
Hagen-Poiseuille solution – Re = 100

Incompressible flow

Physical and numerical side of the problem:

• The governing equations of the problem are the incompressible laminar Navier-Stokes equations.

• We are going to work in a 2D domain but the problem can be extended to 3D or axisymmetric problems easily.

• This problem has an analytical solution for the parabolic velocity profile
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Workflow of the case
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blockMesh

icoFoam

simpleFoam

sampling

functionObjects

paraview



Mesh (coarse add 2D)

• This mesh is very coarse but for the physics involved it works fine.  

• You can try to do successive refinements of this mesh in order to do a mesh independency study.

• If you deal with turbulence, you will need to refine the mesh close to the walls in order to resolve the oudnayr

layers.
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At the end of the day you should get something like this



At the end of the day you should get something like this
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Inlet boundary condition: fix uniform velocity. Left figure: velocity magnitude. Right figure: relative pressure

Inlet boundary condition: fix pressure. Left figure: velocity magnitude. Right figure: relative pressure



Velocity profile at the inlet

BC: fix uniform velocity

Velocity profile at the inlet

BC: fix pressure

At the end of the day you should get something like this
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At the end of the day you should get something like this

And as CFD is not only about pretty colors, we should 

also validate the results

Velocity profile at the outlet

BC: fix uniform velocity

Velocity profile at the outlet

BC: fix pressure
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At the end of the day you should get something like this

Pressure along the axis of the pipe 

Comparison of the three cases 

(icoFoam BC1, icoFoam BC2, simpleFoam)

Velocity profile at the outlet

simpleFoam vs. icoFoam vs. analytical solution
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And as CFD is not only about pretty colors, we should 

also validate the results



• Let us run this case. Go to the directory:

• $PTOFC is pointing to the directory where you extracted the training material.

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this 

way, you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

$PTOFC/laminar_pipe
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Loading OpenFOAM® environment 
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• If you are using our virtual machine or using the lab workstations, you will need to source OpenFOAM® (load 

OpenFOAM® environment).

• To source OpenFOAM®, type in the terminal:

• $> of6x

• To use PyFoam you will need to source it.  Type in the terminal:

• $> anaconda2 or anaconda3

• Remember, every time you open a new terminal window you need to source OpenFOAM® and PyFoam.

• By default, when installing OpenFOAM® and PyFoam you do not need to do this.  This is our choice as we 

have many things installed and we want to avoid conflicts between applications.



What are we going to do?
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• We will use this case to compare the numerical solution with the analytical solution.

• We will compare the solutions obtained when using different inlet boundary 

conditions.

• To find the numerical solution we will use two different solvers, namely, icoFoam and 

simpleFoam. 

• icoFoam is a transient solver for incompressible, laminar flow of Newtonian fluids. 

• simpleFoam is a steady-state solver for incompressible, laminar/turbulent flows.

• After finding the numerical solution we will do some sampling.

• Then we will do some plotting (using gnuplot or Python) and scientific visualization.



Let us explore the case directory
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The blockMeshDict dictionary file 

• This dictionary is located in the system 

directory. 

• We are not using scaling.

• X/Y/Z dimensions: 10.0/1.0/0.1

• We are using one single block with uniform 

grading.

• Cells in the X, Y, and Z directions: 100 x 10 x 1

(there is only one cell in the Z direction because 

the mesh is 2D).

• All edges are straight lines by default.

17 convertToMeters 1;

18 

19 xmin 0;

20 xmax 10;

21 ymin -0.5;

22 ymax 0.5;

23 zmin 0;

24 zmax 0.1;        

25

26 vertices

27 (

28 ($xmin  $ymin  $zmin) //vertex 0

29 ($xmax  $ymin  $zmin) //vertex 1

30 ($xmax  $ymax  $zmin) //vertex 2

31 ($xmin  $ymax  $zmin) //vertex 3

32 ($xmin  $ymin  $zmax) //vertex 4

33 ($xmax  $ymin  $zmax) //vertex 5

34 ($xmax  $ymax  $zmax) //vertex 6

35 ($xmin  $ymax  $zmax) //vertex 7

36     );

37

38 blocks

39 (

40 hex (0 1 2 3 4 5 6 7) (100 10 1) 

simpleGrading (1 1 1)

41 ); 

42

43    edges

44 (

45    );
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The blockMeshDict dictionary file 

• The boundary patches top and bottom are of 

base type wall.

• The boundary patches outlet and inlet are of 

base type patch. 

• Later on, we will assign the primitive type 

boundary conditions (numerical values), in the 
field files found in the directory 0

47  boundary

48  (

49  top

50  {

51  type wall;

52  faces

53  (

54  (3 7 6 2)

55  );

56  }

57  inlet

58  {

59  type patch;

60  faces

61  (

62  (0 4 7 3)

63  );

64  }

65  outlet

66  {

67  type patch;

68  faces

69  (

70  (2 6 5 1)

71  );

72  }

73  bottom

74  {

75  type wall;

76  faces

77  (

78  (1 5 4 0)

79  );

80  }
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The blockMeshDict dictionary file 

• The boundary patches back and front are of 

base type empty.

• Later on, we will assign the primitive type 

boundary conditions (numerical values), in the 
field files found in the directory 0

• We do not need to merge faces (we have one 

single block).

81  back

82  {

83  type empty;

84  faces

85  (

86  (0 3 2 1)

87  );

88  }

89  front

90  {

91  type empty;

92  faces

93  (

94  (4 5 6 7)

95  );

96  }

97  );

98  

99  mergePatchPairs

100 (

101 );
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The boundary dictionary file

• This dictionary is located in the constant/polyMesh 

directory. 

• This file was automatically created when generating the 

mesh.

• In this case, we do not need to modify this file.  All the base 

type boundary conditions and name of the patches were 
assigned in the blockMeshDict file.

• In you change the name or the base type of a boundary 
patch, you will need to modify the field files in the directory 0.
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18 6

19 (                                                                                  

20 top                                                                            

21 {                                                                              

22 type            wall;                                                      

24 nFaces 100;                                                       

25 startFace 1890;                                                      

26 }                                                                              

27 inlet                                                                          

28 {                                                                              

29 type            patch;                                                     

30 nFaces 10;                                                        

31 startFace 1990;                                                      

32 }                                                                              

33 outlet                                                                         

34 {                                                                              

35 type            patch;                                                     

36 nFaces 10;                                                        

37 startFace 2000;                                                      

38 }                                                                              

39 bottom                                                                         

40 {                                                                              

41 type            wall;                                                      

43 nFaces 100;                                                       

44 startFace 2010;                                                      

45 }                                                                              

46 back                                                                           

47 {                                                                              

48 type            empty;                                                     

50 nFaces 1000;                                                      

51 startFace 2110;                                                      

52 }                                                                              

53 front                                                                          

54 {                                                                              

55 type            empty;                                                     

57 nFaces 1000;                                                      

58 startFace 3110;                                                      

59 }                                                                              

60 )

top

bottom

inlet

outlet

front

back



• This dictionary file is located in the directory constant.

• In this file we set the kinematic viscosity (nu).

The transportProperties dictionary file

18 nu              nu [ 0 2 -1 0 0 0 0 ] 0.01;

• You can change this value on-the-fly.

• Reminder:

• The pipe diameter and length are 0.5 m and 10 m, respectively.  

• And we are targeting for a Re = 100.
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The 0 directory

• In this directory, we will find the dictionary files that contain the boundary and 

initial conditions for all the primitive variables.

• As we are solving the incompressible laminar Navier-Stokes equations, we 

will find the following field variables files:

• p (pressure field)

• U (velocity field)

A simple validation case – Hagen-Poiseuille solution



The file 0/p

19 internalField   uniform 0;

20 //internalField   uniform 101325;

21 

22 boundaryField

23 {

24 inlet

25 {

26 type            zeroGradient;

27 }

28 

29 outlet

30 {

31 type            fixedValue;

32 value           $internalField;

33 

34 //type        zeroGradient;

35 }

36 

37 top

38 {

39 type        zeroGradient;           

40 }

• We are using uniform initial conditions and the 

numerical value is 0 (keyword internalField in line 

19). This is relative pressure.

• For the inlet patch (lines 24-27), we are using a 

zeroGradient boundary condition (we are just 

extrapolating the internal values to the boundary 

face).

• For the outlet patch (lines 29-35), we are using a 

fixedValue boundary condition with a numerical 

value equal to 0.  Notice that we are using macro 

expansion to assign the numerical value 

($internalField is equivalent to uniform 0).

• For the top patch (lines 37-40), we are using a 

zeroGradient boundary condition (we are just 

extrapolating the internal values to the boundary 

face).
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42 bottom

43 {

44 type        zeroGradient;           

45 }

46 

47 front

48 {

49 type            empty;

50 }

51 

52 back

53 {

54 type            empty;

55 }

56 }

• For the bottom patch (lines 42-45), we are using a 

zeroGradient boundary condition (we are just 

extrapolating the internal values to the boundary 

face).

• For the front and back patches (lines 47-55), we use 

an empty boundary condition.  This boundary 

condition is used for 2D simulations.  These two 

patches are normal to the direction where we 

assigned 1 cell (Z direction).

• At this point, if you take some time and compare the 
files 0/U and 0/p with the file

constant/polyMesh/boundary, you will see that 

the name and type of each primitive type patch (the 
patch defined in 0), is consistent with the base type

patch (the patch defined in the file 
constant/polyMesh/boundary).

The file 0/p
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The file 0/U

19 internalField   uniform (0 0 0);

20 

21 boundaryField

22 {

23 inlet

24 {

25 type            fixedValue;

26 value           uniform (1 0 0);

27 }

28 

29 outlet

30 {

31 type zeroGradient;

32 }

33 

34 top

35 {

36 type            fixedValue;

37 value           uniform (0 0 0);

38 }

• We are using uniform initial conditions and the 

numerical value is (0 0 0) (keyword internalField in 

line 19).

• For the inlet patch (lines 23-27), we are using a 

fixedValue boundary condition with a numerical 

value equal to (1 0 0) 

• For the outlet patch (lines 29-32), we are using a 

zeroGradient boundary condition (we are just 

extrapolating the internal values to the boundary 

face).

• The top patch is a no-slip wall (lines 34-38), 
therefore we impose a velocity of (0 0 0) at the wall.
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40 bottom

41 {

42 type            fixedValue;

43 value           uniform (0 0 0);

44 }

45 

46 front

47 {

48 type            empty;

49 }

50 

51 back

52 {

53 type            empty;

54 }

55 }

• The bottom patch is a no-slip wall (lines 40-44), 

therefore we impose a velocity of (0 0 0) at the wall.

• For the front and back patches (lines 46-54), we use 

an empty boundary condition.  This boundary 

condition is used for 2D simulations.  These two 

patches are normal to the direction where we 

assigned 1 cell (Z direction).

• At this point, if you take some time and compare the 
files 0/U and 0/p with the file

constant/polyMesh/boundary, you will see that 

the name and type of each primitive type patch (the 
patch defined in 0), is consistent with the base type

patch (the patch defined in the file 
constant/polyMesh/boundary).

The file 0/U
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The system directory

• The system directory consists of the following compulsory dictionary files: 

• controlDict 

• fvSchemes

• fvSolution

• controlDict contains general instructions on how to run the case. 

• fvSchemes contains instructions for the discretization schemes that will be 

used for the different terms in the equations.  

• fvSolution contains instructions on how to solve each discretized linear 

equation system. 
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17 application     icoFoam;

18

19 startFrom       startTime;

20

21 startTime       0;

22

23 stopAt          endTime;

24

25 endTime         20;

26

27 deltaT          0.05;

28

29 writeControl    runTime;

30

31 writeInterval   1;

32

33 purgeWrite      0;

34

35 writeFormat     ascii;

36

37 writePrecision  8;

38

39 writeCompression off;

40

41 timeFormat      general;

42

43 timePrecision   6;

44

45 runTimeModifiable true;

• This case starts from time 0 (startTime).

• It will run up to 20 seconds (endTime). 

• The time step of the simulation is 0.05 seconds (deltaT).

• It will write the solution every second (writeInterval) of 

simulation time (runTime). 

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat).

• The write precision is  8 digits (writePrecision). It will only save 

eight digits in the output files.

• And as the option runTimeModifiable is on, we can modify all 

these entries while we are running the simulation.

The controlDict dictionary
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49  functions

50  {

name_of_the_functionObject_dictionary

{

Dictionary with the functionObject entries

}

204 

207 };

• Let us take a look at the bottom of the controlDict 

dictionary file.

• Here we define functionObjects, which are functions that 

will do a computation while the simulation is running.

• We define the functionObjects in the sub-dictionary 

functions (line 49-207 in this case).

• Each functionObject we define, has its own name and its 

compulsory keywords and entries.

• In this case we are defining functionObjects to compute 

minimum and maximum values of the field variables, mass 

flow at the inlet and outlet patches, pressure average at 

the inlet patch, and maximum velocity at the outlet patch.

• In another variation of this case, we will use the output of 

the pressure average functionObject to set the numerical 

value of a pressure boundary condition at the inlet patch.

• The output of the maximum velocity functionObject will be 

used to plot the analytical solution (we can also use the 
postProcess utility to find this value).

• We are going to address functionObjects in details when 

we talk about post-processing.

The controlDict dictionary
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49  functions

50  {

51  

54  minmaxdomain

55  {

56  type fieldMinMax;

57  

58  functionObjectLibs ("libfieldFunctionObjects.so");

59  

60  enabled true; //true or false

61  

62  mode component;

63  

64  writeControl timeStep;

65  writeInterval 1;

66  

67  log true;

68  

69  fields ( p U );

70  }

71  

• fieldMinMax functionObject

• This functionObject is used to compute the 

minimum and maximum values of the field 

variables.

• The output of this functionObject is saved in ascii 
format in the file fieldMinMax.dat located in the 

directory 

postProcessing/minmaxdomian/0

The controlDict dictionary
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75  inMassFlow

76  {

77  type            surfaceRegion;

78  functionObjectLibs ("libfieldFunctionObjects.so");

79  enabled         true;

80  

81  //writeControl outputTime;

82  writeControl timeStep;

83  writeInterval 1;

84  

85  log             true;

86  

87  writeFields false;

88  

89  regionType patch;

90  Name            inlet;

91  

92  operation       sum;

93  

94  fields

95  (

96  phi

97  );

98  }

The controlDict dictionary

• faceSource functionObject

• This functionObject is used to compute the mass 

flow in a boundary patch.

• In this case, we are sampling the patch inlet.

• The output of this functionObject is saved in ascii 
format in the file faceSource.dat located in the 

directory 

postProcessing/inMassFlow/0
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102 outMassFlow

103 {

104 type            surfaceRegion;

105 functionObjectLibs ("libfieldFunctionObjects.so");

106 enabled         true;

107 

108 //writeControl outputTime;

109 writeControl timeStep;

110 writeInterval 1;

111 

112 log             true;

113 

114 writeFields false;

115 

116 regionType patch;

117 Name            outlet;

118 

119 operation       sum;

120 

121 fields

122 (

123 phi

124 );

125 }

The controlDict dictionary

• faceSource functionObject

• This functionObject is used to compute the mass 

flow in a boundary patch.

• In this case, we are sampling the patch outlet.

• The output of this functionObject is saved in ascii 
format in the file faceSource.dat located in the 

directory 

postProcessing/outMassFlow/0
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130 inPre

131 {

132 type            surfaceRegion;

133 functionObjectLibs ("libfieldFunctionObjects.so");

134 enabled         true;

135 

136 //writeControl outputTime;

137 writeControl timeStep;

138 writeInterval 1;

139 

140 log             true;

141 

142 writeFields false;

143 

144 regionType patch;

145 name            inlet;

146 

147 operation       weightedAverage;

148 

149 fields

150 (

151 phi

152 U

153 p

154 );

155 }

The controlDict dictionary

• faceSource functionObject

• This functionObject is used to compute the 

weighted average in a boundary patch.

• In this case, we are sampling the patch inlet.

• The output of this functionObject is saved in ascii 
format in the file faceSource.dat located in the 

directory 

postProcessing/inPre/0
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179 outMax

180 {

181 type            surfaceRegion;

182 functionObjectLibs ("libfieldFunctionObjects.so");

183 enabled        true;

184 

185 //writeControl outputTime;

186 writeControl timeStep;

187 writeInterval 1;

188 

189 log             true;

190 

191 writeFields false;

192 

193 regionType patch;

194 name            outlet;

195 

196 operation       max;

197 

198 fields

199 (

200 U

201 p

202 );

203 }

204 

207 };

The controlDict dictionary

• faceSource functionObject

• This functionObject is used to compute the 

maximum value in a boundary patch.

• In this case, we are sampling the patch outlet.

• The output of this functionObject is saved in ascii 
format in the file faceSource.dat located in the 

directory 

postProcessing/outMax/0

• Finally, remember that you can use the banana 

method to get a list of the different options available 

for each keyword.

• You can also read the source code or the doxygen 

documentation.
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17 ddtSchemes

18 {

19 default Euler;

20 }

21 

22 gradSchemes

23 {

24 default Gauss linear;

27 grad(p)         Gauss linear;

28 }

29 

30 divSchemes

31 {

32 default none;

33 div(phi,U)      Gauss linear;

37 }

38 

39 laplacianSchemes

40 {

41 default Gauss linear orthogonal;

44 }

45 

46 interpolationSchemes

47 {

48 default         linear;

49 }

50 

51 snGradSchemes

52 {

53 default  orthogonal;

56 }

• In this case, for time discretization (ddtSchemes) we are using 

the Euler method.

• For gradient discretization (gradSchemes) we are using the 

Gauss linear method. 

• For the discretization of the convective terms (divSchemes) we 

are using linear interpolation method for the term div(phi,U).

• For the discretization of the Laplacian (laplacianSchemes and 

snGradSchemes) we are using the Gauss linear method with 

orthogonal corrections.

• This method is second order accurate but oscillatory. 

• Remember, at the end of the day we want a solution that is 

second order accurate.

The fvSchemes dictionary
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17 solvers

18 {

19 p

20 {

27 solver           GAMG;

28 tolerance        1e-6;

29 relTol           0.01;

30 smoother         GaussSeidel;

31 nPreSweeps       0;

32 nPostSweeps      2;

33 cacheAgglomeration on;

34 agglomerator     faceAreaPair;

35 nCellsInCoarsestLevel 100;

36 mergeLevels      1;

37 }

38 

39 pFinal

40 {

41 $p;

42 relTol          0;

43 }

44 

45 U

46 {

53 solver          PBiCG;

54 preconditioner  DILU;

55 tolerance       1e-08;

56 relTol          0;

57 }

58 }

59 

60 PISO

61 {

62 nCorrectors     1;

63 nNonOrthogonalCorrectors 0;

66 }

• To solve the pressure (p) we are using the GAMG method with 

an absolute tolerance of 1e-6 and a relative tolerance relTol of 

0.01 (the solver will stop iterating when it meets any of the 

conditions).

• The entry pFinal refers to the final correction of the PISO loop.  

In this case, we are using a tighter convergence criteria in the 

last iteration.  Notice that we are using macro expansion ($p) to 

copy the entries from the sub-dictionary p.

• To solve U we are using the linear solver PBiCG and DILU

preconditioner,  with an absolute tolerance of 1e-8 and a 

relative tolerance relTol of 0 (the solver will stop iterating when 

it meets any of the conditions).

• Solving for the velocity is relative inexpensive, whereas solving 

for the pressure is expensive.

The fvSolution dictionary
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17 solvers

18 {

19 p

20 {

27 solver           GAMG;

28 tolerance        1e-6;

29 relTol           0.01;

30 smoother         GaussSeidel;

31 nPreSweeps       0;

32 nPostSweeps      2;

33 cacheAgglomeration on;

34 agglomerator     faceAreaPair;

35 nCellsInCoarsestLevel 100;

36 mergeLevels      1;

37 }

38 

39 pFinal

40 {

41 $p;

42 relTol          0;

43 }

44 

45 U

46 {

53 solver          PBiCG;

54 preconditioner  DILU;

55 tolerance       1e-08;

56 relTol          0;

57 }

58 }

59 

60 PISO

61 {

62 nCorrectors    1;

63 nNonOrthogonalCorrectors 0;

66 }

• The PISO sub-dictionary contains entries related to the 

pressure-velocity coupling (in this case the PISO method). 

• Hereafter we are doing only one 1 PISO corrector and no non-

orthogonal corrections.

• If we increase the number of nCorrectors and 

nNonOrthogonalCorrectors we gain more stability but at a 

higher computational cost.

• The choice of the number of corrections is driven by the quality 

of the mesh and the physics involve.

• You need to do at least one PISO loop (nCorrectors).

The fvSolution dictionary
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The system directory

• In system directory you will find the following optional dictionary files: 

• decomposeParDict

• modifyMeshDict

• sampleDict

• decomposeParDict is read by the utility decomposePar.  This dictionary file 

contains information related to the mesh partitioning. This is used when running in 

parallel. 

• modifyMeshDict is read by the utility modifyMesh.  This utility is used to 

manipulate mesh elements. This dictionary file contains information about the mesh 

manipulation operation we want to do. 

• sampleDict is read by the utility postProcess.  This utility sample field data 

(points, lines or surfaces).  In this dictionary file we specify the sample location and 

the fields to sample.  The sampled data can be plotted using gnuplot or Python. 
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The sampleDict dictionary

17 setFormat raw;

18

19 setFormat raw;

20 

22 interpolationScheme cellPoint;

24 

26 fields

27 (

28 U

29 p

30 );

31 

32 sets

33 (

34 

35 s1

36 {

37 type            lineCell;

39 axis            x;

40 start           ( 0 0 0 );

41 end             ( 10 0 0);

42 }

43 

45 s2

46 {

47 type            midPoint;

49 axis            y;

50 start           ( 9 -1 0 );

51 end             ( 9 1 0 );

52 }

53 

54 );

• Let us visit again the sampleDict dictionary file.

• In this case we are sampling the field variables U and p.

• We are sampling in an horizontal line spanning from 0 to 

10 (lines 35-42).

• We are sampling in a vertical line spanning from -1 to 1 

(lines 45-52).

• If you want to sample in a different location feel free to add 

a new entry.
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Running the case

• You will find this tutorial in the directory $PTOFC/101OF/laminar_pipe/case0

• In the terminal window type:

1. $> foamCleanTutorials 

2. $> blockMesh 

3. $> checkMesh

4. $> icoFoam > log | tail –f log

5. $> postProcess -func sampleDict -latestTime

6. $> gnuplot gnuplot/gnuplot_script

7. $> paraFoam 
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Running the case

• In step 1 we clean the case directory. It is highly advisable to always start form a 

clean case directory. 

• In step 2 we generate the mesh.

• In step 3 we check the mesh quality. 

• In step 4 we run the simulation. Notice that we are redirecting the output to the a log 

file and at the same time we are showing the information on-the-fly.

• In step 5 we do some sampling only of the last saved solution. 

• In step 6 we use a gnuplot script to plot the sampled values. Feel free to take a look 

at the script and to reuse it.

• Finally, in step 7 we visualize the solution. 
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Let us use different boundary conditions

• Instead of using a fixed value for the velocity, let us use a fixed value for the pressure.

• You can use any pressure value, but as in the previous case we computed the 

average pressure at the inlet it seems wise to use this value.

• At this point, get the average pressure value from the ascii file (we hope you 

remember the location of the file), change the boundary conditions, and run the 

simulation.  

• To run simulation proceed as in the previous case.

• At the end, compare both cases. You should get very similar results.

• If you are feeling lazy, this case is already setup in the directory 

$PTOFC/101OF/laminar_pipe/case1

A simple validation case – Hagen-Poiseuille solution



The file 0/p

• We only need to change the boundary conditions of the inlet patch.

inlet

{

type            fixedValue;

value           uniform 1.53103;

}

• Do you think of an alternative to the fixedValue boundary condition?
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The file 0/U

• We only need to change the boundary conditions of the inlet patch.

inlet

{

type            pressureNormalInletOutletVelocity;

phi             phi;

rho             rho;

value           uniform (0 0 0);

}

• If you want to know what is behind this esoteric boundary condition, refer to the 

doxygen documentation or the source code.

• FYI, you can also use zeroGradient.
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Running with a steady state solver

• At Re = 100 nothing is happening. No vortex shedding, no detached flow, no flow 

instabilities, no turbulence, and no shock waves (this is kind of a boring case). 

Therefore is safe to say that this is a steady flow.

• In this case, we can use a steady solver. Steady solvers are way much faster than 

unsteady solvers but they violate a lot of principles, this is a trick that CFDers use to 

speed-up things. If you are happy with this approximation use steady solvers with no 

remorse.

• In an ideal world, steady solvers should converge in one iteration.  But due to the 

non-linearities in the governing equations we need to proceed in an iterative way, until 

we satisfy a convergence criteria.

• Let us run this case using simpleFoam (which is an incompressible steady solver).

• As we are using a new solver we need to do some changes in the dictionaries files.

• This case is already setup in the directory $PTOFC/101OF/laminar_pipe/case2

• At this point, let us explore the case directory.
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• The following dictionary files remains unchanged:

• system/blockMeshDict

• constant/polyMesh/boundary

• 0/U

• 0/p

• FYI, we are using the same setup as in case case2

• New dictionary files

• turbulenceProperties

• The solver simpleFoam can be used for laminar and turbulent flows.

• The following dictionaries need to be modified:

• transportProperties

• controlDict

• fvSchemes

• fvSolution
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• This dictionary file is located in the directory constant.

• In this dictionary file we select what model we would like to use (laminar or 

turbulent).

• As we are not interested in modeling turbulence, this dictionary should read 

as follows,

The turbulenceProperties dictionary file

17 simulationType    laminar;
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• In this file we define the transport model and the kinematic viscosity (nu).

The transportProperties dictionary file

16    transportModel  Newtonian;

17

18 nu              nu [ 0 2 -1 0 0 0 0 ] 0.01;

• The file transportProperties used with the solver icoFoam, does not require the 

keyword transportModel.  The solver icoFoam only uses the Newtonian model.
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17 application     simpleFoam;

18

19 startFrom       startTime;

20

21 startTime       0;

22

23 stopAt          endTime;

24

25 endTime         1000;

26

27 deltaT          1;

28

29 writeControl    runTime;

30

31 writeInterval 10;

32

33 purgeWrite      0;

34

35 writeFormat     ascii;

36

37 writePrecision  8;

38

39 writeCompression off;

40

41 timeFormat      general;

42

43 timePrecision   6;

44

45 runTimeModifiable true;

• As this is a steady solver it does not make any sense setting 

the time step.

• The time step is only used to advanced the solution (iterate) 

and to save the solution.

• The keyword endTime refers to the maximum number of 

iterations.

The controlDict dictionary
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17 ddtSchemes

18 {

19 default steadyState;

20 }

21 

22 gradSchemes

23 {

24 default Gauss linear;

27 grad(p)         Gauss linear;

28 }

29 

30 divSchemes

31 {

32 default none;

33 div(phi,U)      bounded Gauss linear;

38 div((nuEff*dev2(T(grad(U))))) Gauss linear;

39 }

40 

41 laplacianSchemes

42 {

43 default Gauss linear orthogonal;

46 }

47 

48 interpolationSchemes

49 {

50 default         linear;

51 }

52 

53 snGradSchemes

54 {

55 default  orthogonal;

58 }

• These are the changes introduced in the dictionary:

• Time discretization (ddtSchemes), is steadyState.

• For the discretization of the convective terms 

(divSchemes) we are using a bounded linear

interpolation method for the term div(phi,U)

• We added the term div((nuEff*dev2(T(grad(U))))). This 

term is related to the turbulence formulation. We must 

define it even if we are using the laminar model.

The fvSchemes dictionary
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17 solvers

18 {

19 p

20 {

27 solver           GAMG;

28 tolerance        1e-6;

29 relTol           0.01;

30 smoother         GaussSeidel;

31 nPreSweeps       0;

32 nPostSweeps      2;

33 cacheAgglomeration on;

34 agglomerator     faceAreaPair;

35 nCellsInCoarsestLevel 100;

36 mergeLevels      1;

37 }

38 

39 U

40 {

47 solver          PBiCG;

48 preconditioner  DILU;

49 tolerance       1e-08;

50 relTol          0;

51 }

52 }

• To solve the pressure (p) we are using the GAMG method with 

an absolute tolerance of 1e-6 and a relative tolerance relTol of 

0.01 (the solver will stop iterating when it meets any of the 

conditions).

• To solve U we are using the solver PBiCG with an absolute 

tolerance of 1e-8 and a relative tolerance relTol of 0 (the 

solver will stop iterating when it meets any of the conditions).

• FYI, solving for the velocity is relative inexpensive, whereas 

solving for the pressure is expensive.

The fvSolution dictionary
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54 SIMPLE

55 {

56 nNonOrthogonalCorrectors 1;

61 

62 residualControl

63        {

64            p    1e-4;

65            U    1e-4;

69        }

70 }

71

73    relaxationFactors

74    {

75        fields

76        {

77            P 0.3;

78        }

79        equations

80        {

81            U 0.7;

84        }

85    }

• The SIMPLE sub-dictionary contains entries related to the 

pressure-velocity coupling (in this case the SIMPLE method). 

• Hereafter we are doing one non orthogonal correction.

• In the sub-dictionary residualControl we set the convergence 

criteria for each field variable.  The solver will stop if it reach 

this criterion or the maximum number of iterations (endTime).

• In the sub-dictionary relaxationFactors we set the under-

relaxation coefficients. The under-relaxation factors (URF) 

controls how fast the solution change between iterations. 

Choosing the optimal URF requires a lot experience. It is wise 

to stick to the commonly used values.

The fvSolution dictionary
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p           0.3;

U           0.7;

k           0.7;

omega       0.7;

epsilon       0.7;



Running the case

• You will find this tutorial in the directory $PTOFC/101OF/laminar_pipe/case2

• In the terminal window type:

1. $> foamCleanTutorials 

2. $> blockMesh 

3. $> checkMesh

4. $> simpleFoam > log | tail –f log

5. $> postProcess -func sampleDict -latestTime

6. $> gnuplot gnuplot/gnuplot_script

7. $> paraFoam 
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Running the case

• In step 1 we clean the case directory. It is highly advisable to always start form a 

clean case directory. 

• In step 2 we generate the mesh.

• In step 3 we check the mesh quality. 

• In step 4 we run the simulation. Notice that we are redirecting the output to the a log 

file and at the same time we are showing the information on-the-fly.

• In step 5 we do some sampling only of the last saved solution. 

• In step 6 we use a gnuplot script to plot the sampled values. In this case, you will 

need to adapt this script to get the sampled data from the right directory.

• Finally, in step 7 we visualize the solution. 

• Compare this solution with the solution of the case case0
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What about mesh quality?

• So far we have worked with perfect meshes, that is, meshes with non-orthogonality and 

skewness close to zero.

• But this is the exception rather than the rule. 

• Getting a solution in this kind of meshes is quite easy.
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Checking geometry...

Overall domain bounding box (0 -0.5 0) (10 0.5 0.1)

Mesh has 2 geometric (non-empty/wedge) directions (1 1 0)

Mesh has 2 solution (non-empty) directions (1 1 0)

All edges aligned with or perpendicular to non-empty directions.

Boundary openness (7.8140697e-20 1.4221607e-17 5.4393739e-16) OK.

Max cell openness = 8.6736174e-17 OK.

Max aspect ratio = 1 OK.

Minimum face area = 0.01. Maximum face area = 0.01.  Face area magnitudes OK.

Min volume = 0.001. Max volume = 0.001.  Total volume = 1.  Cell volumes OK.

Mesh non-orthogonality Max: 0 average: 0

Non-orthogonality check OK.

Face pyramids OK.

Max skewness = 1.0658141e-13 OK.

Coupled point location match (average 0) OK.

Mesh OK.

Non-orthogonality

Skewness



What about mesh quality?

• Industrial meshes are far from being perfect. 

• Mesh quality highly affect solution accuracy, stability, and convergence rate.

• To take into account mesh quality issues, we need to adjust the numerical method. We will deal 

with this during the FVM lecture.
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Checking geometry...

Overall domain bounding box (0 -0.5 0) (10 0.5 0.1)

Mesh has 2 geometric (non-empty/wedge) directions (1 1 0)

Mesh has 2 solution (non-empty) directions (1 1 0)

All edges aligned with or perpendicular to non-empty directions.

Boundary openness (7.8140697e-20 1.4221607e-17 5.539394e-16) OK.

Max cell openness = 9.3768837e-17 OK.

Max aspect ratio = 1.98 OK.

Minimum face area = 0.00085. Maximum face area = 0.02154739.  Face area magnitudes OK.

Min volume = 8.5e-05. Max volume = 0.001915.  Total volume = 1.  Cell volumes OK.

Mesh non-orthogonality Max: 86.473612 average: 2.5674993

*Number of severely non-orthogonal (> 70 degrees) faces: 1.

Non-orthogonality check OK.

<<Writing 1 non-orthogonal faces to set nonOrthoFaces

***Error in face pyramids: 2 faces are incorrectly oriented.

<<Writing 2 faces with incorrect orientation to set wrongOrientedFaces

***Max skewness = 11.305066, 1 highly skew faces detected which may impair the quality of the results

<<Writing 1 skew faces to set skewFaces

Coupled point location match (average 0) OK.

Failed 2 mesh checks.

Too high non-orthogonality
Acceptable values are less than 80

Too high skewness
Acceptable values are less than 6

This does not mean that you can 
not run the simulation

Failed sets can be 
visualized in paraFoam


