
Hairpin vortices

1

Flow around a hemisphere – Hairpin vortices – Re = 800

Incompressible flow

Physical and numerical side of the problem:

• The governing equations of the problem are the incompressible laminar Navier-Stokes equations.

• In this case we are going to solve the flow around a hemisphere.

• For the desired Reynolds number (Re = 800), the flow is fully unsteady, there is a horseshoe vortex in front of

the hemisphere, and hairpin vortices develop in the wake of the hemisphere.

• The hairpin vortices forms an interlacing pattern in the wake of the hemisphere and lift away from the wall. The

vortices are stretched by the shearing action of the boundary layer since the tails remain in the low-speed

(near-wall) region of the flow while the heads are entrained in the high-speed region.

• The vortices are identified using the Q-criterion.

Hairpin vortices

2

Flow around an hemisphere – Hairpin vortices – Re = 800

Incompressible flow

Inlet

Outlet

Top

Ground

Side 1

Side 2

Hemisphere

Boundary patches

Workflow of the case

Hairpin vortices

3

simpleFoam

pimpleFoam

sampling

functionObjects

postProcessing

utilities

paraview

snappyHexMesh

blockMesh Geometry (STL file)

Coarse mesh

Hairpin vortices

4

Fine mesh

At the end of the day you should get something like this

Hairpin vortices

5

Unsteady or steady solver?
www.wolfdynamics.com/wiki/hairpin_vortices/ste/ani2.gif

At the end of the day you should get something like this

http://www.wolfdynamics.com/wiki/hairpin_vortices/ste/ani2.gif

Hairpin vortices

6

At the end of the day you should get something like this

Hairpin vortices – Re = 800 – Unsteady simulation – Pressure field (relative pressure) and vortices

visualization using Q-criterion
www.wolfdynamics.com/wiki/hairpin_vortices/uns1/ani1.gif

http://www.wolfdynamics.com/wiki/hairpin_vortices/uns1/ani1.gif

Hairpin vortices

7

At the end of the day you should get something like this

Steady simulation Unsteady simulation
• Steady simulations are not time accurate, hence we can not use them to compute

temporal statistics or compute the shedding frequency.

• Generally speaking and in the absence of highly unsteady phenomena, steady

simulations should give a result that is close to the mean solution of an unsteady

simulation.

• Unsteady simulations are time-accurate.

• They capture the unsteadiness of the flow (temporal scales).

• You can use these simulations to compute shedding frequency, but remember, you

need to define an adequate saving frequency and time-step.

• Numerical diffusion can give you the impression that you have arrived to an steady

state.

Drag and lift coefficient signals on the coarse mesh

Hairpin vortices

8

At the end of the day you should get something like this

Steady simulation residuals

Hairpin vortices

9

At the end of the day you should get something like this

Unsteady simulation residuals

Hairpin vortices

Drag and lift coefficient signals on the coarse mesh

10

At the end of the day you should get something like this

• Steady simulations are not time accurate, hence we can not use them to compute

temporal statistics or compute the shedding frequency.

• Generally speaking and in the absence of highly unsteady flows, steady simulations

should give a result that is close to the mean solution of an unsteady simulation.

• Be careful when post-processing steady simulations, the animations you obtain does not

represent temporal scales, they only show you how the solution change from iteration to

iteration.

• When post-processing steady simulations, you should use the last saved iteration.

• You can also compute the average of a series of snapshots.

• Unsteady simulation are time-accurate.

• They capture the unsteadiness of the flow (temporal scales).

• You can use these simulations to compute shedding frequency.

• Post-processing unsteady simulations can be difficult and time-consuming.

• When you post-process unsteady simulations, you access all the time-steps saved.

• You can also compute the average of a series of time-steps.

• Remember, you need to define an adequate saving frequency and time-step.

• You can use steady simulations to initialize unsteady simulations.

Steady simulation
www.wolfdynamics.com/wiki/hairpin_vortices/ste/ani1.gif

Unsteady simulation
www.wolfdynamics.com/wiki/hairpin_vortices/uns0/ani_smallcfl.gif

http://www.wolfdynamics.com/wiki/hairpin_vortices/ste/ani1.gif
http://www.wolfdynamics.com/wiki/hairpin_vortices/uns0/ani_smallcfl.gif

Hairpin vortices

11

At the end of the day you should get something like this

Steady simulation Unsteady simulation
• Steady simulations are not time accurate, hence we can not use them to compute

temporal statistics or compute the shedding frequency.

• Generally speaking and in the absence of highly unsteady phenomena, steady

simulations should give a result that is close to the mean solution of an unsteady

simulation.

• Unsteady simulations are time-accurate.

• They capture the unsteadiness of the flow (temporal scales).

• You can use these simulations to compute shedding frequency, but remember, you

need to define an adequate saving frequency and time-step.

• Numerical diffusion can give you the impression that you have arrived to an steady

state.

Drag and lift coefficient signals on the coarse mesh

Hairpin vortices

Drag and lift coefficient signals – Unsteady simulations

12

At the end of the day you should get something like this

Coarse mesh Fine mesh

• The fine mesh captures the small spatial scales that the coarse mesh

does not manage to resolve.

• The coarse mesh does not capture small spatial scales, hence, they

add numerical diffusion to the solution.

• You will have the impression that you have arrived to an steady state.

Hairpin vortices

13

At the end of the day you should get something like this

Coarse mesh Fine mesh

Power spectral density (PSD) of drag and lift coefficient signals

• As the accuracy is better in the fine mesh, it manages to capture the

shedding frequency.

• Due to numerical diffusion (under-resolve temporal and/or

spatial scales), it is not possible to use this solution to

conduct a temporal analysis of the solution.

Hairpin vortices

14

At the end of the day you should get something like this

Vortices visualized using Q criterion.

• The vortices are dissipated due to numerical diffusion (low mesh

resolution)

• The fine mesh captures the small spatial scales that the

coarse mesh does not manage to resolve.

Coarse mesh
www.wolfdynamics.com/wiki/hairpin_vortices/uns0/ani_smallcfl.gif

Fine mesh
www.wolfdynamics.com/wiki/hairpin_vortices/uns1/ani1.gif

http://www.wolfdynamics.com/wiki/hairpin_vortices/uns0/ani_smallcfl.gif
http://www.wolfdynamics.com/wiki/hairpin_vortices/uns1/ani1.gif

Hairpin vortices

15

At the end of the day you should get something like this

Drag and lift coefficient signals for different CFL numbers on the coarse mesh – Unsteady simulation

Vortices visualized using Q criterion.

Unphysical oscillations due

to large CFL number

Unphysical oscillations due

to large CFL number

CFL = 2.0 – Large time-step
www.wolfdynamics.com/wiki/hairpin_vortices/uns0/ani_largecfl.gif

CFL = 0.5 – Small time-step
www.wolfdynamics.com/wiki/hairpin_vortices/uns0/ani_smallcfl.gif

http://www.wolfdynamics.com/wiki/hairpin_vortices/uns0/ani_largecfl.gif
http://www.wolfdynamics.com/wiki/hairpin_vortices/uns0/ani_smallcfl.gif

Hairpin vortices

16

At the end of the day you should get something like this

Drag coefficient signal on the fine mesh – Instantaneous value and average value (rolling mean)

Hairpin vortices

17

At the end of the day you should get something like this

Cutplanes colored by pressure mean value

contours and iso-surfaces of Q-criterion

Cutplanes colored by velocity magnitude mean

value contours and iso-surfaces of Q-criterion

Hairpin vortices

18

At the end of the day you should get something like this

Streamlines released from a point source Streamlines released from a line source

19

Hairpin vortices

• Let us run our first case. Go to the directory:

• $PTOFC is pointing to the directory where you extracted the training material.

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of

how to run the case. In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh,

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on. These files can be used to run the case

automatically by typing in the terminal, for example, sh run_solver.

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this

way, you will get used with the command line interface and OpenFOAM® commands.

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases.

$PTOFC/hairpin_vortices

What are we going to do?

20

• In this tutorial, we use simpleFoam and pimpleFoam in a 3D domain.

• The solver simpleFoam is formulated for steady simulations and the solver

pimpleFoam is formulated for unsteady simulations.

• Running a 3D simulation is not different from the previous 2D simulations. The only

difference is that we need to define the boundary conditions in the third dimension,

and the simulation requires more computational resources.

• We will generate the mesh using snappyHexhMesh.

• We will use the steady solution as the starting point for a unsteady solution

• We will map the solution from a coarse mesh to a finer mesh.

• We will visualize unsteady data.

Hairpin vortices

Running the case

Let’s run a steady simulation

21

• You will find this tutorial in the directory $PTOFC/hairpin_vortices/ste

• Let’s first generate the mesh. To generate the mesh will use snappyHexMesh (sHM), do not

worry we will talk about sHM tomorrow.

• In the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> surfaceFeatureExtract

4. $> snappyHexMesh -overwrite

5. $> checkMesh

6. $> paraFoam

Hairpin vortices

• In step 2 we use blockMesh to generate the background mesh for snappyHexMesh.

• In step 3 we use the utility surfaceFeatureExtract to extract geometry features

(edges) for snappyHexMesh. This utility reads the dictionary

system/surfaceFeatureExtractDict.

• In step 4 we use snappyHexMesh to generate the 3D mesh. It will read the

dictionary system/snappyHexMeshDict.

• In step 5 we check the topology and mesh quality.

• Finally, in step 6 we visualize the mesh.

22

Hairpin vortices

Running the case

Let’s run a steady simulation

• As usual, remember to take a look at the file boundary and adapt it to your needs.

In this case we already assigned the right names and base type to all the boundary

patches.

• At this point, we are all familiar with the dictionaries.

• But it will not hurt you to take a look at them again. Feel free to do any modification.

• Reminder:

• The diameter of the hemi-sphere is 2.0 m.

• And we are targeting for a Re = 800.

23

Hairpin vortices

Running the case

Let’s run a steady simulation

24

• You will find this tutorial in the directory $PTOFC/hairpin_vortices/ste

• Run this case just 400 iterations.

• Let’s run the simulation using simpleFoam. In the terminal window type:

1. $> renumberMesh -overwrite

2. $> simpleFoam > log.simplefoam &

3. $> pyFoamPlotWatcher.py log.simplefoam

4. $> Q

5. $> paraFoam

Hairpin vortices

Running the case

Let’s run a steady simulation

• In step 1 we use the utility renumberMesh to make the linear system more diagonal

dominant, this will speed-up the linear solvers.

• In step 2 we run the simulation and save the log file. Notice that we are sending the

job to background.

• In step 3 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly. As the

job is running in background, we can launch this utility in the same terminal tab.

• In step 4 we compute the Q-Criterion (for vortex visualization).

• Finally, in step 5 we visualize the solution.

25

Hairpin vortices

Running the case

Let’s run a steady simulation

• By the way, to visualize the results you do not need to wait until the simulation is over. You can
launch paraFoam at anytime. Remember, you will need to open a new terminal.

• Also, we do not need to run this case until the endTime (1000 iterations). Just run a few

iterations (about 400 iterations), monitor the solution and try to do some post-processing.

• Do not erase the solution, as we are going to use it as initial conditions for the transient

simulation.

• And as the meshes are the same, we only need to copy the last saved solution of the steady

simulation into the directory containing the initial conditions of the transient simulation.

• If you are in a hurry, in the compressed files sol_constant.tar.gz and sol_1000.tar.gz

you will find the mesh and the solution respectively. To uncompress the files, type on the

terminal:

26

1. $> tar –xzvf sol_constant.tar.gz

2. $> tar –xzvf sol_1000.tar.gz

Hairpin vortices

Running the case

Let’s run a steady simulation

Running the case

Let’s run an unsteady simulation using the solution from the steady case

27

• You will find this tutorial in the directory $PTOFC/hairpin_vortices/uns0

• Let’s copy to the current case directory the last saved solution from the steady simulation. We

will use this solution as boundary and initial conditions for the unsteady simulation.

• In the terminal window type:

1. $> cd $PTOFC/101OF/hairpin_vortices/

2. $> cd uns0

3. $> mkdir 0

4. $> cp ../ste/1000/U ./0
Assuming that you run 1000 iterations. If you run more or less iterations, just copy the last saved solution.

5. $> cp ../ste/1000/p ./0
Assuming that you run 1000 iterations. If you run more or less iterations, just copy the last saved solution.

• At this point, if you want to change the boundary conditions, just open the field dictionaries and

modify them. Remember, as it is a big file you better use vi or emacs.

Hairpin vortices

28

• You will find this tutorial in the directory $PTOFC/hairpin_vortices/uns0

• Remember, to run a simulation we need a mesh.

• As the mesh is the same as the one we used in the case ../ste, we do not need to redo it.

Just copy the mesh from the steady case or unpack the file sol_constant.tar.gz

• Let’s copy the mesh from the steady case. In the terminal window type:

1. $> cp –r ../ste/constant/polyMesh/ constant/

• Alternatively:

1. $> tar –xzvf sol_constant.tar.gz

Hairpin vortices

Running the case

Let’s run an unsteady simulation using the solution from the steady case

29

• You will find this tutorial in the directory $PTOFC/hairpin_vortices/uns0

• Now we are ready to run the simulation. In the terminal window type:

1. $> renumberMesh -overwrite

2. $> pimpleFoam > log.pimplefoam &

3. $> pyFoamPlotWatcher.py log.pimplefoam

4. $> Q

5. $> paraFoam

Hairpin vortices

Running the case

Let’s run an unsteady simulation using the solution from the steady case

• By the way, to visualize the results you do not need to wait until the simulation is over.
You can launch paraFoam at anytime. Remember, you will need to open a new

terminal.

• Also, we do not need to run this case until the endTime (250 seconds). Just run a

few seconds of simulation time (about 10 seconds), monitor the solution and try to do

some post-processing.

• Remember, unsteady solvers are much much time consuming than steady solvers.

• If you have time you can run the simulation until the endTime. At the end of the

simulation, compare the force coefficients of the steady with the force coefficients of

the unsteady simulations.

• Do not erase the solution, as we are going to use it as initial conditions for the

transient simulation using a finer mesh.

30

Hairpin vortices

Running the case

Let’s run an unsteady simulation using the solution from the steady case

• In step 1 we use the utility renumberMesh to make the linear system more diagonal

dominant, this will speed-up the linear solvers.

• In step 2 we run the simulation and save the log file. Notice that we are sending the

job to background.

• In step 3 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly. As the

job is running in background, we can launch this utility in the same terminal tab.

• In step 4 we compute the Q Criterion (for vortex visualization).

• Finally, in step 5 we visualize the solution.

31

Hairpin vortices

Running the case

Let’s run an unsteady simulation using the solution from the steady case

• In the directory uns1, you will find the same case setup as in uns0. The only difference is that

we are using a finer mesh.

• In other words, we are conducting a mesh refinement study.

• The new mesh will resolve better the wake behind the hemisphere and the boundary layer at the

ground.

• It will also resolve better the boundary layer of the hemisphere (it will predict better the forces).

• Qualitative and quantitative speaking the results will be better.

32

Coarse mesh Fine mesh

Running the case

Let’s run the same case using a finer mesh

Hairpin vortices

33

• You will find this tutorial in the directory $PTOFC/hairpin_vortices/uns1

• Let’s first generate the mesh. Generating the mesh in this case is a little bit time consuming,

therefore let’s use a pre-generated mesh.

• In the terminal window type:

1. $> foamCleanTutorials

2. $> foamCleanPolyMesh

3. $> tar –xzvf sol_constant.tar.gz
To uncompress the pre-generated mesh

Hairpin vortices

Running the case

Let’s run the same case using a finer mesh

• This case is computationally intensive. The mesh is about 3.8 millions

cells. So you need to have at least 4 Gigs of memory and a lot of

patience if you are running in serial.

34

• You will find this tutorial in the directory $PTOFC/hairpin_vortices/uns1

• If you want to generate the mesh, in the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> surfaceFeatureExtract

4. $> snappyHexMesh -overwrite

5. $> checkMesh

Generating this mesh can be time consuming

Hairpin vortices

Running the case

Let’s run the same case using a finer mesh

• checkMesh output

35

Create time

Create polyMesh for time = 0

Time = 0

Mesh stats

points: 4222485

faces: 11827716

internal faces: 11407628

cells: 3803904

faces per cell: 6.1082887

boundary patches: 7

point zones: 0

face zones: 0

cell zones: 0

Overall number of cells of each type:

hexahedra: 3655280

prisms: 1042

wedges: 8

pyramids: 0

tet wedges: 8

tetrahedra: 0

polyhedra: 147566

Breakdown of polyhedra by number of faces:

faces number of cells

4 1224

5 818

6 1580

7 8812

8 3934

9 129680

10 18

12 1016

15 484

Total number of cells

Breakdown of polyhedra.
Polyhedra with many faces can give problems.

Cells breakdown by element type

Hairpin vortices

Running the case

Let’s run the same case using a finer mesh

• checkMesh output

36

Checking topology...

Boundary definition OK.

Cell to face addressing OK.

Point usage OK.

Upper triangular ordering OK.

Face vertices OK.

Number of regions: 1 (OK).

Checking patch topology for multiply connected surfaces...

Patch Faces Points Surface topology

minx 7092 7627 ok (non-closed singly connected)

maxx 7092 7627 ok (non-closed singly connected)

miny 9100 9934 ok (non-closed singly connected)

maxy 9100 9934 ok (non-closed singly connected)

minz 380984 382316 ok (non-closed singly connected)

maxz 1500 1581 ok (non-closed singly connected)

semi_sphere 5220 6641 ok (non-closed singly connected)

Checking geometry...

Overall domain bounding box (-10 -8 -2.4459601e-16) (15 8 10)

Mesh has 3 geometric (non-empty/wedge) directions (1 1 1)

Mesh has 3 solution (non-empty) directions (1 1 1)

Boundary openness (-4.651149e-15 -1.1428046e-15 1.1290504e-13) OK.

Max cell openness = 6.6352707e-16 OK.

Max aspect ratio = 14.34437 OK.

Minimum face area = 3.6373532e-05. Maximum face area = 0.27049071. Face area magnitudes OK.

Min volume = 6.2267806e-07. Max volume = 0.13497113. Total volume = 3997.9127. Cell volumes OK.

Mesh non-orthogonality Max: 63.660466 average: 5.7030887

Non-orthogonality check OK.

Face pyramids OK.

Max skewness = 3.5522648 OK.

Coupled point location match (average 0) OK.

Mesh OK.

End

Non-orthogonality OK

Skewness OK

Boundary patches

Hairpin vortices

Running the case

Let’s run the same case using a finer mesh

Aspect ratio OK

37

• You will find this tutorial in the directory $PTOFC/hairpin_vortices/uns1

• Let’s map the solution from the steady case or the unsteady case uns0 (is up to you).

• Hereafter we will use the solution form the steady case. In the terminal window type:

1. $> rm –rf 0 > /dev/null 2>&1

2. $> cp –r 0_org 0

3.
$> mapfields ../ste –consistent –noFunctionObjects

–mapMethod cellPointInterpolate -sourceTime ‘latestTime’

4. $> paraFoam

Hairpin vortices

Running the case

Let’s run the same case using a finer mesh

• In step 3 we run the utility mapFields with the following options:

• We copy the solution from the directory ../ste

• The options –consistent is used when the domains and BCs are the same.

• The option –noFunctionObjects is used to avoid conflicts with the

functionObjects.

• The option –mapMethod cellPointInterpolate defines the interpolation

method.

• The option -sourceTime ‘latestTime’ defines the time from which we want

to interpolate the solution.

• This step will give you a lot warnings, just ignore them.

• Remember, mapFields will interpolate everything it finds in the source directory.

Just keep the files you need in the target directory. It is also a good idea to have a

backup of the original BC/IC.

38

Hairpin vortices

Running the case

Let’s run the same case using a finer mesh

• If you try to open this mesh using paraFoam, it will take about 50 seconds (at least

on my workstation with a good video card).

• An alternative to paraFoam is to use paraview (a native installation). In our

workstation, it takes about 15 seconds to open the same mesh.

• Remember, to open the case with paraview, you will need to create the file

case_name.foam manually and then open it in paraview. In the terminal type:

39

1. $> touch case_name.foam

2. $> paraview5
This is an alias that points to a native paraview 5 installation

Hairpin vortices

Running the case

Let’s run the same case using a finer mesh

40

• You will find this tutorial in the directory $PTOFC/hairpin_vortices/uns1

• Now we are ready to run the simulation. In the terminal window type:

1. $> renumberMesh -overwrite

2. $> pimpleFoam > log.pimplefoam &

3. $> pyFoamPlotWatcher.py log.pimplefoam

4. $> Q

5. $> paraFoam

Hairpin vortices

Running the case

Let’s run the same case using a finer mesh

• In step 1 we use the utility renumberMesh to make the linear system more diagonal

dominant, this will speed-up the linear solvers.

• In step 2 we run the simulation and save the log file. Notice that we are sending the

job to background.

• In step 3 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly. As the

job is running in background, we can launch this utility in the same terminal tab.

• In step 4 we compute the Q Criterion (for vortex visualization).

• Finally, in step 5 we visualize the solution.

41

Hairpin vortices

Running the case

Let’s run the same case using a finer mesh

• We just run the simulation using pimpleFoam, if you want you can use pisoFoam.

• The main differences are:

• No outer loops in pisoFoam.

• No adjustable time stepping in pisoFoam.

• FYI, in the fvSolution dictionary you will need to add the related entry for the

PISO pressure-velocity coupling method (same entry as in the icoFoam solver).

42

Hairpin vortices

PISO

{

nCorrectors 2;

nNonOrthogonalCorrectors 1;

}

Running the case

Let’s run the same case using a finer mesh

• By the way, to visualize the results you do not need to wait until the simulation is over.
You can launch paraFoam at anytime. Remember, you will need to open a new

terminal.

• Also, we do not need to run this case until the endTime (250 seconds). Just run a

few seconds of simulation time (about 2 seconds), monitor the solution and try to do

some post-processing.

• This case is computationally intensive. The mesh is about 3.8 millions cells. So you

need to have at least 4 Gigs of memory and a lot of patience if you are running in

serial.

• Running in parallel will speed-up everything. Tomorrow we are going to address how

to run in parallel.

• If you have time you can run the simulation until the endTime. At the end of the

simulation, compare the force coefficients of the steady with the force coefficients of

the unsteady simulations.

43

Hairpin vortices

Running the case

Let’s run the same case using a finer mesh

44

Initial transient

Hairpin vortices

Running the case

Let’s run the same case using a finer mesh

www.wolfdynamics.com/wiki/hairpin_vortices/uns0/ani1.gif

http://www.wolfdynamics.com/wiki/hairpin_vortices/uns0/ani1.gif

