
Before we start – Always remember the directory structure

case_name

├── 0

├── constant

│ └── polyMesh

├── system

└── time_directories

• To keep everything in order, the case directory is often located in the path
$WM_PROJECT_USER_DIR/run.

• This is not compulsory but highly advisable, you can put the case in any directory of your preference.

• The name of the case directory if given by the user (do not use white spaces).

• You run the applications and utilities in the top level of this directory.

• The directory system contains run-time control and solver numerics.

• The directory constant contains physical properties, turbulence modeling properties, advanced physics

and so on.

• The directory constant/polyMesh contains the polyhedral mesh information.

• The directory 0 contains boundary conditions (BC) and initial conditions (IC).

Running my first OpenFOAM® case setup blindfold

Running my first OpenFOAM® case setup blindfold

Flow in a lid-driven square cavity – Re = 100

Incompressible flow

Physical and numerical side of the

problem:

• The governing equations of the problem are the

incompressible laminar Navier-Stokes equations.

• We are going to work in a 2D domain but the

problem can be extended to 3D easily.

• To find the numerical solution we need to

discretize the domain (mesh generation), set the

boundary and initial conditions, define the flow

properties, setup the numerical scheme and solver

settings, and set runtime parameters (time step,

simulation time, saving frequency and so on).

• For convenience, when dealing with

incompressible flows we will use relative pressure.

• All the dictionaries files have been already preset.

Workflow of the case

Running my first OpenFOAM® case setup blindfold

blockMesh

icoFoam

sampling

functionObjects

paraview

Pressure field (relative pressure) Velocity magnitude field

Running my first OpenFOAM® case setup blindfold

Mesh (very coarse and 2D)

At the end of the day, you should get something like this

At the end of the day, you should get something like this

Running my first OpenFOAM® case setup blindfold

Y centerline

X centerline

• And as CFD is not only about pretty colors, we should also

validate the results

High-Re Solutions for incompressible flow using the navier-stokes equations and a multigrid method

U. Ghia, K. N. Ghia, C. T. Shin.

Journal of computational physics, 48, 387-411 (1982)

• Let us run our first case. Go to the directory:

• $PTOFC is pointing to the directory where you extracted the training material.

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of

how to run the case. In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh,

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on. These files can be used to run the case

automatically by typing in the terminal, for example, sh run_solver.

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this

way, you will get used with the command line interface and OpenFOAM® commands.

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases.

$PTOFC/cavity2D

Running my first OpenFOAM® case setup blindfold

Loading OpenFOAM® environment

• If you are using the lab workstations, you will need to source OpenFOAM® (load

OpenFOAM® environment).

• To source OpenFOAM®, type in the terminal:

• $> of6

• To use PyFoam (a plotting utility) you will need to source it. Type in the terminal:

• $> anaconda3

• Remember, every time you open a new terminal window you need to source

OpenFOAM® and PyFoam.

• Also, you might need to load OpenFOAM® again after loading PyFoam.

• By default, when installing OpenFOAM® and PyFoam you do not need to do this.

This is our choice as we have many things installed and we want to avoid conflicts

between applications.

Running my first OpenFOAM® case setup blindfold

What are we going to do?

• We will use the lid-driven square cavity tutorial as a general example to show you how to set up

and run solvers and utilities in OpenFOAM®.

• In this tutorial we are going to generate the mesh using blockMesh.

• After generating the mesh, we will look for topological errors and assess the mesh quality. For
this we use the utility checkMesh. Later on, we are going to talk about what is a good mesh.

• Then, we will find the numerical solution using icoFoam, which is a transient solver for

incompressible, laminar flow of Newtonian fluids. By the way, we hope you did not forget where

to look for this information.

• And we will finish with some quantitative post-processing and qualitative visualization using
paraFoam and OpenFOAM® utilities.

• While we run this case, we are going to see a lot of information on the screen (standard output

stream or stdout), but it will not be saved. This information is mainly related to convergence of

the simulation, we will talk about this later on.

• A final word, we are going to use the solver icoFoam but have in mind that this is a very basic

solver with no modeling capabilities and limited post-processing features.

• Therefore, is better to use pisoFoam or pimpleFoam which are equivalent to icoFoam but

with many more features.

Running my first OpenFOAM® case setup blindfold

Running the case blindfold

1. $> cd $PTOFC/101OF/cavity

2. $> ls –l

3. $> blockMesh

4. $> checkMesh

5. $> icoFoam

6. $> postProcess -func sampleDict -latestTime

7. $> gnuplot gnuplot/gnuplot_script

8. $> paraFoam

• Let us run this case blindfold.

• Later we will study in details each file and directory.

• Remember, the variable $PTOFC is pointing to the path where you unpacked the

tutorials.

• You can create this environment variable or write down the path to the directory.

• In the terminal window type:

Running my first OpenFOAM® case setup blindfold

Running the case blindfold

• In step 1 we go to the case directory. Remember, $PTOFC is pointing to the path where you

unpacked the tutorials.

• In step 2 we just list the directory structure (this step is optional). Does it look familiar to you? In
the directory 0 you will the initial and boundary conditions, in the constant directory you will

find the mesh information and physical properties, and in the directory system you will find the

dictionaries that controls the numerics, runtime parameters and sampling.

• In step 3 we generate the mesh.

• In step 4 we check the mesh quality. We are going to address how to assess mesh quality later

on.

• In step 5 we run the simulation. This will show a lot information on the screen, the standard

output stream will not be saved.

• In step 6 we use the utility postProcess to do some sampling only of the last saved solution

(the latestTime flag). This utility will read the dictionary file named sampleDict located in

the directory system.

• In step 7 we use a gnuplot script to plot the sampled values. Feel free to take a look and reuse

this script.

• Finally, in step 8 we visualize the solution using paraFoam. In the next slides we are going to

briefly explore this application.

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam

Menu Bar

Toolbars

Pipeline Browser

Advanced Toggle

Properties panel

3D View/Canvas

Apply button

Press this button to

load the case or to

apply a filter

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam – Toolbars

• Main Controls

• VCR Controls (animation controls)

• Current Time Controls

• Active Variable Controls

• Representation Toolbar

• Camera Controls (view orientation)

• Center Axes Controls

• Common Filters

• Data Analysis Toolbar

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam – Mesh visualization
Select Surface With Edges in the Representation Toolbar

Select Solid Color in the

Active Variable Controls

Select the volume fields to

visualize. By default it will select

U and p

Select mesh parts to visualize.

By default it will automatically
select internalMesh

Click on the eyeball in

the Pipeline Browser to
hide/unhide the object

Fit to screen Select the -Z view

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam – 3D View and mouse interaction

Rotate

Zoom

Pan

Zoom

Select view orientation in the Camera Controls

Mouse interaction in the

3D view

3D View/Canvas

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam – Fields visualization
Select Last Frame in the VCR Controls

Select U in Active Variable Controls

Turn on/off color bar

Select Magnitude in the

drop down menu

Select Surface in the

Representation Toolbar

Select volume fields to visualize.

By default it will select U and p.

Current Time Controls

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam – Filters

• Filters are functions that generate, extract or derive features from the input data.

• They are attached to the input data.

• You can access the most commonly used filters from the Common Filters toolbar

• You can access all the filters from the menu Filter.

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam – Filters

• Even if the case is 2D, it will be

visualized as if it were a 3D case.

• Notice that there is only one cell in

the Z direction.

• Let us use the slice filter. This filter

will create a cut plane.

• Let us create a slice normal to the

Z direction.

Filters are attached
to the input data

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam – Slice filter

1. Select the Slice filter

2. Select the direction Z Normal.

Additionally you can choose the

origin of the plane (by default is the

mid section)

3. Optional - Turn off the
option Show Plane

4. Press Apply

If you want to erase a filter,

right click on it and select
Delete

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam – Glyph filter

1. Select the Glyph filter. This

filter will be applied on the
Slice1 filter

2. Filter options

3. Press Apply

4. Color the colors using Solid Color

Notice that the filter
Glyph was applied on

the Slice1 filter.

Running my first OpenFOAM® case setup blindfold

Notice that the vectors are plotted in the

cell vertices. To plot the vectors at the
cell centers, use the filter cell

centers and replot the vectors.

Crash introduction to paraFoam – Plot Over Line filter

1.a. Select the Plot Over Line

filter.

1.b. Alternative, you can select Plot

Over Line filter from the Data

Analysis Toolbar

2. Enter the coordinates of the line

3. Press Apply

Notice that we are using the filter in
a clean Pipeline

Line

Running my first OpenFOAM® case setup blindfold

(0.5, 1, 1)

(0.5, 0, 1)

Crash introduction to paraFoam – Filters

1. Click on the line chart view (the blue frame indicates that it is the active view)

2. Select the variables to

plot in the line chart view

3. Optional - To save the

sampled data in CSV

format, click on the filter.
Then click on the File

menu and select the
option Save Data

4. Optional – Use the VCR Control to change the frame.
The line chart view will be updated automatically

Running my first OpenFOAM® case setup blindfold

Running the case blindfold with log files

• In the previous case, we ran the simulation but we did not save the standard output
stream (stdout) in a log file.

• We just saw the information on-the-fly.

• Our advice is to always save the standard output stream (stdout) in a log file.

• It is of interest to always save the log as if something goes wrong and you would like

to do troubleshooting, you will need this information.

• Also, if you are interested in plotting the residuals you will need the log file.

• By the way, if at any point you ask us what went wrong with your simulation, it is likely

that we will ask you for this file.

• We might also ask for the standard error stream (stderr).

Running my first OpenFOAM® case setup blindfold

Running the case blindfold with log files

1. $> foamCleanTutorials

2. $> blockMesh | tee log.blockMesh

3. $> checkMesh | tee log.checkMesh

4. $> icoFoam | tee log.icoFoam

• There are many ways to save the log files.

• From now on, we will use the Linux tee command to save log files.

• To save a log file of the simulation or the output of any utility, you can proceed as

follows:

Running my first OpenFOAM® case setup blindfold

The vertical bar or pipelining operator is used to concatenate commands

• You can use your favorite text editor to read the log file (e.g., gedit, vi, emacs).

• In step 1 we erase the mesh and all the folders, except for 0, constant and system. This

script comes with your OpenFOAM® installation.

• In step 2, we generate the mesh using the meshing tool blockMesh. We also redirect the

standard output to an ascii file with the name log.blockMesh (it can be any name). The tee

command will redirect the screen output to the file log.blockMesh and at the same time will

show you the information on the screen.

• In step 3 we check the mesh quality. We also redirect the standard output to an ascii file with the
name log.checkMesh (it can be any name).

• In step 4 we run the simulation. We also redirect the standard output to an ascii file with the
name log.icoFoam (it can be any name). Remember, the tee command will redirect the

screen output to the file log.icoFoam and at the same time will show you the information on

the screen.

• To postprocess the information contained in the solver log file log.icoFoam, we can use the

utility foamLog. Type in the terminal:

• $> foamLog log.icoFoam

• This utility will extract the information inside the file log.icoFoam. The extracted information is

saved in an editable/plottable format in the directory logs.

• At this point we can use gnuplot to plot the residuals. Type in the terminal:

• $> gnuplot

Running my first OpenFOAM® case setup blindfold

Running the case blindfold with log files

• To plot the information extracted with foamLog using gnuplot, we can proceed as

follows (remember, at this point we are using the gnuplot prompt):

1. gnuplot> set logscale y

Set log scale in the y axis

2. gnuplot> plot ‘logs/p_0’ using 1:2 with lines

Plot the file p_0 located in the directory logs, use columns 1 and 2 in the file p_0, use lines to output the plot.

3. gnuplot> plot ‘logs/p_0’ using 1:2 with lines, ‘logs/pFinalRes_0’ using 1:2 with lines

Here we are plotting to different files. You can concatenate files using comma (,)

4. gnuplot> reset

To reset the scales

5. gnuplot> plot ‘logs/CourantMax_0’ u 1:2 w l

To plot file CourantMax_0. The letter u is equivalent to using. The letters w l are equivalent to with lines

6. gnuplot> set logscale y

7. gnuplot> plot [30:50][] ‘logs/Ux_0’ u 1:2 w l title ‘Ux’,‘logs/Uy_0’ u 1:2 w l title ‘Uy’

Set the x range from 30 to 50 and plot tow files and set legend titles

8. gnuplot> exit

To exit gnuplot

Running my first OpenFOAM® case setup blindfold

Running the case blindfold with log files

• The output of step 3 is the following:

• The fact that the initial residuals (red line) are dropping to the same value of the final

residuals (monotonic convergence), is a clear indication of a steady behavior.

Running my first OpenFOAM® case setup blindfold

Running the case blindfold with log files

• It is also possible to plot the log information on the fly.

• The easiest way to do this is by using PyFoam (you will need to install it):

• $> pyFoamPlotRunner.py [options] <foamApplication>

• If you are using the lab workstations, you will need to source PyFoam. To source PyFoam, type in the

terminal:

• $> anaconda3

• If you need help or want to know all the options available,

• $> pyFoamPlotRunner.py –-help

• To run this case with pyFoamPlotRunner.py, in the terminal type:

• $> pyFoamPlotRunner.py icoFoam

• If you do not feel comfortable using pyFoamPlotRunner.py to run the solver, it is also possible to plot the

information saved in the log file using PyFoam.

• To do so you will need to use the utility pyFoamPlotWatcher.py. For example,

• $> icoFoam | tee log.icoFoam

• Then, in a new terminal window launch pyFoamPlotWatcher, as follows,

• $> pyFoamPlotWatcher.py log.icoFoam

• You can also use pyFoamPlotWatcher.py to plot the information saved in an old log file.

Running my first OpenFOAM® case setup blindfold

Running the case blindfold with log files and plotting the residuals

• This is a screenshot on my computer. In this case, pyFoamPlotRunner is plotting

the initial residuals and continuity errors on the fly.

Running my first OpenFOAM® case setup blindfold

Running the case blindfold with log files and plotting the residuals

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: 6.x |

5 | \\ / A nd | Web: www.OpenFOAM.org |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object controlDict;

14 }

15 // * //

16

17 application icoFoam;

18

19 startFrom startTime;

20

21 startTime 0;

22

23 stopAt endTime;

24

25 endTime 50;

• Your simulation will automatically stop at the time value you set using the keyword endTime in
the controlDict dictionary.

endTime 50;

• If for any reason you want to stop your simulation before reaching the value set by the keyword

endTime, you can change this value to a number lower than the current simulation time (you

can use 0 for instance). This will stop your simulation, but it will not save your last time-step or

iteration, so be careful.

Stopping the simulation

Running my first OpenFOAM® case setup blindfold

• If you want to stop the simulation and save the solution, in the controlDict dictionary made

the following modification,

stopAt writeNow;

This will stop your simulation and will save the current time-step or iteration.

Stopping the simulation

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: 6.x |

5 | \\ / A nd | Web: www.OpenFOAM.org |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object controlDict;

14 }

15 // * //

16

17 application icoFoam;

18

19 startFrom startTime;

20

21 startTime 0;

22

23 stopAt writeNow;

24

25 endTime 50;

Running my first OpenFOAM® case setup blindfold

• The previous modifications can be done on-the-fly, but you will need to set the
keyword runTimeModifiable to true in the controlDict dictionary.

• By setting the keyword runTimeModifiable to true, you will be able to modify most of

the dictionaries on-the-fly.

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: 6.x |

5 | \\ / A nd | Web: www.OpenFOAM.org |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object controlDict;

14 }

44

45 runTimeModifiable true;

46

Stopping the simulation

Running my first OpenFOAM® case setup blindfold

• You can also kill the process. For instance, if you did not launch the solver in background, go to its terminal
window and press ctrl-c. This will stop your simulation, but it will not save your last time-step or iteration, so

be careful.

• If you launched the solver in background, just identify the process id using top or htop (or any other process

manager) and terminate the associated process. Again, this will not save your last time-step or iteration.

• To identify the process id of the OpenFOAM® solver or utility, just read screen. At the beginning of the output

screen, you will find the process id number.

Stopping the simulation

Running my first OpenFOAM® case setup blindfold

/*---*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 6.x |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

Build : 4.x-e964d879e2b3

Exec : icoFoam

Date : Mar 11 2017

Time : 23:21:50

Host : "linux-ifxc"

PID : 3100

Case : /home/joegi/my_cases_course/5x/101OF/cavity

nProcs : 1

sigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).

fileModificationChecking : Monitoring run-time modified files using timeStampMaster

allowSystemOperations : Allowing user-supplied system call operations

// * //

Process id number

• When working locally, we usually proceed in this way:

• $> icoFoam | tee log.icofoam

This will run the solver icoFoam (by the way, this works for any solver or utility), it will save the

standard output stream in the file log.icofoam and will show the solver output on the fly.

• If at any moment we want to stop the simulation, and we are not interested in saving the last
time-step, we press ctrl-c.

• If we are interested in saving the last time step, we modify the controlDict dictionary and

add the following keyword

stopAt writeNow;

• Remember, this modification can be done on the fly. However, you will need to set the keyword
runTimeModifiable to yes in the controlDict dictionary.

Stopping the simulation

Running my first OpenFOAM® case setup blindfold

• If you want to erase the mesh and the solution in the current case folder, you can type in the

terminal,

$> foamCleanTutorials

If you are running in parallel, this will also erase the processorN directories. We will talk about

running in parallel later.

• If you are looking to only erase the mesh, you can type in the terminal,

$> foamCleanPolyMesh

• If you are only interested in erasing the saved solutions, in the terminal type,

$> foamListTimes -rm

• If you are running in parallel and you want to erase the solution saved in the processorN

directories, type in the terminal,

$> foamListTimes –rm -processor

Cleaning the case folder

Running my first OpenFOAM® case setup blindfold

A deeper view to my first OpenFOAM® case setup

• We will take a close look at what we did by looking at the case files.

• The case directory originally contains the following sub-directories: 0, constant, and

system. After running icoFoam it also contains the time step directories 1, 2, 3,

..., 48, 49, 50, the post-processing directory postProcessing, and the

log.icoFoam file (if you chose to redirect the standard output stream).

• The time step directories contain the values of all the variables at those time
steps (the solution). The 0 directory is thus the initial condition and boundary

conditions.

• The constant directory contains the mesh and dictionaries for thermophysical,

turbulence models and advanced physical models.

• The system directory contains settings for the run, discretization schemes and

solution procedures.

• The postProcessing directory contains the information related to the

functionObjects (we are going to address functionObjects later).

• The icoFoam solver reads these files and runs the case according to those

settings.

A deeper view to my first OpenFOAM® case setup

• Before continuing, we want to point out the following:

• Each dictionary file in the case directory has a header.

• Lines 1-7 are commented.

• You should always keep lines 8 to 14, if not, OpenFOAM® will complain.

• According to the dictionary you are using, the class keyword (line 12)

will be different. We are going to talk about this later on.

• From now on and unless it is strictly necessary, we will not show the

header when listing the dictionaries files.

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: 6.x |

5 | \\ / A nd | Web: www.OpenFOAM.org |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object controlDict;

14 }

A deeper view to my first OpenFOAM® case setup

Let us explore the case directory

• In this directory you will find the sub-directory polyMesh and the dictionary file

transportProperties.

• The transportProperties file is a dictionary for the dimensioned scalar nu, or the

kinematic viscosity.

A deeper view to my first OpenFOAM® case setup

The constant directory
(and by the way, open each file and go thru its content)

17 nu nu [0 2 -1 0 0 0 0] 0.01; //Re 100

18 //nu nu [0 2 -1 0 0 0 0] 0.001; //Re 1000

• Notice that line 18 is commented.

• The values between square bracket are the units.

• OpenFOAM® is fully dimensional. You need to define the dimensions for

each field dictionary and physical properties defined.

• Your dimensions shall be consistent.

No. Property Unit Symbol

1 Mass Kilogram kg

2 Length meters m

3 Time second s

4 Temperature Kelvin K

5 Quantity moles mol

6 Current ampere A

7 Luminuous intensity candela cd

Dimensions in OpenFOAM® (metric system)

[1 (kg), 2 (m), 3 (s), 4 (K), 5 (mol), 6 (A), 7 (cd)]

A deeper view to my first OpenFOAM® case setup

• Therefore, the dimensioned scalar nu or the kinematic viscosity,

A deeper view to my first OpenFOAM® case setup

The constant directory
(and by the way, open each file and go thru its content)

17 nu nu [0 2 -1 0 0 0 0] 0.01;

has the following units

[0 m^2 s^-1 0 0 0 0]

Which is equivalent to

• In this case, as we are working with an incompressible flow, we only need to define

the kinematic viscosity.

• Later on, we will ask you to change the Reynolds number, to do so you can change

the value of nu. Remember,

A deeper view to my first OpenFOAM® case setup

• You can also change the free stream velocity U or the reference length L.

The constant directory
(and by the way, open each file and go thru its content)

A deeper view to my first OpenFOAM® case setup

The constant directory
(and by the way, open each file and go thru its content)

• Depending on the physics involved and models used, you will need to define more
variables in the dictionary transportProperties.

• For instance, for a multiphase case you will need to define the density rho and

kinematic viscosity nu for each single phase. You will also need to define the surface

tension .

• Also, depending of your physical model, you will find more dictionaries in the constant

directory.

• For example, if you need to set gravity, you will need to create the dictionary g.

• If you work with compressible flows you will need to define the dynamic viscosity mu,
and many other physical properties in the dictionary thermophysicalProperties.

• As we are not dealing with compressible flows (for the moment), we are not going into

details.

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh directory
(and by the way, open each file and go thru its content)

• In this case, the polyMesh directory is initially empty. After generating the mesh, it

will contain the mesh in OpenFOAM® format.

• To generate the mesh in this case, we use the utility blockMesh. This utility reads

the dictionary blockMeshDict located in the system folder.

• We will briefly address a few important inputs of the blockMeshDict dictionary.

• Do not worry, we are going to revisit this dictionary during the meshing session.

• However, have in mind that rarely you will use this utility to generate a mesh for

complex geometries.

• Go to the directory system and open blockMeshDict dictionary with your favorite

text editor, we will use gedit.

A deeper view to my first OpenFOAM® case setup

The system/blockMeshDict dictionary

• The blockMeshDict dictionary first defines a list with a number of vertices:

• The keyword convertToMeters (line 17), is a scaling factor. In this case

we do not scale the dimensions.

• In the section vertices (lines 37-58), we define the vertices coordinates of

the geometry. In this case, there are eight vertices defining the geometry.

OpenFOAM® always uses 3D meshes, even if the simulation is 2D.

• We can directly define the vertex coordinates in the section vertices

(commented lines 49-56), or we can use macro syntax.

• Using macro syntax we first define a variable and its value (lines 19-24),

and then we can use them by adding the symbol $ to the variable name

(lines 39-46).

• In lines 26-28, we define a set of variables that will be used at a later time.

These variables are related to the number of cells in each direction.

• Finally, notice that the vertex numbering starts from 0 (as the counters in

c++). This numbering applies for blocks as well.

17 convertToMeters 1;

18

19 xmin 0;

20 xmax 1;

21 ymin 0;

22 ymax 1;

23 zmin 0;

24 zmax 1;

25

26 xcells 20;

27 ycells 20;

28 zcells 1;

29

37 vertices

38 (

39 ($xmin $ymin $zmin) //vertex 0

40 ($xmax $ymin $zmin) //vertex 1

41 ($xmax $ymax $zmin) //vertex 2

42 ($xmin $ymax $zmin) //vertex 3

43 ($xmin $ymin $zmax) //vertex 4

44 ($xmax $ymin $zmax) //vertex 5

45 ($xmax $ymax $zmax) //vertex 6

46 ($xmin $ymax $zmax) //vertex 7

47

48 /*

49 (0 0 0)

50 (1 0 0)

51 (1 1 0)

52 (0 1 0)

53 (0 0 0.1)

54 (1 0 0.1)

55 (1 1 0.1)

56 (0 1 0.1)

57 */

58);

A deeper view to my first OpenFOAM® case setup

The system/blockMeshDict dictionary

• The blockMeshDict dictionary also defines the boundary patches:

71 boundary

72 (

73 movingWall

74 {

75 type wall;

76 faces

77 (

78 (3 7 6 2)

79);

80 }

81 fixedWalls

82 {

83 type wall;

84 faces

85 (

86 (0 4 7 3)

87 (2 6 5 1)

88 (1 5 4 0)

89);

90 }

91 frontAndBack

92 {

93 type empty;

94 faces

95 (

96 (0 3 2 1)

97 (4 5 6 7)

98);

99 }

100);

Name

Type

Connectivity

• In the section boundary, we define all the surface

patches where we want to apply boundary conditions.

• This step is of paramount importance, because if we do

not define the surface patches we will not be able to

apply the boundary conditions.

• For example:

• In line 73 we define the patch name movingWall

(the name is given by the user).

• In line 75 we give a base type to the surface patch.

In this case wall (do not worry we are going to talk

about this later on).

• In line 78 we give the connectivity list of the

vertices that made up the surface patch or face,

that is, (3 7 6 2). Have in mind that the vertices

need to be neighbors and it does not matter if the

ordering is clockwise or counter clockwise.

• Remember, faces are defined by a list of 4 vertex

numbers, e.g., (3 7 6 2).

A deeper view to my first OpenFOAM® case setup

The system/blockMeshDict dictionary

• To sum up, the blockMeshDict dictionary generates in this case a single block with:

• X/Y/Z dimensions: 1.0/1.0/1.0

• Cells in the X, Y and Z directions: 20 x 20 x 1 cells.

• One single hex block with straight lines.

• Patch type wall and patch name fixedWalls at three sides.

• Patch type wall and patch name movingWall at one side.

• Patch type empty and patch name frontAndBack patch at two sides.

• If you are interested in visualizing the actual block topology, you can use paraFoam

as follows,

• $> paraFoam –block

A deeper view to my first OpenFOAM® case setup

The system/blockMeshDict dictionary

• As you can see, the blockMeshDict dictionary can be really tricky.

• If you deal with really easy geometries (rectangles, cylinders, and so on), then you
can use blockMesh to do the meshing, but this is the exception rather than the rule.

• When using snappyHexMesh, (a body fitted mesher that comes with OpenFOAM®)

you will need to generate a background mesh using blockMesh. We are going to

deal with this later on.

• Our best advice is to create a template and reuse it.

• Also, take advantage of macro syntax for parametrization, and #calc syntax to
perform inline calculations (lines 30-35 in the blockMeshDict dictionary we just

studied).

• We are going to deal with #codeStream syntax and #calc syntax during the

programming session.

A deeper view to my first OpenFOAM® case setup

• First of all, this file is automatically generated after you create the mesh
using blockMesh or snappyHexMesh, or when you convert the mesh from

a third-party format.

• In this file, the geometrical information related to the base type patch of

each boundary (or surface patch) of the domain is specified.

• The base type boundary condition is the actual surface patch where we are

going to apply a numerical type boundary condition (or numerical boundary

condition).

• The numerical type boundary condition assign a field value to the surface

patch (base type).

• We define the numerical type patch (or the value of the boundary
condition), in the directory 0 or time directories.

The constant/polyMesh/boundary dictionary

• In this case, the file boundary is divided as follows

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary

18 3

19 (

20 movingWall

21 {

22 type wall;

23 inGroups 1(wall);

24 nFaces 20;

25 startFace 760;

26 }

27 fixedWalls

28 {

29 type wall;

30 inGroups 1(wall);

31 nFaces 60;

32 startFace 780;

33 }

34 frontAndBack

35 {

36 type empty;

37 inGroups 1(empty);

38 nFaces 800;

39 startFace 840;

40 }

41)

Number of surface patches

In the list bellow there must be 3 patches

definition.

fixedWall

fi
x

e
d

W
a

ll

frontAndBack

movingWall

fi
x

e
d

W
a

ll

frontAndBack

• In this case, the file boundary is divided as follows

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary

Name and type of the surface patches

• The name and type of the patch is given by

the user.

• In this case the name and type was assigned
in the dictionary blockMeshDict.

• You can change the name if you do not like it.

Do not use strange symbols or white spaces.

• You can also change the base type. For

instance, you can change the type of the

patch movingWall from wall to patch.

• When converting the mesh from a third party

format, OpenFOAM® will try to recover the

information from the original format. But it

might happen that it does not recognizes the

base type and name of the original file. In this

case you will need to modify this file manually.

18 3

19 (

20 movingWall

21 {

22 type wall;

23 inGroups 1(wall);

24 nFaces 20;

25 startFace 760;

26 }

27 fixedWalls

28 {

29 type wall;

30 inGroups 1(wall);

31 nFaces 60;

32 startFace 780;

33 }

34 frontAndBack

35 {

36 type empty;

37 inGroups 1(empty);

38 nFaces 800;

39 startFace 840;

40 }

41)

Name

Type

18 3

19 (

20 movingWall

21 {

22 type wall;

23 inGroups 1(wall);

24 nFaces 20;

25 startFace 760;

26 }

27 fixedWalls

28 {

29 type wall;

30 inGroups 1(wall);

31 nFaces 60;

32 startFace 780;

33 }

34 frontAndBack

35 {

36 type empty;

37 inGroups 1(empty);

38 nFaces 800;

39 startFace 840;

40 }

41)

• In this case, the file boundary is divided as follows

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary

inGroups keyword

• This keyword is optional. You can erase this information safely.

• It is used to group patches during visualization in

ParaView/paraFoam. If you open this mesh in paraFoam you will

see that there are two groups, namely: wall and empty.

• As usual, you can change the name.

• If you want to put a surface patch in two groups, you can proceed

as follows:

2(wall wall1)

In this case the surface patch belongs to the groups wall and

wall1.

• Groups can have more than one patch.

nFaces and startFace keywords

• Unless you know what you are doing, you do not need to

modify this information.

• This information is related to the starting face and ending face of

the boundary patch in the mesh data structure.

• This information is created automatically when generating the

mesh or converting the mesh.

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary

• There are a few base type patches that are constrained or paired. This means that the type
should be the same in the boundary file and in the numerical boundary condition defined in the

field files, e.g., the files 0/U and 0/p.

• In this case, the base type of the patch frontAndBack (defined in the file boundary), is

consistent with the numerical type patch defined in the field files 0/U and 0/p. They are of

the type empty.

• Also, the base type of the patches movingWall and fixedWalls (defined in the file boundary),

is consistent with the numerical type patch defined in the field files 0/U and 0/p.

• This is extremely important, especially if you are converting meshes as not always the type of

the patches is set as you would like.

• Hence, it is highly advisable to do a sanity check and verify that the base type of the patches
(the type defined in the file boundary), is consistent with the numerical type of the patches

(the patch type defined in the field files contained in the directory 0 (or whatever time directory

you defined the boundary and initial conditions).

• If the base type and numerical type boundary conditions are not consistent, OpenFOAM® will

complain.

• Do not worry, we are going to address boundary conditions later on.

• The following base type boundary conditions are constrained or paired.
That is, the type needs to be same in the boundary dictionary and field

variables dictionaries (e.g. U, p).

constant/polyMesh/boundary 0/U - 0/p (IC/BC)

symmetry

symmetryPlane

empty

wedge

cyclic

processor

symmetry

symmetryPlane

empty

wedge

cyclic

processor

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary

• The base type patch can be any of the numerical or derived type

boundary conditions available in OpenFOAM®. Mathematically speaking;

they can be Dirichlet, Neumann or Robin boundary conditions.

constant/polyMesh/boundary 0/U - 0/p (IC/BC)

patch

fixedValue

zeroGradient

inletOutlet

slip

totalPressure

supersonicFreeStream

and so on …

Refer to the doxygen documentation for a list of all numerical

type boundary conditions available.

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary

• The wall base type boundary condition is defined as follows:

constant/polyMesh/boundary 0/U (IC/BC) 0/p (IC/BC)

wall
type fixedValue;

value uniform (U V W);
zeroGradient

• This boundary condition is not contained in the patch base type boundary

condition group, because specialize modeling options can be used on this

boundary condition.

• An example is turbulence modeling, where turbulence can be generated or

dissipated at the walls.

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary

• The name of the base type boundary condition and the name of the

numerical type boundary condition needs to be the same, if not,

OpenFOAM® will complain.

• Pay attention to this, specially if you are converting the mesh from another

format.

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary

constant/polyMesh/boundary 0/U (IC/BC) 0/p (IC/BC)

movingWall

fixedWalls

frontAndBack

movingWall

fixedWalls

frontAndBack

movingWall

fixedWalls

frontAndBack

• As you can see, all the names are the same across all the dictionary files.

The system directory
(and by the way, open each file and go thru its content)

A deeper view to my first OpenFOAM® case setup

• The system directory consists of the following compulsory dictionary files:

• controlDict

• fvSchemes

• fvSolution

• controlDict contains general instructions on how to run the case.

• fvSchemes contains instructions for the discretization schemes that will be used for the

different terms in the equations.

• fvSolution contains instructions on how to solve each discretized linear equation system.

• Do not worry, we are going to study in details the most important entries of each dictionary (the

compulsory entries).

• If you forget a compulsory keyword or give a wrong entry to the keyword, OpenFOAM® will

complain and it will let you what are you missing. This applies for all the dictionaries in the

hierarchy of the case directory.

• There are many optional parameters, to know all of them refer to the doxygen documentation or

the source code. Hereafter we will try to introduce a few of them.

• OpenFOAM® will not complain if you are not using optional parameters, after all, they are

optional. However, if the entry you use for the optional parameter is wrong OpenFOAM® will let

you know.

A deeper view to my first OpenFOAM® case setup

The controlDict dictionary

17 application icoFoam;

18

19 startFrom startTime;

20

21 startTime 0;

22

23 stopAt endTime;

24

25 endTime 50;

26

27 deltaT 0.01;

28

29 writeControl runTime;

30

31 writeInterval 1;

32

33 purgeWrite 0;

34

35 writeFormat ascii;

36

37 writePrecision 8;

38

39 writeCompression off;

40

41 timeFormat general;

42

43 timePrecision 6;

44

45 runTimeModifiable true;

• The controlDict dictionary contains runtime simulation controls, such

as, start time, end time, time step, saving frequency and so on.

• Most of the entries are self-explanatory.

• This case starts from time 0 (keyword startFrom – line 19 – and

keyword startTime – line 21 –). If you have the initial solution in a

different time directory, just enter the number in line 21.

• The case will stop when it reaches the desired time set using the keyword

stopAt (line 23).

• It will run up to 50 seconds (keyword endTime – line 25 –).

• The time step of the simulation is 0.01 seconds (keyword deltaT

– line 27 –).

• It will write the solution every second (keyword writeInterval – line 31 –)

of simulation time (keyword runTime – line 29 –).

• It will keep all the solution directories (keyword purgeWrite – line 33 –).

If you want to keep only the last 5 solutions just change the value to 5.

• It will save the solution in ascii format (keyword writeFormat – line 35 –)

with a precision of 8 digits (keyword writePrecision – line 37 –).

• And as the option runTimeModifiable (line 45) is on (true), we can

modify all these entries while we are running the simulation.

• FYI, you can modify the entries on-the-fly for most of the dictionaries files.

A deeper view to my first OpenFOAM® case setup

The controlDict dictionary

17 application icoFoam;

18

19 startFrom startTime;

20

21 startTime 0;

22

23 stopAt banana;

24

25 endTime 50;

26

27 deltaT 0.01;

28

29 writeControl runTime;

30

31 writeInterval 1;

32

33 purgeWrite 0;

34

35 writeFormat ascii;

36

37 writePrecision 8;

38

39 writeCompression off;

40

41 timeFormat general;

42

43 timePrecision 6;

44

45 runTimeModifiable true;

• So how do we know what options are available for each keyword?

• The hard way is to refer to the source code.

• The easy way is to use the banana method.

• So what is the banana method? This method consist in inserting a dummy word

(that does not exist in the installation) and let OpenFOAM® list the available

options.

• For example. If you add banana in line 23, you will get this output:

banana is not in enumeration

4

(

nextWrite

writeNow

noWriteNow

endTime

)

• So your options are nextWrite, writeNow, noWriteNow, endTime

• And how do we know that banana does not exist in the source code? Just type in

the terminal:

• $> src

• $> grep –r –n banana .

• If you see some bananas in your output someone is messing around with your

installation.

• Remember, you can use any dummy word, but you have to be sure that it does

not exist in OpenFOAM®.

A deeper view to my first OpenFOAM® case setup

The controlDict dictionary

17 application icoFoam;

18

19 startFrom startTime;

20

21 startTime 0;

22

23 stopAt endTime;

24

25 //endTime 50;

26

27 deltaT 0.01;

28

29 writeControl runTime;

30

31 writeInterval 1;

32

33 purgeWrite 0;

34

35 writeFormat ascii;

36

37 writePrecision 8;

38

39 writeCompression off;

40

41 timeFormat general;

42

43 timePrecision 6;

44

45 runTimeModifiable true;

• If you forget a compulsory keyword, OpenFOAM® will tell you what

are you missing.

• So if you comment line 25, you will get this output:

--> FOAM FATAL IO ERROR

keyword endTime is undefined in dictionary …

• This output is just telling you that you are missing the keyword

endTime.

• Do not pay attention to the words FATAL ERROR, maybe the

developers of OpenFOAM® exaggerated a little bit.

A deeper view to my first OpenFOAM® case setup

The fvSchemes dictionary

17 ddtSchemes

18 {

19 default backward;

20 }

21

22 gradSchemes

23 {

24 default Gauss linear;

25 grad(p) Gauss linear;

26 }

27

28 divSchemes

29 {

30 default none;

31 div(phi,U) Gauss linear;

32 }

33

34 laplacianSchemes

35 {

36 default Gauss linear orthogonal;

37 }

38

39 interpolationSchemes

40 {

41 default linear;

42 }

43

44 snGradSchemes

45 {

46 default orthogonal;

47 }

• The fvSchemes dictionary contains the information related to

the discretization schemes for the different terms appearing in

the governing equations.

• As for the controlDict dictionary, the parameters can be

changed on-the-fly.

• Also, if you want to know what options are available, just use

the banana method.

• In this case we are using the backward method for time

discretization (ddtSchemes). For gradients discretization

(gradSchemes) we are using Gauss linear method. For the

discretization of the convective terms (divSchemes) we are

using linear interpolation for the term div(phi,U).

• For the discretization of the Laplacian (laplacianSchemes and

snGradSchemes) we are using the Gauss linear method with

orthogonal corrections.

• The method we are using is second order accurate but

oscillatory. We are going to talk about the properties of the

numerical schemes later on.

• Remember, at the end of the day we want a solution that is

second order accurate.

A deeper view to my first OpenFOAM® case setup

The fvSolution dictionary

17 solvers

18 {

19 p

20 {

21 solver PCG;

22 preconditioner DIC;

23 tolerance 1e-06;

24 relTol 0;

39 }

40

41 pFinal

42 {

43 $p;

44 relTol 0;

45 }

46

47 U

48 {

49 solver smoothSolver;

50 smoother symGaussSeidel;

51 tolerance 1e-08;

52 relTol 0;

53 }

54 }

55

56 PISO

57 {

58 nCorrectors 1;

59 nNonOrthogonalCorrectors 0;

60 pRefCell 0;

61 pRefValue 0;

62 }

• The fvSolution dictionary contains the instructions of how

to solve each discretized linear equation system. The equation

solvers, tolerances, and algorithms are controlled from the sub-

dictionary solvers.

• In the dictionary file fvSolution (and depending on the solver

you are using), you will find the additional sub-dictionaries

PISO, PIMPLE, SIMPLE, and relaxationFactors. These

entries will be described later.

• As for the controlDict and fvSchemes dictionaries, the

parameters can be changed on-the-fly.

• Also, if you want to know what options are available just use

the banana method.

• In this case, to solve the pressure (p) we are using the PCG

method, with the preconditioner DIC, an absolute tolerance

equal to 1e-06 and a relative tolerance relTol equal to 0.

• The entry pFinal refers to the final pressure correction (notice

that we are using macro syntax), and we are using a relative

tolerance relTol equal to 0. We are putting more computational

effort in the last iteration.

• In this case, we are using the same tolerances for p and

pFinal. However, you can use difference tolerances, where

usually you use a tighter tolerance in pFinal.

A deeper view to my first OpenFOAM® case setup

The fvSolution dictionary

17 solvers

18 {

19 p

20 {

21 solver PCG;

22 preconditioner DIC;

23 tolerance 1e-06;

24 relTol 0;

39 }

40

41 pFinal

42 {

43 $p;

44 relTol 0;

45 }

46

47 U

48 {

49 solver smoothSolver;

50 smoother symGaussSeidel;

51 tolerance 1e-08;

52 relTol 0;

53 }

54 }

55

56 PISO

57 {

58 nCorrectors 1;

59 nNonOrthogonalCorrectors 0;

60 pRefCell 0;

61 pRefValue 0;

62 }

• To solve U we are using the smoothSolver method, with the

smoother symGaussSeidel, an absolute tolerance equal to

1e-08 and a relative tolerance relTol equal to 0.

• The solvers will iterative until reaching any of the tolerance

values set by the user or reaching a maximum value of

iterations (optional entry).

• FYI, solving for the velocity is relative inexpensive, whereas

solving for the pressure is expensive.

• The PISO sub-dictionary contains entries related to the

pressure-velocity coupling method (the PISO method).

• In this case we are doing only one PISO correction and no

orthogonal corrections.

• You need to do at least one PISO loop (nCorrectors).

The system directory
(optional dictionary files)

A deeper view to my first OpenFOAM® case setup

• In the system directory you will also find these two additional files:

• decomposeParDict

• sampleDict

• decomposeParDict is read by the utility decomposePar. This dictionary

file contains information related to the mesh partitioning. This is used when

running in parallel. We will address running in parallel later.

• sampleDict is read by the utility postProcess. This utility sample field

data (points, lines or surfaces). In this dictionary file we specify the sample

location and the fields to sample. The sampled data can be plotted using

gnuplot or Python.

A deeper view to my first OpenFOAM® case setup

The sampleDict dictionary

17 type sets;

18

19 setFormat raw;

20

23 interpolationScheme cellPointFace;

24

26 fields

27 (

28 U

29);

30

31 sets

32 (

33

34 l1

35 {

38 type lineFace;

43 axis x;

44 start (-1 0.5 0);

45 end (2 0.5 0);

46 }

47

48 l2

49 {

52 type lineFace;

57 axis y;

58 start (0.5 -1 0);

59 end (0.5 2 0);

60 }

61

62);

Format of the output file, raw format is a generic format

that can be read by many applications. The output file is
human readable (ascii format).

Interpolation method at the solution level (location of the
interpolation points).

Fields to sample.

Location of the sample line. We define start and end
point, and the axis of the sampling.

Location of the sample line. We define start and end
point, and the axis of the sampling.

Sample method. How to interpolate the solution to the
sample entity (line in this case)

Sample method from the solution to the line.

Type of sampling, sets will sample along a line.

A deeper view to my first OpenFOAM® case setup

The sampleDict dictionary

Name of the output file

Name of the output file

The sampled information is always saved in the

directory,

postProcessing/name_of_input_dictionary

As we are sampling the latest time solution (50) and
using the dictionary sampleDict, the sampled data

will be located in the directory:

postProcessing/sampleDict/50

The files l1_U.xy and l2_U.xy located in the

directory postProcessing/sampleDict/50

contain the sampled data. Feel free to open them using

your favorite text editor.

17 type sets;

18

19 setFormat raw;

20

23 interpolationScheme cellPointFace;

24

26 fields

27 (

28 U

29);

30

31 sets

32 (

33

34 l1

35 {

38 type lineFace;

43 axis x;

44 start (-1 0.5 0);

45 end (2 0.5 0);

46 }

47

48 l2

49 {

52 type lineFace;

57 axis y;

58 start (0.5 -1 0);

59 end (0.5 2 0);

60 }

61

62);

• The 0 directory contains the initial and boundary conditions for all primitive variables,

in this case p and U. The U file contains the following information (velocity vector):

The 0 directory
(and by the way, open each file and go thru its content)

A deeper view to my first OpenFOAM® case setup

17 dimensions [0 1 -1 0 0 0 0];

18

19 internalField uniform (0 0 0);

20

21 boundaryField

22 {

23 movingWall

24 {

25 type fixedValue;

26 value uniform (1 0 0);

27 }

28

29 fixedWalls

30 {

31 type fixedValue;

32 value uniform (0 0 0);

33 }

34

35 frontAndBack

36 {

37 type empty;

38 }

39 }

Dimensions of the field

Uniform initial conditions.

The velocity field is initialize to (0 0 0) in all

the domain

Remember velocity is a vector with three
components, therefore the notation (0 0 0).

Note:
If you take some time and compare the files 0/U and

constant/polyMesh/boundary, you will see that the name and type of each

numerical type patch (the patch defined in 0/U), is consistent with the base

type patch (the patch defined in the file constant/polyMesh/boundary).

• The 0 directory contains the initial and boundary conditions for all primitive variables,

in this case p and U. The U file contains the following information (velocity):

The 0 directory
(and by the way, open each file and go thru its content)

A deeper view to my first OpenFOAM® case setup

17 dimensions [0 1 -1 0 0 0 0];

18

19 internalField uniform (0 0 0);

20

21 boundaryField

22 {

23 movingWall

24 {

25 type fixedValue;

26 value uniform (1 0 0);

27 }

28

29 fixedWalls

30 {

31 type fixedValue;

32 value uniform (0 0 0);

33 }

34

35 frontAndBack

36 {

37 type empty;

38 }

39 }

Numerical boundary condition for the patch
movingWall

Numerical boundary condition for the patch
fixedWalls

Numerical boundary condition for the patch

frontAndBack (this is a constrained boundary
condition).

Dimensions of the field

• The 0 directory contains the initial and boundary conditions for all primitive variables,

in this case p and U. The p file contains the following information (modified pressure):

The 0 directory
(and by the way, open each file and go thru its content)

A deeper view to my first OpenFOAM® case setup

17 dimensions [0 2 -2 0 0 0 0];

18

19 internalField uniform 0;

20

21 boundaryField

22 {

23 movingWall

24 {

25 type zeroGradient;

26 }

27

28 fixedWalls

29 {

30 type zeroGradient;

31 }

32

33 frontAndBack

34 {

35 type empty;

36 }

37 }

38

Dimensions of the field

Uniform initial conditions.

The modified pressure field is initialize to 0

in all the domain. This is relative

pressure.

Note:
If you take some time and compare the files 0/p and

constant/polyMesh/boundary, you will see that the name and type of each

numerical type patch (the patch defined in 0/p), is consistent with the base

type patch (the patch defined in the file constant/polyMesh/boundary).

• The 0 directory contains the initial and boundary conditions for all primitive variables,

in this case p and U. The p file contains the following information (modified pressure):

The 0 directory
(and by the way, open each file and go thru its content)

A deeper view to my first OpenFOAM® case setup

17 dimensions [0 2 -2 0 0 0 0];

18

19 internalField uniform 0;

20

21 boundaryField

22 {

23 movingWall

24 {

25 type zeroGradient;

26 }

27

28 fixedWalls

29 {

30 type zeroGradient;

31 }

32

33 frontAndBack

34 {

35 type empty;

36 }

37 }

38

Dimensions of the field

Numerical boundary condition for the patch
movingWall

Numerical boundary condition for the patch
fixedWalls

Numerical boundary condition for the patch

frontAndBack (this is a constrained boundary
condition).

• We just used icoFoam which is an incompressible solver.

• Let us be really loud on this. All the incompressible solvers implemented in OpenFOAM®
(icoFoam, simpleFoam, pisoFoam, and pimpleFoam), use the modified pressure, that is,

A deeper view to my first OpenFOAM® case setup

• Or in OpenFOAM® jargon: dimensions [0 2 -2 0 0 0 0]

• So when visualizing or post processing the results do not forget to multiply the pressure by

the density in order to get the right units of the physical pressure, that is,

• Or in OpenFOAM® jargon: dimensions [1 -1 -2 0 0 0 0]

A very important remark on the pressure field

with units

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 6.x |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

object p;

}

// * //

A deeper view to my first OpenFOAM® case setup

• Coming back to the headers, and specifically the headers related to the field variable
dictionaries (e.g. U, p, gradU, and so on).

• In the header of the field variables, the class type should be consistent with the type

of field variable you are using.

• Be careful with this, specially if you are copying and pasting files.

• If the field variable is a scalar, the class should be volScalarField.

A deeper view to my first OpenFOAM® case setup

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 6.x |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class volTensorField;

object gradU;

}

• If the field variable is a vector, the class should be volVectorField.

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 6.x |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class volVectorField;

object U;

}

• If the field variable is a tensor (e.g. the velocity gradient tensor), the class should be

volTensorField.

• Finally, let us talk about the output screen, which shows a lot of information.

The output screen

Simulation time
Courant number

Velocity residuals

Continuity errors

Pressure residuals

No orthogonal corrections

Only one PISO correction

Execution time (wall time)

Additional information

Minimum and maximum values of each fieldEnd of the simulation

A deeper view to my first OpenFOAM® case setup

• By default, OpenFOAM® does not show the minimum and maximum information. To print out this information,

we use functionObjects. We are going to address functionObjects in detail when we deal with post-

processing and sampling.

• But for the moment, what we need to know is that we add functionObjects at the end of the controlDict

dictionary. In this case, we are using a functionObject that prints the minimum and maximum information of

the selected fields.

• This information complements the residuals information and it is saved in the postProcessing directory. It

gives a better indication of stability, boundedness and consistency of the solution.

The output screen

A deeper view to my first OpenFOAM® case setup

49 functions

50 {

51

52 ///

53

54 minmaxdomain

55 {

56 type fieldMinMax;

57

58 functionObjectLibs ("libfieldFunctionObjects.so");

59

60 enabled true; //true or false

61

62 mode component;

63

64 writeControl timeStep;

65 writeInterval 1;

66

67 log true;

68

69 fields (p U);

70 }

91

92 };

functionObject to use

Turn on/off functionObject

Output interval of functionObject

Field variables to sample

Name of the folder where the output of
the functionObject will be saved

Save output of the functionObject in a ascii file

• Another very important output information is the CFL or Courant number.

• The Courant number imposes the CFL number condition, which is the maximum allowable

CFL number a numerical scheme can use. For the n - dimensional case, the CFL number

condition becomes,

The output screen

A deeper view to my first OpenFOAM® case setup

• In OpenFOAM®, most of the solvers are implicit, which means they are unconditionally

stable. In other words, they are not constrained to the CFL number condition.

• However, the fact that you are using a numerical method that is unconditionally stable, does

not mean that you can choose a time step of any size.

• The time-step must be chosen in such a way that it resolves the time-dependent features, and it

maintains the solver stability.

• For the moment and for the sake of simplicity, let us try to keep the CFL number below 5.0 and

preferably close to 1.0 (for good accuracy).

• Other properties of the numerical method that you should observe are: conservationess,

boundedness, transportiveness, and accuracy. We are going to address these properties and

the CFL number when we deal with the FVM theory.

A deeper view to my first OpenFOAM® case setup

Time = 49.99

Courant Number mean: 0.044365026 max: 0.16800273

smoothSolver: Solving for Ux, Initial residual = 1.1174405e-09, Final residual = 1.1174405e-09, No Iterations 0

smoothSolver: Solving for Uy, Initial residual = 1.4904251e-09, Final residual = 1.4904251e-09, No Iterations 0

DICPCG: Solving for p, Initial residual = 6.7291723e-07, Final residual = 6.7291723e-07, No Iterations 0

time step continuity errors : sum local = 2.5096865e-10, global = -1.7872395e-19, cumulative = 2.6884327e-18

ExecutionTime = 4.47 s ClockTime = 5 s

fieldMinMax minmaxdomain output:

min(p) = -0.37208362 at location (0.025 0.975 0.5)

max(p) = 0.77640927 at location (0.975 0.975 0.5)

min(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

max(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

Time = 50

Courant Number mean: 0.044365026 max: 0.16800273

smoothSolver: Solving for Ux, Initial residual = 1.0907508e-09, Final residual = 1.0907508e-09, No Iterations 0

smoothSolver: Solving for Uy, Initial residual = 1.4677462e-09, Final residual = 1.4677462e-09, No Iterations 0

DICPCG: Solving for p, Initial residual = 1.0020944e-06, Final residual = 1.0746895e-07, No Iterations 1

time step continuity errors : sum local = 4.0107145e-11, global = -5.0601748e-20, cumulative = 2.637831e-18

ExecutionTime = 4.47 s ClockTime = 5 s

fieldMinMax minmaxdomain output:

min(p) = -0.37208345 at location (0.025 0.975 0.5)

max(p) = 0.77640927 at location (0.975 0.975 0.5)

min(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

max(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

The output screen

• To control the CFL number you can change the time step or you can change the mesh.

• The easiest way is by changing the time step.

• For a time step of 0.01 seconds, this is the output you should get for this case,

CFL number at
time step n

CFL number at
time step n - 1

A deeper view to my first OpenFOAM® case setup

Time = 49.9

Courant Number mean: 0.4441161 max: 1.6798756

smoothSolver: Solving for Ux, Initial residual = 0.00016535808, Final residual = 2.7960145e-09, No Iterations 5

smoothSolver: Solving for Uy, Initial residual = 0.00015920267, Final residual = 2.7704949e-09, No Iterations 5

DICPCG: Solving for p, Initial residual = 0.0015842846, Final residual = 5.2788554e-07, No Iterations 26

time step continuity errors : sum local = 8.6128916e-09, global = 3.5439859e-19, cumulative = 2.4940081e-17

ExecutionTime = 0.81 s ClockTime = 1 s

fieldMinMax minmaxdomain output:

min(p) = -0.34322821 at location (0.025 0.975 0.5)

max(p) = 0.73453489 at location (0.975 0.975 0.5)

min(U) = (0.0002505779 -0.00025371425 0) at location (0.025 0.025 0.5)

max(U) = (0.0002505779 -0.00025371425 0) at location (0.025 0.025 0.5)

Time = 50

Courant Number mean: 0.44411473 max: 1.6798833

smoothSolver: Solving for Ux, Initial residual = 0.00016378098, Final residual = 2.7690608e-09, No Iterations 5

smoothSolver: Solving for Uy, Initial residual = 0.00015720331, Final residual = 2.7354499e-09, No Iterations 5

DICPCG: Solving for p, Initial residual = 0.0015662416, Final residual = 5.2290439e-07, No Iterations 26

time step continuity errors : sum local = 8.5379223e-09, global = -3.6676527e-19, cumulative = 2.4573316e-17

ExecutionTime = 0.81 s ClockTime = 1 s

fieldMinMax minmaxdomain output:

min(p) = -0.34244269 at location (0.025 0.975 0.5)

max(p) = 0.73656831 at location (0.975 0.975 0.5)

min(U) = (0.00025028679 -0.00025338014 0) at location (0.025 0.025 0.5)

max(U) = (0.00025028679 -0.00025338014 0) at location (0.025 0.025 0.5)

The output screen

• To control the CFL number you can change the time step or you can change the mesh.

• The easiest way is by changing the time step.

• For a time step of 0.1 seconds, this is the output you should get for this case,

CFL number at
time step n - 1

CFL number at
time step n

A deeper view to my first OpenFOAM® case setup

Time = 2

Courant Number mean: 1.6828931 max: 5.6061178

smoothSolver: Solving for Ux, Initial residual = 0.96587058, Final residual = 4.9900041e-09, No Iterations 27

smoothSolver: Solving for Uy, Initial residual = 0.88080685, Final residual = 9.7837781e-09, No Iterations 25

DICPCG: Solving for p, Initial residual = 0.95568243, Final residual = 7.9266324e-07, No Iterations 33

time step continuity errors : sum local = 6.3955627e-06, global = 1.3227253e-17, cumulative = 1.4125109e-17

ExecutionTime = 0.04 s ClockTime = 0 s

fieldMinMax minmaxdomain output:

min(p) = -83.486425 at location (0.975 0.875 0.5)

max(p) = 33.078468 at location (0.025 0.925 0.5)

min(U) = (0.1309243 -0.13648118 0) at location (0.025 0.025 0.5)

max(U) = (0.1309243 -0.13648118 0) at location (0.025 0.025 0.5)

Time = 2.5

Courant Number mean: 8.838997 max: 43.078153

#0 Foam::error::printStack(Foam::Ostream&) at ??:?

#1 Foam::sigFpe::sigHandler(int) at ??:?

#2 ? in "/lib64/libc.so.6"

#3 Foam::symGaussSeidelSmoother::smooth(Foam::word const&, Foam::Field<double>&, Foam::lduMatrix const&, Foam::Field<double> const&,

Foam::FieldField<Foam::Field, double> const&, Foam::UPtrList<Foam::lduInterfaceField const> const&, unsigned char, int) at ??:?

#4 Foam::symGaussSeidelSmoother::smooth(Foam::Field<double>&, Foam::Field<double> const&, unsigned char, int) const at ??:?

#5 Foam::smoothSolver::solve(Foam::Field<double>&, Foam::Field<double> const&, unsigned char) const at ??:?

#6 ? at ??:?

The output screen

• To control the CFL number you can change the time step or you can change the mesh.

• The easiest way is by changing the time step.

• For a time step of 0.5 seconds, this is the output you should get for this case,

Compare these values with the values

of the previous cases. For the

physics involve these values are
unphysical.

The solver crashed.

The offender? Time step too large.

CFL number at
time step n - 1

CFL number at

time step n (way
too high)

A deeper view to my first OpenFOAM® case setup

Time = 50

Courant Number mean: 0.44411473 max: 1.6798833

smoothSolver: Solving for Ux, Initial residual = 0.00016378098, Final residual = 2.7690608e-09, No Iterations 5

smoothSolver: Solving for Uy, Initial residual = 0.00015720331, Final residual = 2.7354499e-09, No Iterations 5

DICPCG: Solving for p, Initial residual = 0.0015662416, Final residual = 5.2290439e-07, No Iterations 26

time step continuity errors : sum local = 8.5379223e-09, global = -3.6676527e-19, cumulative = 2.4573316e-17

ExecutionTime = 0.81 s ClockTime = 1 s

fieldMinMax minmaxdomain output:

min(p) = -0.34244269 at location (0.025 0.975 0.5)

max(p) = 0.73656831 at location (0.975 0.975 0.5)

min(U) = (0.00025028679 -0.00025338014 0) at location (0.025 0.025 0.5)

max(U) = (0.00025028679 -0.00025338014 0) at location (0.025 0.025 0.5)

The output screen

• Another output you should monitor are the continuity errors.

• These numbers should be small (it does not matter if they are negative or positive).

• If these values increase in time (about the order of 1e-2), you better control the case setup because

something is wrong.

• The continuity errors are defined in the following file

$WM_PROJECT_DIR/src/finiteVolume/cfdTools/incompressible/continuityErrs.H

Continuity errors

A deeper view to my first OpenFOAM® case setup

• If you forget a keyword or a dictionary file, give a wrong option to a compulsory or optional entry,

misspelled something, add something out of place in a dictionary, use the wrong dimensions,
forget a semi-colon and so on, OpenFOAM® will give you the error FOAM FATAL IO ERROR.

• This error does not mean that the actual OpenFOAM® installation is corrupted. It is telling you

that you are missing something or something is wrong in a dictionary.

• Maybe the guys of OpenFOAM® went a little bit extreme here.

/*---*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 6.x |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

Build : 5.x-5d8318b22cbe

Exec : icoFoam

Date : Nov 02 2014

Time : 00:33:41

Host : "linux-cfd"

PID : 3675

Case : /home/cfd/my_cases_course/cavity

nProcs : 1

sigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).

fileModificationChecking : Monitoring run-time modified files using timeStampMaster

allowSystemOperations : Allowing user-supplied system call operations

// * //

Create time

--> FOAM FATAL IO ERROR:

Error output

A deeper view to my first OpenFOAM® case setup

Build : 6.x-5d8318b22cbe

Exec : icoFoam

Date : Nov 02 2014

Time : 00:33:41

Host : "linux-cfd"

PID : 3675

Case : /home/cfd/my_cases_course/cavity

nProcs : 1

sigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).

fileModificationChecking : Monitoring run-time modified files using timeStampMaster

allowSystemOperations : Allowing user-supplied system call operations

// * //

Create time

--> FOAM FATAL IO ERROR:

banana_endTime is not in enumeration:

4

(

endTime

nextWrite

noWriteNow

writeNow

)

file: /home/cfd/my_cases_course/cavity/system/controlDict.stopAt at line 24.

From function NamedEnum<Enum, nEnum>::read(Istream&) const

in file lnInclude/NamedEnum.C at line 72.

FOAM exiting

• Also, before entering into panic read carefully the output screen because OpenFOAM® is telling

you what is the error and how to correct it.

The origin of the error

Possible options to correct the error

Location of the error

Error output

A deeper view to my first OpenFOAM® case setup

• It is very important to read the screen and understand the output.

--> FOAM FATAL IO ERROR:

cannot find file

file: /home/joegi/my_cases_course/6/101OF/cavity/0/p at line 0.

From function regIOobject::readStream()

in file db/regIOobject/regIOobjectRead.C at line 73.

FOAM exiting

• Train yourself to identify the errors. Hereafter we list a few possible errors.

• Missing compulsory file p

Error output

“E perience is simply the name we give our mistakes.”

A deeper view to my first OpenFOAM® case setup

--> FOAM FATAL IO ERROR:

Cannot find patchField entry for xmovingWall

file: /home/joegi/my_cases_course/6/101OF/cavity/0/p.boundaryField from line 25 to line 35.

From function GeometricField<Type, PatchField, GeoMesh>::GeometricBoundaryField::readField(const

DimensionedField<Type, GeoMesh>&, const dictionary&)

in file /home/joegi/OpenFOAM/OpenFOAM-6/src/OpenFOAM/lnInclude/GeometricBoundaryField.C at line 209.

FOAM exiting

• Mismatching patch name in file p

--> FOAM FATAL IO ERROR:

keyword div(phi,U) is undefined in dictionary

"/home/joegi/my_cases_course/6/101OF/cavity/system/fvSchemes.divSchemes"

file: /home/joegi/my_cases_course/6/101OF/cavity/system/fvSchemes.divSchemes from line 30 to line 30.

From function dictionary::lookupEntry(const word&, bool, bool) const

in file db/dictionary/dictionary.C at line 442.

FOAM exiting

• Missing compulsory keyword in fvSchemes

Error output

A deeper view to my first OpenFOAM® case setup

--> FOAM FATAL IO ERROR:

"ill defined primitiveEntry starting at keyword 'PISO' on line 68 and ending at line 68"

file: /home/joegi/my_cases_course/6/101OF/cavity/system/fvSolution at line 68.

From function primitiveEntry::readEntry(const dictionary&, Istream&)

in file lnInclude/IOerror.C at line 132.

FOAM exiting

• Missing entry in file fvSolution at keyword PISO

• Incompatible dimensions. Likely the offender is the file U

Error output

--> FOAM FATAL ERROR:

incompatible dimensions for operation

[U[0 1 -2 1 0 0 0]] + [U[0 1 -2 2 0 0 0]]

From function checkMethod(const fvMatrix<Type>&, const fvMatrix<Type>&)

in file /home/joegi/OpenFOAM/OpenFOAM-6/src/finiteVolume/lnInclude/fvMatrix.C at line 1295.

FOAM aborting

#0 Foam::error::printStack(Foam::Ostream&) at ??:?

#1 Foam::error::abort() at ??:?

#2 void Foam::checkMethod<Foam::Vector<double> >(Foam::fvMatrix<Foam::Vector<double> > const&,

Foam::fvMatrix<Foam::Vector<double> > const&, char const*) at ??:?

#3 ? at ??:?

#4 ? at ??:?

#5 __libc_start_main in "/lib64/libc.so.6"

#6 ? at /home/abuild/rpmbuild/BUILD/glibc-2.19/csu/../sysdeps/x86_64/start.S:125

Aborted

A deeper view to my first OpenFOAM® case setup

--> FOAM FATAL IO ERROR:

keyword deltaT is undefined in dictionary "/home/joegi/my_cases_course/6/101OF/cavity/system/controlDict"

file: /home/joegi/my_cases_course/6/101OF/cavity/system/controlDict from line 17 to line 69.

From function dictionary::lookupEntry(const word&, bool, bool) const

in file db/dictionary/dictionary.C at line 442.

FOAM exiting

• Missing keyword deltaT in file controlDict

--> FOAM FATAL ERROR:

Cannot find file "points" in directory "polyMesh" in times 0 down to constant

From function Time::findInstance(const fileName&, const word&, const IOobject::readOption, const word&)

in file db/Time/findInstance.C at line 203.

FOAM exiting

• Missing file points in directory polyMesh. Likely you are missing the mesh.

Error output

A deeper view to my first OpenFOAM® case setup

--> FOAM FATAL IO ERROR:

Unknown patchField type sfixedValue for patch type wall

Valid patchField types are :

74

(

SRFFreestreamVelocity

SRFVelocity

SRFWallVelocity

activeBaffleVelocity

...

...

...

variableHeightFlowRateInletVelocity

waveTransmissive

wedge

zeroGradient

)

file: /home/joegi/my_cases_course/6/101OF/cavity/0/U.boundaryField.movingWall from line 25 to line 26.

From function fvPatchField<Type>::New(const fvPatch&, const DimensionedField<Type, volMesh>&, const

dictionary&)

in file /home/joegi/OpenFOAM/OpenFOAM-6/src/finiteVolume/lnInclude/fvPatchFieldNew.C at line 143.

FOAM exiting

• Unknown boundary condition type.

Error output

A deeper view to my first OpenFOAM® case setup

/*---*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 6.x |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

Build : 6.x-5d8318b22cbe

Exec : icoFoam

Date : Nov 02 2014

Time : 00:33:41

Host : "linux-cfd"

PID : 3675

fileName::stripInvalid() called for invalid fileName /home/cfd/my_cases_course/cavity0

For debug level (= 2) > 1 this is considerd fatal

Aborted

• This one is specially hard to spot

• This error is related to the name of the working directory. In this case the name of the
working directory is cavity 0 (there is a blank space between the word cavity and

the number 0).

• Do not use blank spaces or funny symbols when naming directories and files.

• Instead of cavity 0 you could use cavity_0.

Error output

A deeper view to my first OpenFOAM® case setup

• You should worry about the SIGFPE error signal. This error signal indicates that something

went really wrong (erroneous arithmetic operation).

• This message (that seems a little bit difficult to understand), is giving you a lot information.

• For instance, this output is telling us that the error is due to SIGFPE and the class associated to

the error is lduMatrix. It is also telling you that the GAMGSolver solver is the affected one

(likely the offender is the pressure).

Error output

#0 Foam::error::printStack(Foam::Ostream&) at ??:?

#1 Foam::sigFpe::sigHandler(int) at ??:?

#2 in "/lib64/libc.so.6"

#3 Foam::DICPreconditioner::calcReciprocalD(Foam::Field<double>&, Foam::lduMatrix const&) at ??:?

#4 Foam::DICSmoother::DICSmoother(Foam::word const&, Foam::lduMatrix const&, Foam::FieldField<Foam::Field, double>

const&, Foam::FieldField<Foam::Field, double> const&, Foam::UPtrList<Foam::lduInterfaceField const> const&) at ??:?

#5 Foam::lduMatrix::smoother::addsymMatrixConstructorToTable<Foam::DICSmoother>::New(Foam::word const&,

Foam::lduMatrix const&, Foam::FieldField<Foam::Field, double> const&, Foam::FieldField<Foam::Field, double> const&,

Foam::UPtrList<Foam::lduInterfaceField const> const&) at ??:?

#6 Foam::lduMatrix::smoother::New(Foam::word const&, Foam::lduMatrix const&, Foam::FieldField<Foam::Field, double>

const&, Foam::FieldField<Foam::Field, double> const&, Foam::UPtrList<Foam::lduInterfaceField const> const&,

Foam::dictionary const&) at ??:?

#7 Foam::GAMGSolver::initVcycle(Foam::PtrList<Foam::Field<double> >&, Foam::PtrList<Foam::Field<double> >&,

Foam::PtrList<Foam::lduMatrix::smoother>&, Foam::Field<double>&, Foam::Field<double>&) const at ??:?

#8 Foam::GAMGSolver::solve(Foam::Field<double>&, Foam::Field<double> const&, unsigned char) const at ??:?

#9 Foam::fvMatrix<double>::solveSegregated(Foam::dictionary const&) at ??:?

#10 Foam::fvMatrix<double>::solve(Foam::dictionary const&) at ??:?

#11

at ??:?

#12 __libc_start_main in "/lib64/libc.so.6"

#13

at /home/abuild/rpmbuild/BUILD/glibc-2.17/csu/../sysdeps/x86_64/start.S:126

Floating point exception

A deeper view to my first OpenFOAM® case setup

Dictionary files general features

• OpenFOAM® follows same general syntax rules as in C++.

• Commenting in OpenFOAM® (same as in C++):

• As in C++, you can use the #include directive in your dictionaries (do not forget to create the respective include file):

#include “ n t C nd t n ”

• Scalars, vectors, lists and dictionaries.

• Scalars in OpenFOAM® are represented by a single value, e.g.,

3.14159

• Vectors in OpenFOAM® are represented as a list with three components, e.g.,

(1.0 0.0 0.0)

• A second order tensor in OpenFOAM® is represented as a list with nine components, e.g.,

(

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

)

/*

This is a block comment

*/

// This is a line comment

A deeper view to my first OpenFOAM® case setup

Dictionary files general features

• Scalars, vectors, lists and dictionaries.

• List entries are contained within parentheses (). A list can contain scalars, vectors, tensors, words, and so on.

• A list of scalars is represented as follows:

name_of_the_list

(

0

1

2

);

• A list of vectors is represented as follows:

name_of_the_list

(

(0 0 0)

(1 0 0)

(2 0 0)

);

• A list of words is represented as follows

name_of_the_list

(

“ rd1”

“ rd2”

“ rd3”

);

A deeper view to my first OpenFOAM® case setup

Dictionary files general features

solvers

{

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-06;

relTol 0;

}

U

{

solver PBiCGStab;

preconditioner DILU;

tolerance 1e-06;

relTol 0;

}

…

…

…

}

• OpenFOAM® uses dictionaries to specify data in an input file (dictionary file).

• A dictionary in OpenFOAM® can contain multiple data entries and at the same time dictionaries can contain

sub-dictionaries.

• To specify a dictionary entry, the name is followed by the keyword entries in curly braces:

Dictionary solvers

Sub-dictionary p

Sub-dictionary U

• Macro expansion.

• We first declare a variable (x = 10) and then we use it through the $ macro substitution ($x).

vectorField (20 0 0); //Declare variable

internalField uniform $vectorField; //Use declared variable

scalarField 101328; //Declare variable

type fixedValue;

value uniform $scalarField; //Use declared variable

• You can use macro expansion to duplicate and access variables in dictionaries

p // Declare/create the dictionary p

{

solver PCG;

preconditioner DIC;

tolerance 1e-06;

relTol 0;

}

$p; //To create a copy of the dictionary p

$p.solver; //To access the variable solver in the dictionary p

A deeper view to my first OpenFOAM® case setup

Dictionary files general features

A deeper view to my first OpenFOAM® case setup

Dictionary files general features

• In tead of writing t e poor an’ way :

leftWall

{

type fixedValue;

value uniform (0 0 0);

}

rightWall

{

type fixedValue;

value uniform (0 0 0);

}

topWall

{

type fixedValue;

value uniform (0 0 0);

}

• You can write (the lazy way):

“(eft|r ght|t)W ”

{

type fixedValue;

value uniform (0 0 0);

}

• You could also try (even lazier):

“.*W ”

{

type fixedValue;

value uniform (0 0 0);

}

• OpenFOAM® understands the syntax of regular expressions (regex or regeaxp).

A deeper view to my first OpenFOAM® case setup

Dictionary files general features

• Inline calculations.

• You can use the directive #calc to do inline calculations, the syntax is as follows:

X = 10.0; //Declare variable

Y = 3.0; //Declare variable

Z #c c “$ *$ – 12.0”; //Do inline calculation. The result is saved in the variable Z

• With inline calculations you can access all the mathematical functions available in C++.

• Macro expansions and inline calculations are very useful to parametrize dictionaries and avoid repetitive tasks.

• Switches: they are used to enable or disable a function or a feature in the dictionaries.

• Switches are logical values. You can use the following values:

Switches

false true

off on

no yes

n y

f t

none true

• You can find all the valid switches in the following file:

OpenFOAM-6/src/OpenFOAM/primitives/bools/Switch/Switch.C

• If you need help about a solver or utility, you can use the option –help. For

instance:

• $> icoFoam –help

will print some basic help and usage information about icoFoam

• Remember, you have the source code there so you can always

check the original source.

A deeper view to my first OpenFOAM® case setup

Solvers and utilities help

A deeper view to my first OpenFOAM® case setup

Solvers and utilities help

• To get more information about the boundary conditions, post-processing utilities, and the API read the

Doxygen documentation.

• If you did not compile the Doxygen documentation, you can access the information online,

http://cpp.openfoam.org/v6/

API documentation

Boundary conditions and post-processing

utilities documentation

http://cpp.openfoam.org/v8/

A deeper view to my first OpenFOAM® case setup

Exercises

• Run the case with Re = 10 and Re = 1000. Feel free to change any variable to achieve the Re value (velocity,

viscosity or length). Do you see an unsteady behavior in any of the cases? What about the computing time,

what simulation is faster?

• Run the tutorial with Re = 100, a mesh with 120 x 120 x 1 cells, and using the default setup (original
controlDict, fvSchemes and fvSolution). Did the simulation converge? Did it crash? Any comments.

• If your simulation crashed, try to solve the problem.

(Hint: try to reduce the time-step to get a CFL less than 1)

• Besides reducing the time-step, can you find another solution?

(Hint: look at the PISO options)

• Change the base type of the boundary patch movingWall to patch. (the boundary file). Do you get the same

results? Can you comment on this?

• Try to extent the problem to 3D and use a uniform mesh (20 x 20 x 20). Compare the solution at the mid

section of the 3D simulation with the 2D solution. Are the solutions similar?

• How many time discretization schemes are there in OpenFOAM®? Try to use a different discretization

scheme.

• Run the simulation using Gauss upwind instead of Gauss linear for the term div(phi,U) (fvSchemes). Do

you get the same quantitative results?

• Sample the field variables U and P at a different location and plot the results using gnuplot.

• What density value do you think we were using? What about dynamic viscosity?

Hint: the physical pressure is equal to the modified pressure and

