
Hagen-Poiseuille solution – Re = 100

Incompressible flow

Physical and numerical side of the problem:

• The governing equations of the problem are the incompressible laminar Navier-Stokes equations.

• We are going to work in a 2D domain but the problem can be extended to 3D or axisymmetric problems easily.

• This problem has an analytical solution for the parabolic velocity profile

A simple validation case – Hagen-Poiseuille solution

Workflow of the case

A simple validation case – Hagen-Poiseuille solution

blockMesh

icoFoam

simpleFoam

sampling

functionObjects

paraview

Mesh (coarse add 2D)

• This mesh is very coarse but for the physics involved it works fine.

• You can try to do successive refinements of this mesh in order to do a mesh independency study.

• If you deal with turbulence, you will need to refine the mesh close to the walls in order to resolve the oudnayr

layers.

A simple validation case – Hagen-Poiseuille solution

At the end of the day you should get something like this

At the end of the day you should get something like this

A simple validation case – Hagen-Poiseuille solution

Inlet boundary condition: fix uniform velocity. Left figure: velocity magnitude. Right figure: relative pressure

Inlet boundary condition: fix pressure. Left figure: velocity magnitude. Right figure: relative pressure

Velocity profile at the inlet

BC: fix uniform velocity

Velocity profile at the inlet

BC: fix pressure

At the end of the day you should get something like this

A simple validation case – Hagen-Poiseuille solution

At the end of the day you should get something like this

And as CFD is not only about pretty colors, we should

also validate the results

Velocity profile at the outlet

BC: fix uniform velocity

Velocity profile at the outlet

BC: fix pressure

A simple validation case – Hagen-Poiseuille solution

At the end of the day you should get something like this

Pressure along the axis of the pipe

Comparison of the three cases

(icoFoam BC1, icoFoam BC2, simpleFoam)

Velocity profile at the outlet

simpleFoam vs. icoFoam vs. analytical solution

A simple validation case – Hagen-Poiseuille solution

And as CFD is not only about pretty colors, we should

also validate the results

• Let us run this case. Go to the directory:

• $PTOFC is pointing to the directory where you extracted the training material.

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of

how to run the case. In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh,

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on. These files can be used to run the case

automatically by typing in the terminal, for example, sh run_solver.

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this

way, you will get used with the command line interface and OpenFOAM® commands.

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases.

$PTOFC/laminar_pipe

A simple validation case – Hagen-Poiseuille solution

Loading OpenFOAM® environment

A simple validation case – Hagen-Poiseuille solution

• If you are using our virtual machine or using the lab workstations, you will need to source OpenFOAM® (load

OpenFOAM® environment).

• To source OpenFOAM®, type in the terminal:

• $> of6x

• To use PyFoam you will need to source it. Type in the terminal:

• $> anaconda2 or anaconda3

• Remember, every time you open a new terminal window you need to source OpenFOAM® and PyFoam.

• By default, when installing OpenFOAM® and PyFoam you do not need to do this. This is our choice as we

have many things installed and we want to avoid conflicts between applications.

What are we going to do?

A simple validation case – Hagen-Poiseuille solution

• We will use this case to compare the numerical solution with the analytical solution.

• We will compare the solutions obtained when using different inlet boundary

conditions.

• To find the numerical solution we will use two different solvers, namely, icoFoam and

simpleFoam.

• icoFoam is a transient solver for incompressible, laminar flow of Newtonian fluids.

• simpleFoam is a steady-state solver for incompressible, laminar/turbulent flows.

• After finding the numerical solution we will do some sampling.

• Then we will do some plotting (using gnuplot or Python) and scientific visualization.

Let us explore the case directory

A simple validation case – Hagen-Poiseuille solution

The blockMeshDict dictionary file

• This dictionary is located in the system

directory.

• We are not using scaling.

• X/Y/Z dimensions: 10.0/1.0/0.1

• We are using one single block with uniform

grading.

• Cells in the X, Y, and Z directions: 100 x 10 x 1

(there is only one cell in the Z direction because

the mesh is 2D).

• All edges are straight lines by default.

17 convertToMeters 1;

18

19 xmin 0;

20 xmax 10;

21 ymin -0.5;

22 ymax 0.5;

23 zmin 0;

24 zmax 0.1;

25

26 vertices

27 (

28 ($xmin $ymin $zmin) //vertex 0

29 ($xmax $ymin $zmin) //vertex 1

30 ($xmax $ymax $zmin) //vertex 2

31 ($xmin $ymax $zmin) //vertex 3

32 ($xmin $ymin $zmax) //vertex 4

33 ($xmax $ymin $zmax) //vertex 5

34 ($xmax $ymax $zmax) //vertex 6

35 ($xmin $ymax $zmax) //vertex 7

36);

37

38 blocks

39 (

40 hex (0 1 2 3 4 5 6 7) (100 10 1)

simpleGrading (1 1 1)

41);

42

43 edges

44 (

45);

A simple validation case – Hagen-Poiseuille solution

The blockMeshDict dictionary file

• The boundary patches top and bottom are of

base type wall.

• The boundary patches outlet and inlet are of

base type patch.

• Later on, we will assign the primitive type

boundary conditions (numerical values), in the
field files found in the directory 0

47 boundary

48 (

49 top

50 {

51 type wall;

52 faces

53 (

54 (3 7 6 2)

55);

56 }

57 inlet

58 {

59 type patch;

60 faces

61 (

62 (0 4 7 3)

63);

64 }

65 outlet

66 {

67 type patch;

68 faces

69 (

70 (2 6 5 1)

71);

72 }

73 bottom

74 {

75 type wall;

76 faces

77 (

78 (1 5 4 0)

79);

80 }

A simple validation case – Hagen-Poiseuille solution

The blockMeshDict dictionary file

• The boundary patches back and front are of

base type empty.

• Later on, we will assign the primitive type

boundary conditions (numerical values), in the
field files found in the directory 0

• We do not need to merge faces (we have one

single block).

81 back

82 {

83 type empty;

84 faces

85 (

86 (0 3 2 1)

87);

88 }

89 front

90 {

91 type empty;

92 faces

93 (

94 (4 5 6 7)

95);

96 }

97);

98

99 mergePatchPairs

100 (

101);

A simple validation case – Hagen-Poiseuille solution

The boundary dictionary file

• This dictionary is located in the constant/polyMesh

directory.

• This file was automatically created when generating the

mesh.

• In this case, we do not need to modify this file. All the base

type boundary conditions and name of the patches were
assigned in the blockMeshDict file.

• In you change the name or the base type of a boundary
patch, you will need to modify the field files in the directory 0.

A simple validation case – Hagen-Poiseuille solution

18 6

19 (

20 top

21 {

22 type wall;

24 nFaces 100;

25 startFace 1890;

26 }

27 inlet

28 {

29 type patch;

30 nFaces 10;

31 startFace 1990;

32 }

33 outlet

34 {

35 type patch;

36 nFaces 10;

37 startFace 2000;

38 }

39 bottom

40 {

41 type wall;

43 nFaces 100;

44 startFace 2010;

45 }

46 back

47 {

48 type empty;

50 nFaces 1000;

51 startFace 2110;

52 }

53 front

54 {

55 type empty;

57 nFaces 1000;

58 startFace 3110;

59 }

60)

top

bottom

inlet

outlet

front

back

• This dictionary file is located in the directory constant.

• In this file we set the kinematic viscosity (nu).

The transportProperties dictionary file

18 nu nu [0 2 -1 0 0 0 0] 0.01;

• You can change this value on-the-fly.

• Reminder:

• The pipe diameter and length are 0.5 m and 10 m, respectively.

• And we are targeting for a Re = 100.

A simple validation case – Hagen-Poiseuille solution

The 0 directory

• In this directory, we will find the dictionary files that contain the boundary and

initial conditions for all the primitive variables.

• As we are solving the incompressible laminar Navier-Stokes equations, we

will find the following field variables files:

• p (pressure field)

• U (velocity field)

A simple validation case – Hagen-Poiseuille solution

The file 0/p

19 internalField uniform 0;

20 //internalField uniform 101325;

21

22 boundaryField

23 {

24 inlet

25 {

26 type zeroGradient;

27 }

28

29 outlet

30 {

31 type fixedValue;

32 value $internalField;

33

34 //type zeroGradient;

35 }

36

37 top

38 {

39 type zeroGradient;

40 }

• We are using uniform initial conditions and the

numerical value is 0 (keyword internalField in line

19). This is relative pressure.

• For the inlet patch (lines 24-27), we are using a

zeroGradient boundary condition (we are just

extrapolating the internal values to the boundary

face).

• For the outlet patch (lines 29-35), we are using a

fixedValue boundary condition with a numerical

value equal to 0. Notice that we are using macro

expansion to assign the numerical value

($internalField is equivalent to uniform 0).

• For the top patch (lines 37-40), we are using a

zeroGradient boundary condition (we are just

extrapolating the internal values to the boundary

face).

A simple validation case – Hagen-Poiseuille solution

42 bottom

43 {

44 type zeroGradient;

45 }

46

47 front

48 {

49 type empty;

50 }

51

52 back

53 {

54 type empty;

55 }

56 }

• For the bottom patch (lines 42-45), we are using a

zeroGradient boundary condition (we are just

extrapolating the internal values to the boundary

face).

• For the front and back patches (lines 47-55), we use

an empty boundary condition. This boundary

condition is used for 2D simulations. These two

patches are normal to the direction where we

assigned 1 cell (Z direction).

• At this point, if you take some time and compare the
files 0/U and 0/p with the file

constant/polyMesh/boundary, you will see that

the name and type of each primitive type patch (the
patch defined in 0), is consistent with the base type

patch (the patch defined in the file
constant/polyMesh/boundary).

The file 0/p

A simple validation case – Hagen-Poiseuille solution

The file 0/U

19 internalField uniform (0 0 0);

20

21 boundaryField

22 {

23 inlet

24 {

25 type fixedValue;

26 value uniform (1 0 0);

27 }

28

29 outlet

30 {

31 type zeroGradient;

32 }

33

34 top

35 {

36 type fixedValue;

37 value uniform (0 0 0);

38 }

• We are using uniform initial conditions and the

numerical value is (0 0 0) (keyword internalField in

line 19).

• For the inlet patch (lines 23-27), we are using a

fixedValue boundary condition with a numerical

value equal to (1 0 0)

• For the outlet patch (lines 29-32), we are using a

zeroGradient boundary condition (we are just

extrapolating the internal values to the boundary

face).

• The top patch is a no-slip wall (lines 34-38),
therefore we impose a velocity of (0 0 0) at the wall.

A simple validation case – Hagen-Poiseuille solution

40 bottom

41 {

42 type fixedValue;

43 value uniform (0 0 0);

44 }

45

46 front

47 {

48 type empty;

49 }

50

51 back

52 {

53 type empty;

54 }

55 }

• The bottom patch is a no-slip wall (lines 40-44),

therefore we impose a velocity of (0 0 0) at the wall.

• For the front and back patches (lines 46-54), we use

an empty boundary condition. This boundary

condition is used for 2D simulations. These two

patches are normal to the direction where we

assigned 1 cell (Z direction).

• At this point, if you take some time and compare the
files 0/U and 0/p with the file

constant/polyMesh/boundary, you will see that

the name and type of each primitive type patch (the
patch defined in 0), is consistent with the base type

patch (the patch defined in the file
constant/polyMesh/boundary).

The file 0/U

A simple validation case – Hagen-Poiseuille solution

The system directory

• The system directory consists of the following compulsory dictionary files:

• controlDict

• fvSchemes

• fvSolution

• controlDict contains general instructions on how to run the case.

• fvSchemes contains instructions for the discretization schemes that will be

used for the different terms in the equations.

• fvSolution contains instructions on how to solve each discretized linear

equation system.

A simple validation case – Hagen-Poiseuille solution

17 application icoFoam;

18

19 startFrom startTime;

20

21 startTime 0;

22

23 stopAt endTime;

24

25 endTime 20;

26

27 deltaT 0.05;

28

29 writeControl runTime;

30

31 writeInterval 1;

32

33 purgeWrite 0;

34

35 writeFormat ascii;

36

37 writePrecision 8;

38

39 writeCompression off;

40

41 timeFormat general;

42

43 timePrecision 6;

44

45 runTimeModifiable true;

• This case starts from time 0 (startTime).

• It will run up to 20 seconds (endTime).

• The time step of the simulation is 0.05 seconds (deltaT).

• It will write the solution every second (writeInterval) of

simulation time (runTime).

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat).

• The write precision is 8 digits (writePrecision). It will only save

eight digits in the output files.

• And as the option runTimeModifiable is on, we can modify all

these entries while we are running the simulation.

The controlDict dictionary

A simple validation case – Hagen-Poiseuille solution

49 functions

50 {

name_of_the_functionObject_dictionary

{

Dictionary with the functionObject entries

}

204

207 };

• Let us take a look at the bottom of the controlDict

dictionary file.

• Here we define functionObjects, which are functions that

will do a computation while the simulation is running.

• We define the functionObjects in the sub-dictionary

functions (line 49-207 in this case).

• Each functionObject we define, has its own name and its

compulsory keywords and entries.

• In this case we are defining functionObjects to compute

minimum and maximum values of the field variables, mass

flow at the inlet and outlet patches, pressure average at

the inlet patch, and maximum velocity at the outlet patch.

• In another variation of this case, we will use the output of

the pressure average functionObject to set the numerical

value of a pressure boundary condition at the inlet patch.

• The output of the maximum velocity functionObject will be

used to plot the analytical solution (we can also use the
postProcess utility to find this value).

• We are going to address functionObjects in details when

we talk about post-processing.

The controlDict dictionary

A simple validation case – Hagen-Poiseuille solution

49 functions

50 {

51

54 minmaxdomain

55 {

56 type fieldMinMax;

57

58 functionObjectLibs ("libfieldFunctionObjects.so");

59

60 enabled true; //true or false

61

62 mode component;

63

64 writeControl timeStep;

65 writeInterval 1;

66

67 log true;

68

69 fields (p U);

70 }

71

• fieldMinMax functionObject

• This functionObject is used to compute the

minimum and maximum values of the field

variables.

• The output of this functionObject is saved in ascii
format in the file fieldMinMax.dat located in the

directory

postProcessing/minmaxdomian/0

The controlDict dictionary

A simple validation case – Hagen-Poiseuille solution

75 inMassFlow

76 {

77 type surfaceRegion;

78 functionObjectLibs ("libfieldFunctionObjects.so");

79 enabled true;

80

81 //writeControl outputTime;

82 writeControl timeStep;

83 writeInterval 1;

84

85 log true;

86

87 writeFields false;

88

89 regionType patch;

90 Name inlet;

91

92 operation sum;

93

94 fields

95 (

96 phi

97);

98 }

The controlDict dictionary

• faceSource functionObject

• This functionObject is used to compute the mass

flow in a boundary patch.

• In this case, we are sampling the patch inlet.

• The output of this functionObject is saved in ascii
format in the file faceSource.dat located in the

directory

postProcessing/inMassFlow/0

A simple validation case – Hagen-Poiseuille solution

102 outMassFlow

103 {

104 type surfaceRegion;

105 functionObjectLibs ("libfieldFunctionObjects.so");

106 enabled true;

107

108 //writeControl outputTime;

109 writeControl timeStep;

110 writeInterval 1;

111

112 log true;

113

114 writeFields false;

115

116 regionType patch;

117 Name outlet;

118

119 operation sum;

120

121 fields

122 (

123 phi

124);

125 }

The controlDict dictionary

• faceSource functionObject

• This functionObject is used to compute the mass

flow in a boundary patch.

• In this case, we are sampling the patch outlet.

• The output of this functionObject is saved in ascii
format in the file faceSource.dat located in the

directory

postProcessing/outMassFlow/0

A simple validation case – Hagen-Poiseuille solution

130 inPre

131 {

132 type surfaceRegion;

133 functionObjectLibs ("libfieldFunctionObjects.so");

134 enabled true;

135

136 //writeControl outputTime;

137 writeControl timeStep;

138 writeInterval 1;

139

140 log true;

141

142 writeFields false;

143

144 regionType patch;

145 name inlet;

146

147 operation weightedAverage;

148

149 fields

150 (

151 phi

152 U

153 p

154);

155 }

The controlDict dictionary

• faceSource functionObject

• This functionObject is used to compute the

weighted average in a boundary patch.

• In this case, we are sampling the patch inlet.

• The output of this functionObject is saved in ascii
format in the file faceSource.dat located in the

directory

postProcessing/inPre/0

A simple validation case – Hagen-Poiseuille solution

179 outMax

180 {

181 type surfaceRegion;

182 functionObjectLibs ("libfieldFunctionObjects.so");

183 enabled true;

184

185 //writeControl outputTime;

186 writeControl timeStep;

187 writeInterval 1;

188

189 log true;

190

191 writeFields false;

192

193 regionType patch;

194 name outlet;

195

196 operation max;

197

198 fields

199 (

200 U

201 p

202);

203 }

204

207 };

The controlDict dictionary

• faceSource functionObject

• This functionObject is used to compute the

maximum value in a boundary patch.

• In this case, we are sampling the patch outlet.

• The output of this functionObject is saved in ascii
format in the file faceSource.dat located in the

directory

postProcessing/outMax/0

• Finally, remember that you can use the banana

method to get a list of the different options available

for each keyword.

• You can also read the source code or the doxygen

documentation.

A simple validation case – Hagen-Poiseuille solution

17 ddtSchemes

18 {

19 default Euler;

20 }

21

22 gradSchemes

23 {

24 default Gauss linear;

27 grad(p) Gauss linear;

28 }

29

30 divSchemes

31 {

32 default none;

33 div(phi,U) Gauss linear;

37 }

38

39 laplacianSchemes

40 {

41 default Gauss linear orthogonal;

44 }

45

46 interpolationSchemes

47 {

48 default linear;

49 }

50

51 snGradSchemes

52 {

53 default orthogonal;

56 }

• In this case, for time discretization (ddtSchemes) we are using

the Euler method.

• For gradient discretization (gradSchemes) we are using the

Gauss linear method.

• For the discretization of the convective terms (divSchemes) we

are using linear interpolation method for the term div(phi,U).

• For the discretization of the Laplacian (laplacianSchemes and

snGradSchemes) we are using the Gauss linear method with

orthogonal corrections.

• This method is second order accurate but oscillatory.

• Remember, at the end of the day we want a solution that is

second order accurate.

The fvSchemes dictionary

A simple validation case – Hagen-Poiseuille solution

17 solvers

18 {

19 p

20 {

27 solver GAMG;

28 tolerance 1e-6;

29 relTol 0.01;

30 smoother GaussSeidel;

31 nPreSweeps 0;

32 nPostSweeps 2;

33 cacheAgglomeration on;

34 agglomerator faceAreaPair;

35 nCellsInCoarsestLevel 100;

36 mergeLevels 1;

37 }

38

39 pFinal

40 {

41 $p;

42 relTol 0;

43 }

44

45 U

46 {

53 solver PBiCG;

54 preconditioner DILU;

55 tolerance 1e-08;

56 relTol 0;

57 }

58 }

59

60 PISO

61 {

62 nCorrectors 1;

63 nNonOrthogonalCorrectors 0;

66 }

• To solve the pressure (p) we are using the GAMG method with

an absolute tolerance of 1e-6 and a relative tolerance relTol of

0.01 (the solver will stop iterating when it meets any of the

conditions).

• The entry pFinal refers to the final correction of the PISO loop.

In this case, we are using a tighter convergence criteria in the

last iteration. Notice that we are using macro expansion ($p) to

copy the entries from the sub-dictionary p.

• To solve U we are using the linear solver PBiCG and DILU

preconditioner, with an absolute tolerance of 1e-8 and a

relative tolerance relTol of 0 (the solver will stop iterating when

it meets any of the conditions).

• Solving for the velocity is relative inexpensive, whereas solving

for the pressure is expensive.

The fvSolution dictionary

A simple validation case – Hagen-Poiseuille solution

17 solvers

18 {

19 p

20 {

27 solver GAMG;

28 tolerance 1e-6;

29 relTol 0.01;

30 smoother GaussSeidel;

31 nPreSweeps 0;

32 nPostSweeps 2;

33 cacheAgglomeration on;

34 agglomerator faceAreaPair;

35 nCellsInCoarsestLevel 100;

36 mergeLevels 1;

37 }

38

39 pFinal

40 {

41 $p;

42 relTol 0;

43 }

44

45 U

46 {

53 solver PBiCG;

54 preconditioner DILU;

55 tolerance 1e-08;

56 relTol 0;

57 }

58 }

59

60 PISO

61 {

62 nCorrectors 1;

63 nNonOrthogonalCorrectors 0;

66 }

• The PISO sub-dictionary contains entries related to the

pressure-velocity coupling (in this case the PISO method).

• Hereafter we are doing only one 1 PISO corrector and no non-

orthogonal corrections.

• If we increase the number of nCorrectors and

nNonOrthogonalCorrectors we gain more stability but at a

higher computational cost.

• The choice of the number of corrections is driven by the quality

of the mesh and the physics involve.

• You need to do at least one PISO loop (nCorrectors).

The fvSolution dictionary

A simple validation case – Hagen-Poiseuille solution

The system directory

• In system directory you will find the following optional dictionary files:

• decomposeParDict

• modifyMeshDict

• sampleDict

• decomposeParDict is read by the utility decomposePar. This dictionary file

contains information related to the mesh partitioning. This is used when running in

parallel.

• modifyMeshDict is read by the utility modifyMesh. This utility is used to

manipulate mesh elements. This dictionary file contains information about the mesh

manipulation operation we want to do.

• sampleDict is read by the utility postProcess. This utility sample field data

(points, lines or surfaces). In this dictionary file we specify the sample location and

the fields to sample. The sampled data can be plotted using gnuplot or Python.

A simple validation case – Hagen-Poiseuille solution

The sampleDict dictionary

17 setFormat raw;

18

19 setFormat raw;

20

22 interpolationScheme cellPoint;

24

26 fields

27 (

28 U

29 p

30);

31

32 sets

33 (

34

35 s1

36 {

37 type lineCell;

39 axis x;

40 start (0 0 0);

41 end (10 0 0);

42 }

43

45 s2

46 {

47 type midPoint;

49 axis y;

50 start (9 -1 0);

51 end (9 1 0);

52 }

53

54);

• Let us visit again the sampleDict dictionary file.

• In this case we are sampling the field variables U and p.

• We are sampling in an horizontal line spanning from 0 to

10 (lines 35-42).

• We are sampling in a vertical line spanning from -1 to 1

(lines 45-52).

• If you want to sample in a different location feel free to add

a new entry.

A simple validation case – Hagen-Poiseuille solution

Running the case

• You will find this tutorial in the directory $PTOFC/101OF/laminar_pipe/case0

• In the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> checkMesh

4. $> icoFoam > log | tail –f log

5. $> postProcess -func sampleDict -latestTime

6. $> gnuplot gnuplot/gnuplot_script

7. $> paraFoam

A simple validation case – Hagen-Poiseuille solution

Running the case

• In step 1 we clean the case directory. It is highly advisable to always start form a

clean case directory.

• In step 2 we generate the mesh.

• In step 3 we check the mesh quality.

• In step 4 we run the simulation. Notice that we are redirecting the output to the a log

file and at the same time we are showing the information on-the-fly.

• In step 5 we do some sampling only of the last saved solution.

• In step 6 we use a gnuplot script to plot the sampled values. Feel free to take a look

at the script and to reuse it.

• Finally, in step 7 we visualize the solution.

A simple validation case – Hagen-Poiseuille solution

Let us use different boundary conditions

• Instead of using a fixed value for the velocity, let us use a fixed value for the pressure.

• You can use any pressure value, but as in the previous case we computed the

average pressure at the inlet it seems wise to use this value.

• At this point, get the average pressure value from the ascii file (we hope you

remember the location of the file), change the boundary conditions, and run the

simulation.

• To run simulation proceed as in the previous case.

• At the end, compare both cases. You should get very similar results.

• If you are feeling lazy, this case is already setup in the directory

$PTOFC/101OF/laminar_pipe/case1

A simple validation case – Hagen-Poiseuille solution

The file 0/p

• We only need to change the boundary conditions of the inlet patch.

inlet

{

type fixedValue;

value uniform 1.53103;

}

• Do you think of an alternative to the fixedValue boundary condition?

A simple validation case – Hagen-Poiseuille solution

The file 0/U

• We only need to change the boundary conditions of the inlet patch.

inlet

{

type pressureNormalInletOutletVelocity;

phi phi;

rho rho;

value uniform (0 0 0);

}

• If you want to know what is behind this esoteric boundary condition, refer to the

doxygen documentation or the source code.

• FYI, you can also use zeroGradient.

A simple validation case – Hagen-Poiseuille solution

Running with a steady state solver

• At Re = 100 nothing is happening. No vortex shedding, no detached flow, no flow

instabilities, no turbulence, and no shock waves (this is kind of a boring case).

Therefore is safe to say that this is a steady flow.

• In this case, we can use a steady solver. Steady solvers are way much faster than

unsteady solvers but they violate a lot of principles, this is a trick that CFDers use to

speed-up things. If you are happy with this approximation use steady solvers with no

remorse.

• In an ideal world, steady solvers should converge in one iteration. But due to the

non-linearities in the governing equations we need to proceed in an iterative way, until

we satisfy a convergence criteria.

• Let us run this case using simpleFoam (which is an incompressible steady solver).

• As we are using a new solver we need to do some changes in the dictionaries files.

• This case is already setup in the directory $PTOFC/101OF/laminar_pipe/case2

• At this point, let us explore the case directory.

A simple validation case – Hagen-Poiseuille solution

• The following dictionary files remains unchanged:

• system/blockMeshDict

• constant/polyMesh/boundary

• 0/U

• 0/p

• FYI, we are using the same setup as in case case2

• New dictionary files

• turbulenceProperties

• The solver simpleFoam can be used for laminar and turbulent flows.

• The following dictionaries need to be modified:

• transportProperties

• controlDict

• fvSchemes

• fvSolution

A simple validation case – Hagen-Poiseuille solution

• This dictionary file is located in the directory constant.

• In this dictionary file we select what model we would like to use (laminar or

turbulent).

• As we are not interested in modeling turbulence, this dictionary should read

as follows,

The turbulenceProperties dictionary file

17 simulationType laminar;

A simple validation case – Hagen-Poiseuille solution

• In this file we define the transport model and the kinematic viscosity (nu).

The transportProperties dictionary file

16 transportModel Newtonian;

17

18 nu nu [0 2 -1 0 0 0 0] 0.01;

• The file transportProperties used with the solver icoFoam, does not require the

keyword transportModel. The solver icoFoam only uses the Newtonian model.

A simple validation case – Hagen-Poiseuille solution

17 application simpleFoam;

18

19 startFrom startTime;

20

21 startTime 0;

22

23 stopAt endTime;

24

25 endTime 1000;

26

27 deltaT 1;

28

29 writeControl runTime;

30

31 writeInterval 10;

32

33 purgeWrite 0;

34

35 writeFormat ascii;

36

37 writePrecision 8;

38

39 writeCompression off;

40

41 timeFormat general;

42

43 timePrecision 6;

44

45 runTimeModifiable true;

• As this is a steady solver it does not make any sense setting

the time step.

• The time step is only used to advanced the solution (iterate)

and to save the solution.

• The keyword endTime refers to the maximum number of

iterations.

The controlDict dictionary

A simple validation case – Hagen-Poiseuille solution

17 ddtSchemes

18 {

19 default steadyState;

20 }

21

22 gradSchemes

23 {

24 default Gauss linear;

27 grad(p) Gauss linear;

28 }

29

30 divSchemes

31 {

32 default none;

33 div(phi,U) bounded Gauss linear;

38 div((nuEff*dev2(T(grad(U))))) Gauss linear;

39 }

40

41 laplacianSchemes

42 {

43 default Gauss linear orthogonal;

46 }

47

48 interpolationSchemes

49 {

50 default linear;

51 }

52

53 snGradSchemes

54 {

55 default orthogonal;

58 }

• These are the changes introduced in the dictionary:

• Time discretization (ddtSchemes), is steadyState.

• For the discretization of the convective terms

(divSchemes) we are using a bounded linear

interpolation method for the term div(phi,U)

• We added the term div((nuEff*dev2(T(grad(U))))). This

term is related to the turbulence formulation. We must

define it even if we are using the laminar model.

The fvSchemes dictionary

A simple validation case – Hagen-Poiseuille solution

17 solvers

18 {

19 p

20 {

27 solver GAMG;

28 tolerance 1e-6;

29 relTol 0.01;

30 smoother GaussSeidel;

31 nPreSweeps 0;

32 nPostSweeps 2;

33 cacheAgglomeration on;

34 agglomerator faceAreaPair;

35 nCellsInCoarsestLevel 100;

36 mergeLevels 1;

37 }

38

39 U

40 {

47 solver PBiCG;

48 preconditioner DILU;

49 tolerance 1e-08;

50 relTol 0;

51 }

52 }

• To solve the pressure (p) we are using the GAMG method with

an absolute tolerance of 1e-6 and a relative tolerance relTol of

0.01 (the solver will stop iterating when it meets any of the

conditions).

• To solve U we are using the solver PBiCG with an absolute

tolerance of 1e-8 and a relative tolerance relTol of 0 (the

solver will stop iterating when it meets any of the conditions).

• FYI, solving for the velocity is relative inexpensive, whereas

solving for the pressure is expensive.

The fvSolution dictionary

A simple validation case – Hagen-Poiseuille solution

54 SIMPLE

55 {

56 nNonOrthogonalCorrectors 1;

61

62 residualControl

63 {

64 p 1e-4;

65 U 1e-4;

69 }

70 }

71

73 relaxationFactors

74 {

75 fields

76 {

77 P 0.3;

78 }

79 equations

80 {

81 U 0.7;

84 }

85 }

• The SIMPLE sub-dictionary contains entries related to the

pressure-velocity coupling (in this case the SIMPLE method).

• Hereafter we are doing one non orthogonal correction.

• In the sub-dictionary residualControl we set the convergence

criteria for each field variable. The solver will stop if it reach

this criterion or the maximum number of iterations (endTime).

• In the sub-dictionary relaxationFactors we set the under-

relaxation coefficients. The under-relaxation factors (URF)

controls how fast the solution change between iterations.

Choosing the optimal URF requires a lot experience. It is wise

to stick to the commonly used values.

The fvSolution dictionary

A simple validation case – Hagen-Poiseuille solution

p 0.3;

U 0.7;

k 0.7;

omega 0.7;

epsilon 0.7;

Running the case

• You will find this tutorial in the directory $PTOFC/101OF/laminar_pipe/case2

• In the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> checkMesh

4. $> simpleFoam > log | tail –f log

5. $> postProcess -func sampleDict -latestTime

6. $> gnuplot gnuplot/gnuplot_script

7. $> paraFoam

A simple validation case – Hagen-Poiseuille solution

Running the case

• In step 1 we clean the case directory. It is highly advisable to always start form a

clean case directory.

• In step 2 we generate the mesh.

• In step 3 we check the mesh quality.

• In step 4 we run the simulation. Notice that we are redirecting the output to the a log

file and at the same time we are showing the information on-the-fly.

• In step 5 we do some sampling only of the last saved solution.

• In step 6 we use a gnuplot script to plot the sampled values. In this case, you will

need to adapt this script to get the sampled data from the right directory.

• Finally, in step 7 we visualize the solution.

• Compare this solution with the solution of the case case0

A simple validation case – Hagen-Poiseuille solution

What about mesh quality?

• So far we have worked with perfect meshes, that is, meshes with non-orthogonality and

skewness close to zero.

• But this is the exception rather than the rule.

• Getting a solution in this kind of meshes is quite easy.

A simple validation case – Hagen-Poiseuille solution

Checking geometry...

Overall domain bounding box (0 -0.5 0) (10 0.5 0.1)

Mesh has 2 geometric (non-empty/wedge) directions (1 1 0)

Mesh has 2 solution (non-empty) directions (1 1 0)

All edges aligned with or perpendicular to non-empty directions.

Boundary openness (7.8140697e-20 1.4221607e-17 5.4393739e-16) OK.

Max cell openness = 8.6736174e-17 OK.

Max aspect ratio = 1 OK.

Minimum face area = 0.01. Maximum face area = 0.01. Face area magnitudes OK.

Min volume = 0.001. Max volume = 0.001. Total volume = 1. Cell volumes OK.

Mesh non-orthogonality Max: 0 average: 0

Non-orthogonality check OK.

Face pyramids OK.

Max skewness = 1.0658141e-13 OK.

Coupled point location match (average 0) OK.

Mesh OK.

Non-orthogonality

Skewness

What about mesh quality?

• Industrial meshes are far from being perfect.

• Mesh quality highly affect solution accuracy, stability, and convergence rate.

• To take into account mesh quality issues, we need to adjust the numerical method. We will deal

with this during the FVM lecture.

A simple validation case – Hagen-Poiseuille solution

Checking geometry...

Overall domain bounding box (0 -0.5 0) (10 0.5 0.1)

Mesh has 2 geometric (non-empty/wedge) directions (1 1 0)

Mesh has 2 solution (non-empty) directions (1 1 0)

All edges aligned with or perpendicular to non-empty directions.

Boundary openness (7.8140697e-20 1.4221607e-17 5.539394e-16) OK.

Max cell openness = 9.3768837e-17 OK.

Max aspect ratio = 1.98 OK.

Minimum face area = 0.00085. Maximum face area = 0.02154739. Face area magnitudes OK.

Min volume = 8.5e-05. Max volume = 0.001915. Total volume = 1. Cell volumes OK.

Mesh non-orthogonality Max: 86.473612 average: 2.5674993

*Number of severely non-orthogonal (> 70 degrees) faces: 1.

Non-orthogonality check OK.

<<Writing 1 non-orthogonal faces to set nonOrthoFaces

***Error in face pyramids: 2 faces are incorrectly oriented.

<<Writing 2 faces with incorrect orientation to set wrongOrientedFaces

***Max skewness = 11.305066, 1 highly skew faces detected which may impair the quality of the results

<<Writing 1 skew faces to set skewFaces

Coupled point location match (average 0) OK.

Failed 2 mesh checks.

Too high non-orthogonality
Acceptable values are less than 80

Too high skewness
Acceptable values are less than 6

This does not mean that you can
not run the simulation

Failed sets can be
visualized in paraFoam

