
Dam break free surface flow

Physical and numerical side of the

problem:

• In this case we are going to use the volume of

fluid (VOF) method.

• This method solves the incompressible Navier-

Stokes equations plus an additional equation to

track the phases (free surface location).

• As this is a multiphase case, we need to define

the physical properties for each phase involved

(viscosity, density and surface tension).

• The working fluids are water and air.

• Additionally, we need to define the gravity vector

and initialize the two flows.

• This is a three-dimensional and unsteady case.

• The details of the case setup can be found in

the following reference:

A Volume-of-Fluid Based Simulation Method for Wave

Impact Problems.

Journal of Computational Physics 206(1):363-393.

June, 2005.

3D Dam break – Free surface flow

Gravity

Obstacle

Water column

Box with open top

Workflow of the case

3D Dam break – Free surface flow

setFields

interFoam

sampling

functionObjects

paraview

blockMesh

+

snappyHexMesh

Initial conditions – Coarse mesh Solution at Time = 1 second – Coarse mesh

3D Dam break – Free surface flow

At the end of the day, you should get something like this

VOF Fraction (Free surface tracking) – Very fine mesh
http://www.wolfdynamics.com/validations/3d_db/dbreak.gif

3D Dam break – Free surface flow

http://www.wolfdynamics.com/validations/3d_db/dbreak.gif

3D Dam break – Free surface flow

• Let us run this case. Go to the directory:

$PTOFC/3d_damBreak

• $PTOFC is pointing to the directory where you extracted the training material.

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of

how to run the case. In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh,

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on. These files can be used to run the case

automatically by typing in the terminal, for example, sh run_solver.

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this

way, you will get used with the command line interface and OpenFOAM® commands.

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases.

What are we going to do?

3D Dam break – Free surface flow

• We will use this case to introduce the multiphase solver interFoam.

• interFoam is a solver for 2 incompressible, isothermal immiscible fluids using a VOF

(volume of fluid) phase-fraction based interface capturing approach

• We will define the physical properties of two phases and we are going to initialize

these phases.

• We will define the gravity vector in the dictionary g.

• After finding the solution, we will visualize the results. This is an unsteady case so

now we are going to see things moving.

• We are going to briefly address how to post-process multiphase flows.

• We are going to generate the mesh using snappyHexMesh, but for the purpose of this

tutorial we are not going to discuss the dictionaries.

• Remember, different solvers have different input dictionaries.

The constant directory

• In this directory, we will find the following compulsory dictionary files:

• g

• transportProperties

• turbulenceProperties

• g contains the definition of the gravity vector.

• transportProperties contains the definition of the physical properties of

each phase.

• turbulenceProperties contains the definition of the turbulence model to

use.

3D Dam break – Free surface flow

• This dictionary file is located in the directory
constant.

• For multiphase flows, this dictionary is

compulsory.

• In this dictionary we define the gravity vector (line

19).

• Pay attention to the class type (line 12).

The g dictionary file

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class uniformDimensionedVectorField;

13 location "constant";

14 object g;

15 }

17

18 dimensions [0 1 -2 0 0 0 0];

19 value (0 0 -9.81);

3D Dam break – Free surface flow

• This dictionary file is located in the directory
constant.

• We first define the name of the phases (line 17).

In this case we are defining the names water and

air. The first entry in this list is the primary phase

(water).

• The name of the primary phase is the one you will

use to initialize the solution.

• The name of the phases is given by the user.

• In this file we set the kinematic viscosity (nu),

density (rho) and transport model

(transportModel) of the phases.

• We also define the surface tension (sigma).

The transportProperties dictionary file

17 phases (water air);

18

19 water

20 {

21 transportModel Newtonian;

22 nu [0 2 -1 0 0 0 0] 1e-06;

23 rho [1 -3 0 0 0 0 0] 1000;

24 }

25

26 air

27 {

28 transportModel Newtonian;

29 nu [0 2 -1 0 0 0 0] 1.48e-05;

30 rho [1 -3 0 0 0 0 0] 1;

31 }

32

33 sigma [1 0 -2 0 0 0 0] 0.07;

Primary phase

3D Dam break – Free surface flow

• In this dictionary file we select what model we would like to use (laminar or

turbulent).

• This dictionary is compulsory.

• In this case we use a RANS turbulence model (kEpsilon).

The turbulenceProperties dictionary file

17 simulationType RAS;

18

19 RAS

20 {

21 RASModel kEpsilon;

22

23 turbulence on;

24

25 printCoeffs on;

26 }

3D Dam break – Free surface flow

The 0 directory

• In this directory, we will find the dictionary files that contain the boundary and

initial conditions for all the primitive variables.

• As we are solving the incompressible RANS Navier-Stokes equations using

the VOF method, we will find the following field files:

• alpha.water (volume fraction of water phase)

• p_rgh (pressure field minus hydrostatic component)

• U (velocity field)

• k (turbulent kinetic energy field)

• epsilon (rate of dissipation of turbulence energy field)

• nut (turbulence viscosity field)

3D Dam break – Free surface flow

The file 0/alpha.water

17 dimensions [0 0 0 0 0 0 0];

18

19 internalField uniform 0;

20

21 boundaryField

22 {

23 front

24 {

25 type zeroGradient;

26 }

27 back

28 {

29 type zeroGradient;

30 }

31 left

32 {

33 type zeroGradient;

34 }

35 right

36 {

37 type zeroGradient;

38 }

39 bottom

40 {

41 type zeroGradient;

42 }

43 top

44 {

45 type inletOutlet;

46 inletValue uniform 0;

47 value uniform 0;

48 }

49 stlSurface

50 {

51 type wall;

52 }

53

54 }

• This file contains the boundary and initial conditions

for the non-dimensional scalar field alpha.water

• This file is named alpha.water, because the

primary phase is water (we defined the primary
phase in the transportProperties dictionary).

• Initially, this field is initialize as 0 in the whole domain

(line 19). This means that there is no water in the

domain at time 0. Later, we will initialize the water

column and this file will be overwritten with a non-

uniform field for the internalField.

• For the front, back, left, right, bottom and

stlSurface patches we are using a zeroGradient

boundary condition (we are just extrapolating the

internal values to the boundary face).

• For the top patch we are using an inletOutlet

boundary condition. This boundary condition avoids

backflow into the domain. If the flow is going out it

will use zeroGradient and if the flow is coming back

it will assign the value set in the keyword inletValue

(line 46).

3D Dam break – Free surface flow

The file 0/p_rgh

• This file contains the boundary and initial conditions

for the dimensional scalar field p_rgh. The

dimensions of this field are given in Pascal (line 17)

• This scalar field contains the value of the static

pressure field minus the hydrostatic component.

• This field is initialize as 0 in the whole domain (line

19).

• For the front, back, left, right, bottom and

stlSurface patches we are using a

fixedFluxPressure boundary condition (refer to the

source code or doxygen documentation to know

more about this boundary condition).

• For the top patch we are using the totalPressure

boundary condition (refer to the source code or

doxygen documentation to know more about this

boundary condition).

3D Dam break – Free surface flow

17 dimensions [1 -1 -2 0 0 0 0];

18

19 internalField uniform 0;

20

21 boundaryField

22 {

23 front

24 {

25 type fixedFluxPressure;

26 value uniform 0;

27 }

28 back

33 left

38 right

43 bottom

48 top

49 {

50 type totalPressure;

51 p0 uniform 0;

52 U U;

53 phi phi;

54 rho rho;

55 psi none;

56 gamma 1;

57 value uniform 0;

58 }

59 stlSurface

60 {

61 type fixedFluxPressure;

62 value uniform 0;

63 }

64

65 }

The file 0/U

• This file contains the boundary and initial conditions

for the dimensional vector field U.

• We are using uniform initial conditions and the

numerical value is (0 0 0) (keyword internalField in

line 19).

• The front, back, left, right, bottom and stlSurface

patches are no-slip walls, therefore we impose a

fixedValue boundary condition with a value of (0 0 0)

at the wall.

• For the top patch we are using the

pressureInlterOutletVelocity boundary condition

(refer to the source code or doxygen documentation

to know more about this boundary condition).

3D Dam break – Free surface flow

17 dimensions [0 -1 -1 0 0 0 0];

18

19 internalField uniform (0 0 0);

20

21 boundaryField

22 {

23 front

24 {

25 type fixedValue;

26 value uniform (0 0 0);

27 }

28 back

33 left

38 right

43 bottom

48 top

49 {

50 type pressureInletOutletVelocity;

51 value uniform (0 0 0);

52 }

53 stlSurface

54 {

55 type fixedValue;

56 value uniform (0 0 0);

57 }

58

59 }

The file 0/k

• This file contains the boundary and initial conditions

for the dimensional scalar field k.

• This scalar (turbulent kinetic energy), is related to the

turbulence model.

• This field is initialize as 0.1 in the whole domain, and

all the boundary patches take the same value

($internalField).

• For the front, back, left, right, bottom and

stlSurface patches we are using a

kqRWallFunction boundary condition, which applies

a wall function at the walls (refer to the source code

or doxygen documentation to know more about this

boundary condition).

• For the top patch we are using the inletOutlet

boundary condition, this boundary condition handles

backflow (refer to the source code or doxygen

documentation to know more about this boundary

condition).

• We will deal with turbulence modeling later.

3D Dam break – Free surface flow

17 dimensions [0 2 -2 0 0 0 0];

18

19 internalField uniform 0.1;

20

21 boundaryField

22 {

23 “(front|back|left|right|bottom|stlSurface)”

24 {

25 type kqRWallFunction;

26 value $internalField;

27 }

28

29 top

30 {

31 type inletOutlet;

32 inletValue $internalField;

33 value $internalField;

34 }

35

36 }

The file 0/epsilon

• This file contains the boundary and initial conditions

for the dimensional scalar field epsilon.

• This scalar (rate of dissipation of turbulence energy),

is related to the turbulence model.

• This field is initialize as 0.1 in the whole domain, and

all the boundary patches take the same value

($internalField).

• For the front, back, left, right, bottom and

stlSurface patches we are using a

epsilonWallFunction boundary condition, which

applies a wall function at the walls (refer to the

source code or doxygen documentation to know

more about this boundary condition).

• For the top patch we are using the inletOutlet

boundary condition, this boundary condition handles

backflow (refer to the source code or doxygen

documentation to know more about this boundary

condition).

• We will deal with turbulence modeling later.

3D Dam break – Free surface flow

17 dimensions [0 2 -3 0 0 0 0];

18

19 internalField uniform 0.1;

20

21 boundaryField

22 {

23 “(front|back|left|right|bottom|stlSurface)”

24 {

25 type epsilonWallFunction;

26 value $internalField;

27 }

28

29 top

30 {

31 type inletOutlet;

32 inletValue $internalField;

33 value $internalField;

34 }

35

36 }

The file 0/nut

• This file contains the boundary and initial conditions

for the dimensional scalar field nut.

• This scalar (turbulent viscosity), is related to the

turbulence model.

• This field is initialize as 0 in the whole domain, and

all the boundary patches take the same value

($internalField).

• For the front, back, left, right, bottom and

stlSurface patches we are using a

nutkWallFunction boundary condition, which applies

a wall function at the walls (refer to the source code

or doxygen documentation to know more about this

boundary condition).

• For the top patch we are using the calculated

boundary condition, this boundary condition

computes the value of nut from k and epsilon (refer to

the source code or doxygen documentation to know

more about this boundary condition).

• We will deal with turbulence modeling later.

3D Dam break – Free surface flow

17 dimensions [0 2 -1 0 0 0 0];

18

19 internalField uniform 0;

20

21 boundaryField

22 {

23 “(front|back|left|right|bottom|stlSurface)”

24 {

25 type nutkWallFunction;

26 value $internalField;

27 }

28

29 top

30 {

31 type calculated;

32 value $internalField;;

33 }

34

35 }

The system directory

• The system directory consists of the following compulsory dictionary files:

• controlDict

• fvSchemes

• fvSolution

• controlDict contains general instructions on how to run the case.

• fvSchemes contains instructions for the discretization schemes that will be

used for the different terms in the equations.

• fvSolution contains instructions on how to solve each discretized linear

equation system.

3D Dam break – Free surface flow

17 application interFoam;

18

19 startFrom startTime;

20

21 startTime 0;

22

23 stopAt endTime;

24

25 endTime 8;

26

27 deltaT 0.0001;

28

29 writeControl adjustableRunTime;

30

31 writeInterval 0.02;

32

33 purgeWrite 0;

34

35 writeFormat ascii;

36

37 writePrecision 8;

38

39 writeCompression uncompressed;

40

41 timeFormat general;

42

43 timePrecision 8;

44

45 runTimeModifiable yes;

46

47 adjustTimeStep yes;

48

49 maxCo 0.5;

50 maxAlphaCo 0.5;

51 maxDeltaT 0.01;

• This case starts from time 0 (startTime), and it will run up to 8

seconds (endTime).

• The initial time step of the simulation is 0.0001 seconds

(deltaT).

• It will write the solution every 0.02 seconds (writeInterval) of

simulation time (runTime). It will automatically adjust the time

step (adjustableRunTime), in order to save the solution at the

precise write interval.

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat).

• The write precision is 8 digits (writePrecision). It will only save

eight digits in the output files.

• And as the option runTimeModifiable is on, we can modify all

these entries while we are running the simulation.

• In line 47 we turn on the option adjustTimeStep. This option

will automatically adjust the time step to achieve the maximum

desired courant number (lines 49-50). We also set a maximum

time step in line 51.

• Remember, the first time step of the simulation is done using

the value set in line 27 and then it is automatically scaled to

achieve the desired maximum values (lines 49-51).

The controlDict dictionary

3D Dam break – Free surface flow

55 functions

56 {

60 minmaxdomain

61 {

62 type fieldMinMax;

63

64 functionObjectLibs ("libfieldFunctionObjects.so");

65

66 enabled true; //true or false

67

68 mode component;

69

70 writeControl timeStep;

71 writeInterval 1;

72

73 log true;

74

75 fields (p p_rgh U alpha.water k epsilon);

76 }

144 };

• Let us take a look at the functionObjects definitions.

• In lines 60-76 we define the fieldMinMax functionObject

which computes the minimum and maximum values of

the field variables (p p_rgh U alpha.water k epsilon).

The controlDict dictionary

3D Dam break – Free surface flow

55 functions

56 {

81 water_in_domain

82 {

83 type volRegion;

84 functionObjectLibs ("libfieldFunctionObjects.so");

85 enabled true;

86

87 enabled true;

88

89 //writeControl outputTime;

90 writeControl timeStep;

91 writeInterval 1;

92

93 log true;

94

95 regionType all;

96

97 operation volIntegrate;

98 fields

99 (

100 alpha.water

101);

102 }

144 };

The controlDict dictionary

• Let us take a look at the functionObjects definitions.

• In lines 81-102 we define the volRegion functionObject

which computes the volume integral (volIntegrate) of the

field variable alpha.water in all the domain.

• Basically, we are monitoring the quantity of water in the

domain.

3D Dam break – Free surface flow

55 functions

56 {

107 probes1

108 {

109 type probes;

110 functionObjectLibs ("libsampling.so");

111

112 pobeLocations

113 (

114 (0.82450002 0 0.021)

115 (0.82450002 0 0.061)

116 (0.82450002 0 0.101)

117 (0.82450002 0 0.141)

118 (0.8035 0 0.161)

119 (0.7635 0 0.161)

120 (0.7235 0 0.161)

121 (0.6835 0 0.161)

122);

123

124 fields

125 (

126 p p_rgh

127);

128

129 writeControl timeStep;

130 writeInterval 1;

131 }

144 };

The controlDict dictionary

• Let us take a look at the functionObjects definitions.

• In lines 107-131 we define the probes functionObject

which sample the selected fields (lines 124-127) at the

selected locations (lines 112-122).

• This sampling is done on-the-fly. All the information

sample by this functionObject is saved in the directory
./postProcessing/probes1

• As we are sampling starting from time 0, the sampled

data will be located in the directory:

postProcessing/probes1/0

• Feel free to open the files located in the directory
postProcessing/probes1/0 using your favorite text

editor.

3D Dam break – Free surface flow

Sampling locations
(probeLocations)

55 functions

56 {

135 yplus

136 {

137 type yPlus;

138 functionObjectLibs ("libutilityFunctionObjects.so ");

139 enabled true;

140 writeControl outputTime;

141 }

144 };

The controlDict dictionary

• Let us take a look at the functionObjects definitions.

• In lines 135-141 we define the yplus functionObject

which computes the yplus value.

• This quantity is related to the turbulence modeling.

• This functionObject will save the yplus field in the

solution directories with the same saving frequency as the

solution (line 140).

• It will also save the minimum, maximum and mean values

of yplus in the directory:

postProcessing/yplus

3D Dam break – Free surface flow

17 ddtSchemes

18 {

19 default Euler;

21 }

22

23 gradSchemes

24 {

25 default Gauss linear;

26 grad(U) cellLimited Gauss linear 1;

27 }

28

29 divSchemes

30 {

31 div(rhoPhi,U) Gauss linearUpwindV grad(U);

32 div(phi,alpha) Gauss vanLeer;

33 div(phirb,alpha) Gauss linear;

35 div(phi,k) Gauss upwind;

36 div(phi,epsilon) Gauss upwind;

37 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

38 }

39

40 laplacianSchemes

41 {

42 default Gauss linear corrected;

43 }

44

45 interpolationSchemes

46 {

47 default linear;

48 }

49

50 snGradSchemes

51 {

52 default corrected;

53 }

• In this case, for time discretization (ddtSchemes) we are

using the Euler method.

• For gradient discretization (gradSchemes) we are using the

Gauss linear as the default method and slope limiters

(cellLimited) for the velocity gradient or grad(U).

• For the discretization of the convective terms (divSchemes)

we are using linearUpwindV interpolation method for the

term div(rhoPhi,U).

• For the term div(phi,alpha) we are using vanLeer

interpolation. For the term div(phirb,alpha) we are using

linear interpolation. These terms are related to the volume

fraction equation.

• For the terms div(phi,alpha) and div(phi,alpha) we are

using upwind (these terms are related to the turbulence

modeling).

• For the term div(((rho*nuEff)*dev2(T(grad(U))))) we are

using linear interpolation (this term is related to the

turbulence modeling).

• For the discretization of the Laplacian (laplacianSchemes

and snGradSchemes) we are using the Gauss linear

corrected method

• In overall, this method is second order accurate but a little bit

diffusive. Remember, at the end of the day we want a

solution that is second order accurate.

The fvSchemes dictionary

3D Dam break – Free surface flow

17 solvers

18 {

19 "alpha.water.*"

20 {

21 nAlphaCorr 3;

22 nAlphaSubCycles 1;

23 cAlpha 1;

24

25 MULESCorr yes;

26 nLimiterIter 10;

27

28 solver smoothSolver;

29 smoother symGaussSeidel;

30 tolerance 1e-8;

31 relTol 0;

32 }

33

34 “(pcorr|pcorrFinal)”

35 {

36 solver PCG;

37 preconditioner DIC;

38 tolerance 1e-8;

39 relTol 0;

40 }

41

42 p_rgh

43 {

44 solver PCG;

45 preconditioner DIC;

46 tolerance 1e-06;

47 relTol 0.01;

48 minIter 1;

49 }

• To solve the volume fraction or alpha.water (lines 19-32) we

are using the smoothSolver method.

• In line 25 we turn on the semi-implicit method MULES. The

keyword nLimiterIter controls the number of MULES iterations

over the limiter.

• To have more stability it is possible to increase the number of

loops and corrections used to solve alpha.water (lines 21-22).

• The keyword cAlpha (line 23) controls the sharpness of the

interface (1 is usually fine for most cases).

• In lines 34-40 we setup the solver for pcorr and pcorrFinal

(pressure correction).

• In this case pcorr is solved only one time at the beginning of

the computation.

• In lines 42-49 we setup the solver for p_rgh.

• The keyword minIter (line 48), means that the linear solver will

do at least one iteration.

The fvSolution dictionary

3D Dam break – Free surface flow

51 p_rghFinal

52 {

53 $p_rgh;

54 relTol 0;

55 minIter 1;

56 }

57

58 "(U|UFinal)"

59 {

60 solver PBiCGStab;

61 Preconditioner DILU;

62 tolerance 1e-08;

63 relTol 0;

72 }

73

74 "(k|epsilon).*"

75 {

76 solver PBiCGStab;

77 Preconditioner DILU;

78 tolerance 1e-08;

79 relTol 0;

80 }

81 }

82

• In lines 51-56 we setup the solver for p_rghFinal. This

correspond to the last iteration in the loop (we can use a tighter

convergence criteria to get more accuracy without increasing

the computational cost)

• In lines 58-72 we setup the solvers for U and UFInal.

• In lines 74-80 we setup the solvers for the turbulent quantities,

namely, k and epsilon.

The fvSolution dictionary

3D Dam break – Free surface flow

82

83 PIMPLE

84 {

85 momentumPredictor yes;

86 nOuterCorrectors 1;

87 nCorrectors 3;

88 nNonOrthogonalCorrectors 1;

89 }

90

91 relaxationFactors

92 {

93 fields

94 {

95 ".*" 1;

96 }

97 equations

98 {

99 ".*" 1;

100 }

101 }

102

• In lines 83-89 we setup the entries related to the pressure-

velocity coupling method used (PIMPLE in this case). Setting

the keyword nOuterCorrectors to 1 is equivalent to running

using the PISO method.

• To gain more stability we can increase the number of correctors

(lines 87-88), however this will increase the computational cost.

• In lines 91-101 we setup the under relaxation factors related to

the PIMPLE method. By setting the coefficients to one we are

not under-relaxing.

• The option momentumPredictor (line 85), is recommended for

highly convective flows.

The fvSolution dictionary

3D Dam break – Free surface flow

The system directory

• In the system directory you will find the following optional dictionary files:

• decomposeParDict

• setFieldsDict

• decomposeParDict is read by the utility decomposePar. This dictionary

file contains information related to the mesh partitioning. This is used when

running in parallel.

• setFieldsDict is read by the utility setFields. This utility set values on

selected cells/faces.

3D Dam break – Free surface flow

The setFieldsDict dictionary

17 defaultFieldValues

18 (

19 volScalarFieldValue alpha.water 0

20);

21

22 regions

23 (

24 boxToCell

25 {

26 box (1.992 -10 0) (5 10 0.55);

27 fieldValues

28 (

29 volScalarFieldValue alpha.water 1

30);

31 }

32);

• This dictionary file is located in the directory system.

• In lines 17-20 we set the default value to be 0 in the whole

domain (no water).

• In lines 22-32, we initialize a rectangular region (box)

containing water (alpha.water 1).

• In this case, setFields will look for the dictionary file

alpha.water and it will overwrite the original values

according to the regions defined in setFieldsDict.

• We initialize the water phase because is the primary phase in
the dictionary transportProperties.

• If you are interested in initializing the vector field U, you can

proceed as follows volVectorFieldValue U (0 0 0)

3D Dam break – Free surface flow

boxToCell region

Water
alpha.water = 1

Air
alpha.water = 0

The decomposeParDict dictionary

17 numberOfSubdomains 4;

18

19 method scotch;

20

• This dictionary file is located in the directory system.

• This dictionary is used to decompose the domain in order to run in parallel.

• The keyword numberOfSubdomains (line 17) is used to set the number of cores we want to use in the

parallel simulation.

• In this dictionary we also set the decomposition method (line 19).

• Most of the times the scotch method is fine.

• In this case we set the numberOfSubdomains to 4, therefore we will run in parallel using 4 cores.

3D Dam break – Free surface flow

• When you run in parallel, the solution is saved in the directories processorN, where N stands for processor

number. In this case you will find the following directories with the decomposed mesh and solution:
processor0, processor1, processor2, and processor3.

Running the case

1. $> foamCleanTutorials

2. $> rm –rf 0

3. $> blockMesh

4. $> surfaceFeatureExtract

5. $> snappyHexMesh -overwrite

6. $> createPatch -dict system/createPatchDict.0 -overwrite

7. $> createPatch -dict system/createPatchDict.1 -overwrite

8. $> checkMesh

9. $> paraFoam

3D Dam break – Free surface flow

• Let us first generate the mesh.

• To generate the mesh will use snappyHexMesh (sHM), do not worry we will talk about

sHM tomorrow.

Running the case

1. $> rm –rf 0

2. $> cp –r 0_org 0

3. $> setFields

4. $> paraFoam

5. $> decomposePar

6. $> mpirun –np 4 interFoam –parallel | tee log.interFoam

7. $> reconstructPar

8. $> paraFoam

3D Dam break – Free surface flow

• Let us run the simulation in parallel using the solver interFoam.

• We will talk more about running in parallel tomorrow

• To run the case, type in the terminal:

Running the case

• In steps 1-2 we copy the information of the backup directory 0_org into the directory

0. We do this because in the next step the utility setFields will overwrite the file

0/alpha.water, so it is a good idea to keep a backup.

• In step 3 we initialize the solution using the utility setFields. This utility reads the

dictionary setFieldsDict located in the system directory.

• In step 4 we visualize the initialization using paraFoam.

• In step 5 we use the utility decomposePar to do the domain decomposition needed

to run in parallel.

• In step 6 we run the simulation in parallel. Notice that np means number of

processors and the value used should be the same number as the one you set in the
dictionary decomposeParDict.

• If you want to run in serial, type in the terminal: interFoam | tee log

• In step 7 we reconstruct the parallel solution. This step is only needed if you are

running in parallel.

• Finally, in step 8 we visualize the solution.

3D Dam break – Free surface flow

• To plot the sampled data using gnuplot you can proceed as follows. To enter to the

gnuplot prompt type in the terminal:

1. $> gnuplot

3D Dam break – Free surface flow

1. set xlabel 'Time (seconds)'

2. set ylabel 'Water volume integral'

3. gnuplot> plot 'postProcessing/water_in_domain/0/volRegion.dat' u 1:2 w l title

'Water in domain'

4. set xlabel 'Time (seconds)'

5. set ylabel 'Pressure'

6. plot 'SPHERIC_Test2/case.txt' u 1:2 w l title 'Experiment',

'postProcessing/probes1/0/p' u 1:2 w l title 'Numerical simulation'

7. gnuplot> exit

To exit gnuplot

• Now that we are inside the gnuplot prompt, we can type,

• The output of steps 3 and 6 is the following:

3D Dam break – Free surface flow

alpha.water vs. time p vs. time (at probe 0)

The output screen

3D Dam break – Free surface flow

Courant Number mean: 0.0099001831 max: 0.50908228

Interface Courant Number mean: 0.0012838336 max: 0.05362054

deltaT = 0.00061195165

Time = 0.41265658

PIMPLE: iteration 1

smoothSolver: Solving for alpha.water, Initial residual = 0.00035163885, Final residual = 9.3476388e-11, No Iterations 2

Phase-1 volume fraction = 0.20706923 Min(alpha.water) = -9.1300674e-12 Max(alpha.water) = 1.0000113

MULES: Correcting alpha.water

MULES: Correcting alpha.water

MULES: Correcting alpha.water

Phase-1 volume fraction = 0.20706923 Min(alpha.water) = -1.2354076e-07 Max(alpha.water) = 1.0000113

DILUPBiCGStab: Solving for Ux, Initial residual = 0.00057936556, Final residual = 2.3207684e-09, No Iterations 1

DILUPBiCGStab: Solving for Uy, Initial residual = 0.0021990412, Final residual = 7.228845e-09, No Iterations 1

DILUPBiCGStab: Solving for Uz, Initial residual = 0.00041048425, Final residual = 3.946807e-10, No Iterations 1

DICPCG: Solving for p_rgh, Initial residual = 0.0013260985, Final residual = 1.2556023e-05, No Iterations 4

DICPCG: Solving for p_rgh, Initial residual = 1.4873252e-05, Final residual = 8.7706547e-07, No Iterations 13

time step continuity errors : sum local = 2.166836e-08, global = -4.8300033e-11, cumulative = -5.8278026e-05

DICPCG: Solving for p_rgh, Initial residual = 1.6925332e-05, Final residual = 8.9811533e-07, No Iterations 9

DICPCG: Solving for p_rgh, Initial residual = 1.1731393e-06, Final residual = 4.991128e-07, No Iterations 1

time step continuity errors : sum local = 1.2328745e-08, global = -3.6165262e-09, cumulative = -5.8281643e-05

DICPCG: Solving for p_rgh, Initial residual = 8.2834963e-07, Final residual = 4.6047958e-07, No Iterations 1

DICPCG: Solving for p_rgh, Initial residual = 4.6053278e-07, Final residual = 4.65519e-07, No Iterations 1

time step continuity errors : sum local = 1.1498949e-08, global = -3.1908629e-09, cumulative = -5.8284834e-05

DILUPBiCGStab: Solving for epsilon, Initial residual = 0.001169828, Final residual = 9.2601488e-11, No Iterations 2

DILUPBiCGStab: Solving for k, Initial residual = 0.0014561556, Final residual = 9.4651262e-11, No Iterations 2

ExecutionTime = 23.21 s ClockTime = 24 s

fieldMinMax minmaxdomain write:

min(p) = -9.8942827 in cell 5509 at location (2.490155 0.025000016 1) on processor 2

max(p) = 4703.3656 in cell 1485 at location (3.1948336 -0.425 0) on processor 2

min(p_rgh) = -7.9025882 in cell 1241 at location (0.82088765 -0.20846334 0.043756428) on processor 1

max(p_rgh) = 4831.247 in cell 3285 at location (3.1948341 -0.475 0.42499986) on processor 2

min(U) = (-0.96505264 -0.019641482 -0.052664083) in cell 2 at location (2.1879167 -0.42500042 0.024999822) on processor 2

max(U) = (0.32541708 0.29383224 2.7117589) in cell 5246 at location (0.8884354 0.087713417 0.16296979) on processor 1

min(alpha.water) = -1.2354076e-07 in cell 2653 at location (0.84202094 -0.10628417 0.0062556498) on processor 1

max(alpha.water) = 1.0000113 in cell 224 at location (2.6411358 -0.42500003 0.074999874) on processor 2

min(k) = 0.0041733636 in cell 2510 at location (0.65789113 -0.0062500875 0.0062360099) on processor 1

max(k) = 0.83402261 in cell 6589 at location (1.2803306 -0.025028634 0.17499623) on processor 1

min(epsilon) = 0.018352121 in cell 2510 at location (0.65789113 -0.0062500875 0.0062360099) on processor 1

max(epsilon) = 11.712212 in cell 1933 at location (0.83147515 -0.19630576 0.068753535) on processor 1

volFieldValue water_in_domain write:

volIntegrate() of alpha.water = 0.66459985

Flow courant number

Interface courant number. When solving multiphase flows, is always

desirable to keep the interface courant number less than 1.
alpha.water
residuals

nAlphaCorr 3
nAlphaSubCycles 1
Only one loop

3 pressure correctors

and no non-orthogonal
corrections

Tighter tolerance

(p_rghFinal) is only applied

to this iteration (the final
one)

Volume integral functionObject

M
in

im
u

m
 a

n
d

 m
a
x
im

u
m

v

a
lu

e
s
 o

f
fi

e
ld

 v
a
ri

a
b

le
s

Turbulence variables residuals

Post-processing multiphase flows in paraFoam

• To visualize the volume fraction, proceed as follows,

3D Dam break – Free surface flow

2. Select alpha.water in

the Active Variable drop-

down menu

1. In the Properties tab select

alpha.water in Volume Fields

3. Select Surface in the

Representation drop-down
menu

Air
alpha.water = 0

Water
alpha.water = 1

Interface
alpha.water = 0.5

4. To animate the solution, press Play in the

VCR Controls

Post-processing multiphase flows in paraFoam

• To visualize a surface representing the interface, proceed as follows,

3D Dam break – Free surface flow

1. Select the filter Contour

2. Select alpha.water or the field you

want to use to plot the iso-surface (it

has to be a scalar)

3. Enter the value 0.5 which

corresponds to the interface
between water and air

4. Press apply

5. To animate the solution, press Play in the

VCR Controls

Iso-surface representing the interface
between water and air

Post-processing multiphase flows in paraFoam

• To visualize all the cells representing the water fraction, proceed as follows,

3D Dam break – Free surface flow

1. Select the filter Threshold

2. Select alpha.water or the field

you want to use to visualize the

cells (it has to be a scalar)

3. Select the range you want to

visualize. To visualize the
water select Minimum 0.5 and

Maximum 1.

4. Press apply

Cells representing the
water location

5. To animate the solution, press Play in the

VCR Controls

3D Dam break – Free surface flow

• Instead of using the boundary condition totalPressure and pressureInletOutletVelocity for the patch top, try

to use zeroGradient. Do you get the same results? Any comments?

(Hint: this combination of boundary conditions will give you an error, read carefully the screen, you
will need to add a fix in the file fvSolution)

• Instead of using the boundary condition fixedFluxPressure for the walls, try to use zeroGradient. Do you get

the same results? Any comments?

• Run the simulation in a close domain. Does the volume integral of alpha.water remains the same? Why the

value is not constant when the domain is open?

• Use a functionObject to measure the average pressure at the obstacle.

• How many initialization methods are there available in the dictionary setFieldsDict?

(Hint: use the banana method)

• Run the simulation using Gauss upwind instead of Gauss vanLeer for the term div(phi,alpha) (fvSchemes).

Do you get the same quantitative results?

• Run a numerical experiment for cAlpha equal to 0, 1, and 2. Do you see any difference in the solution? What

about computing time?

• Use the solver GAMG instead of using the solver PCG for the variable p_rgh. Do you see any difference on

the solution or computing time?

• Increase the number of nOuterCorrector to 2 and study the output screen. What difference do you see?

• Turn off the MULES corrector (MULESCorr). Do you see any difference on the solution or computing time?

• If you set the gravity vector to (0 0 0), what do you think will happen?

• Try to break the solver and identify the cause of the error. You are free to try any kind of setup.

Exercises

