different moving (dynamic) parts around the rotor regions.

• The overall mesh will be composed by the sum of the separate parts, similarly

to the image below.

Moving quad tutorial – dynamic mesh

CFM-160

Rotating zone

Fixed zone

• The images on the right show the

simple case of a mesh with a single

dynamic region.

• The fixed and the rotating meshes

will be computed separately in

different case folders.

• The overall mesh is obtained by
means of the mergeMeshes utility.

You will find this tutorial in the CFMESH/c7_quad folder.

In the terminal window type:

CFM-161

You will see 5 folders:

⚫ rotorXmax

⚫ rotorXmin

⚫ rotorYmax

⚫ rotorYmin

⚫ total

where the first 4 folders contain the independent meshes for all rotors, while the
total folder contains the mesh for the main body.

Later, it will be update to contain the sum of all 5 parts.

1. $> cd CFMESH/c7_moving_quad

2. $> ls

Moving quad tutorial – dynamic mesh

CFM-162

The different mesh parts must be created separately as follows:

1. $> cd total/

2. $> foamCleanTutorials

3. $> cartesianMesh

4. $> cd ../rotorXmin/

5. $> foamCleanTutorials

6. $> cartesianMesh

Moving quad tutorial – dynamic mesh

CFM-163

7. $> cd ../rotorXmax/

8. $> foamCleanTutorials

9. $> cartesianMesh

10. $> cd ../rotor/Ymin/

11. $> foamCleanTutorials

12. $> cartesianMesh

13. $> cd ../rotorYmax/

14. $> foamCleanTutorials

15. $> cartesianMesh

The different mesh parts must be created separately as follows:

Moving quad tutorial – dynamic mesh

CFM-164

This is are the patches of the four rotor sub-meshes visaulized separately

in Paraview.

Moving quad tutorial – dynamic mesh

CFM-165

Now go back to the total folder and merge all the meshes

1. $> cd ../total/

2. $> mergeMeshes -overwrite . ../rotorXmin/

3. $> mergeMeshes -overwrite . ../rotorXmax/

4. $> mergeMeshes -overwrite . ../rotorYmin/

5. $> mergeMeshes -overwrite . ../rotorYmax/

It is important to note that the interface elements of the various merged parts are

not conformal and disconnected.

The approach proposed in this tutorial takes advantage of an advanced method

to deal with non-conformal patches in order to create a working dynamic mesh:

the Arbitrary Mesh Interface.

Moving quad tutorial – dynamic mesh

CFM-166

For the quadcopter tutorial, we create the AMI interface between the two sides of

each interface cylinder.

This operation can be done by hand or by using the utility changeDictionary,

which needs the changeDictionaryDict file in the system folder.

6. $> gedit system/changeDictionaryDict

7. $> changeDictionary

The Arbitrary Mesh Interface (AMI) s a technique that allows simulation across

disconnected, but adjacent, mesh domains. The domains can be stationary or

move relative to one another.

By default, AMI operates by projecting one of the patches’ geometry onto the

other.

Moving quad tutorial – dynamic mesh

CFM-167

dictionaryReplacement

{

boundary

{

cylinderXmaxOuter

{

type cyclicAMI;

neighbourPatch cylinderXmaxInner;

transform noOrdering;

}

…

cylinderXmaxInner

{

type cyclicAMI;

neighbourPatch cylinderXmaxOuter;

transform noOrdering;

}

…

}

}

The system/changeDictionaryDict dictionary has the following structure:

Connectivity

information

Connectivity

information

In our case we specify the boundaries that must be connected and the patch

type (in our case cyclicAMI).

Moving quad tutorial – dynamic mesh

CFM-168

Now let us run the checkMesh utility in order to check the quality of the mesh

and the number of unconnected regions.

This operation will also create the sets that we need to build the dynamic mesh

To create zones from the checkMesh sets:

The rotation coefficients are set in the constant/dynamicMeshDict file.

10. $> gedit constant/dynamicMeshDict

8. $> checkMesh

9. $> setsToZone

Moving quad tutorial – dynamic mesh

CFM-169

…

multiSolidBodyMotionFvMeshCoeffs

{

region1 //Xmin

{

solidBodyMotionFunction rotatingMotion;

rotatingMotionCoeffs

{

origin (-0.22490 0.01289 0);

axis (0 0 1);

omega constant -0.1;

}

}

region2 //Xmax

{

…

}

}

The constant/dynamicMeshDict dictionary has the following structure:

Dynamic region

name

Origin and axis

of rotation

Angular velocity

Moving quad tutorial – dynamic mesh

In other words, we have set which region will be subject to the motion (in our case a

rotation) and the motion parameters.

CFM-170

• The moveDynamicMesh utility created several time steps associated with a

specific spatial grid for the overall mesh.

• The moveDynamicMesh utility can also be executed with the –checkAMI

option to check the weights of the AMI patches in the standard output.

• In this manner we can also visualize the weights values in Paraview by means of

the newly created VTK files.

Moving quad tutorial – dynamic mesh

It is now possible to preview the motion of the dynamic mesh with:

11. $> moveDynamicMesh

12. $> paraFoam

CFM-171

Loading the total case in Paraview will give you the possibility of visualizing

the drone body and the rotors surface and the sub-meshes interface as follows:

Play around with the time cursor of Paraview to move the mesh.

Moving quad tutorial – dynamic mesh

http://www.wolfdynamics.com/wiki/meshing/quadcopter.gif

http://www.wolfdynamics.com/wiki/meshing/quadcopter.gif

Thank you for your attention

CFM-172

Thank you for your attention

• We hope you have found this training useful and we hope to see you in one of our advanced

training sessions:

• OpenFOAM® – Multiphase flows

• OpenFOAM® – Naval applications

• OpenFOAM® – Turbulence Modeling

• OpenFOAM® – Compressible flows, heat transfer, and conjugate heat transfer

• OpenFOAM® – Advanced meshing

• DAKOTA – Optimization methods and code coupling

• Python – Programming, data visualization, and exploratory data analysis

• Python and R – Data science and big data

• ParaView – Advanced scientific visualization and python scripting

• And many more available on request

• Besides consulting services, we also offer ‘Mentoring Days’ which are days of one-on-one

coaching and mentoring on your specific problem.

• For more information, ask your trainer, or visit our website

http://www.wolfdynamics.com/

CFM-173

http://www.wolfdynamics.com/

Contact information

www.wolfdynamics.com

info@wolfdynamics.com

CFM-174

