
Dam break free surface flow

Physical and numerical side of the 

problem:

• In this case we are going to use the VOF 

method.  This method solves the incompressible 

Navier-Stokes equations plus an additional 

equation to track the volume fraction (free 

surface location).

• We are going to work in a 2D domain but the 

problem can be extended to 3D easily.

• As this is a multiphase case, we need to define 

the physical properties for each phase involved 

(viscosity, density and surface tension).

• Additionally, we need to define the gravity vector 

and initialize the two flows.

• This is an unsteady case.

Dam break free surface flow



Workflow of the case

Dam break free surface flow

setFields

interFoam

sampling

functionObjects

paraview

blockMesh



Mesh Initial conditions

Dam break free surface flow

At the end of the day you should get something like this



VOF Fraction

www.wolfdynamics.com/wiki/dambreak/ani1.gif

Hydrostatic pressure
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At the end of the day you should get something like this

Dam break free surface flow

http://www.wolfdynamics.com/wiki/dambreak/ani1.gif
http://www.wolfdynamics.com/wiki/dambreak/ani2.gif


Dam break free surface flow

• Let us run our first case. Go to the directory:

• $PTOFC is pointing to the directory where you extracted the training material.

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this 

way, you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

$PTOFC/2d_dambreak 



Dam break free surface flow

• If you are using the lab workstations, you will need to source OpenFOAM® (load 

OpenFOAM® environment).

• To source OpenFOAM®, type in the terminal:

• $> of6

• To use PyFoam (a plotting utility) you will need to source it.  Type in the terminal:

• $> anaconda3

• Remember, every time you open a new terminal window you need to source 

OpenFOAM® and PyFoam. 

• Also, you might need to load OpenFOAM® again after loading PyFoam.

• By default, when installing OpenFOAM® and PyFoam you do not need to do this.  

This is our choice as we have many things installed and we want to avoid conflicts 

between applications.

Loading OpenFOAM® environment 



What are we going to do?

Dam break free surface flow

• We will use this case to introduce the multiphase solver interFoam.

• interFoam is a solver for 2 incompressible, isothermal immiscible fluids using a VOF 

(volume of fluid) phase-fraction based interface capturing approach 

• We will define the physical properties of two phases and we are going to initialize 

these phases.

• We will define the gravity vector in the dictionary g.

• After finding the solution, we will visualize the results. This is an unsteady case so 

now we are going to see things moving.

• We are going to briefly address how to post-process multiphase flows.



Let us explore the case directory
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The blockMeshDict dictionary file 

• This dictionary is located in the system 

directory. 

• We are using scaling (line 17).

• In lines 19-45, we define the vertices coordinates.

17  convertToMeters 0.146;

18  

19  vertices

20  (

21  (0 0 0) //Vertex0

22  (2 0 0)

23  (2.16438 0 0)

24  (4 0 0)

25  (0 0.32876 0)

26  (2 0.32876 0)

27  (2.16438 0.32876 0)

28  (4 0.32876 0)

29  (0 4 0)

30  (2 4 0)

31  (2.16438 4 0)

32  (4 4 0)

33  (0 0 0.1)

34  (2 0 0.1)

35  (2.16438 0 0.1)

36  (4 0 0.1)

37  (0 0.32876 0.1)

38  (2 0.32876 0.1)

39  (2.16438 0.32876 0.1)

40  (4 0.32876 0.1)

41  (0 4 0.1)

42  (2 4 0.1)

43  (2.16438 4 0.1)

44  (4 4 0.1) //Vertex 23

45  );
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The blockMeshDict dictionary file 

• In this case we are defining five blocks. 

• In the common faces, the blocks share vertices with the same 
index number, blockMesh recognizes these faces as internal 

(we do not need to define them in the boundary section). For 

example, block 0 and block 2 share the vertices ( 4 5 17 16).

• We are using uniform grading in all blocks.

• All edges are straight lines by default.

47  blocks

48  (

49  hex (0 1 5 4 12 13 17 16) (23 8 1) simpleGrading (1 1 1) //Block 0

50  hex (2 3 7 6 14 15 19 18) (19 8 1) simpleGrading (1 1 1) //Block 1

51  hex (4 5 9 8 16 17 21 20) (23 42 1) simpleGrading (1 1 1) //Block 2

52  hex (5 6 10 9 17 18 22 21) (4 42 1) simpleGrading (1 1 1) //Block 3

53  hex (6 7 11 10 18 19 23 22) (19 42 1) simpleGrading (1 1 1) //Block 4

54  );

55  

56  edges

57  (

58  );

BLOCK 0 BLOCK 1

BLOCK 2 BLOCK 4

B
L

O
C

K
 3

Common face
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The blockMeshDict dictionary file 

• The boundary patches leftWall, rightWall and

lowerWall are of base type wall.

• Notice that each boundary patch groups many 

faces.

• Remember, we assign the primitive type 

boundary conditions (numerical values), in the 
field files found in the directory 0

60  boundary

61  (

62  leftWall

63  {

64  type wall;

65  faces

66  (

67  (0 12 16 4)

68  (4 16 20 8)

69  );

70  }

71  rightWall

72 {

73 type wall;

74 faces

75 (

76 (7 19 15 3)

77 (11 23 19 7)

78 );

79 }

80 lowerWall

81 {

82 type wall;

83 faces

84 (

85 (0 1 13 12)

86 (1 5 17 13)

87 (5 6 18 17)

88 (2 14 18 6)

89 (2 3 15 14)

90 );

91 }

Dam break free surface flow



The blockMeshDict dictionary file 

• The boundary patch atmosphere is of base type 

patch.

• Notice that we do not define the front and back 

patches, these patches are automatically group in 

the boundary patch defaultFaces of base type 

empty.

• Remember, we assign the primitive type 

boundary conditions (numerical values), in the 
field files found in the directory 0

• We do not need to merge faces.

92 atmosphere

93 {

94 type patch;

95 faces

96 (

97 (8 20 21 9)

98 (9 21 22 10)

99 (10 22 23 11)

100 );

101 }

102 );

103

104 mergePatchPairs

105 (

106 );
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The boundary dictionary file

• This dictionary is located in the constant/polyMesh directory. 

• This file is automatically created when generating or converting the mesh.

• In this case, we do not need to modify this file.  All the base type boundary conditions and 
name of the patches were assigned in the blockMeshDict file.

• The defaultFaces boundary patch contains all patches that we did not define in the boundary 

section.

• If you change the name or the base type of a boundary patch, you will need to modify the field 
files in the directory 0.

47  defaultFaces

48  {

49  type    empty;

50  inGroups 1(empty);

51  nFaces 4563;

52  startFace 4640;

53 }

Dam break free surface flow



The constant directory

• In this directory, we will find the following compulsory dictionary files:

• g

• transportProperties

• turbulenceProperties

• g contains the definition of the gravity vector. 

• transportProperties contains the definition of the physical properties of 

each phase.

• turbulenceProperties contains the definition of the turbulence model to 

use. 
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• This dictionary file is located in the directory 
constant.

• For multiphase flows, this dictionary is 

compulsory.

• In this dictionary we define the gravity vector (line 

19).

• Pay attention to the class type (line 12).

The g dictionary file

8  FoamFile

9  {

10 version     2.0;

11 format      ascii;

12 class uniformDimensionedVectorField;

13 location    "constant";

14 object      g;

15 }

17 

18 dimensions      [0 1 -2 0 0 0 0];

19 value           (0 -9.81 0);
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• This dictionary file is located in the directory 
constant.

• We first define the name of the phases (line 18). 

In this case we are defining the names water and 

air. The first entry in this list is the primary phase 

(water).

• The name of the phases is given by the user.

• In this file we set the kinematic viscosity (nu), 

density (rho) and transport model 

(transportModel) of the phases.

• We also define the surface tension (sigma).

The transportProperties dictionary file

18 phases (water air);

19 

20 water

21 {

22 transportModel  Newtonian;

23 nu              [0 2 -1 0 0 0 0] 1e-06;

24 rho             [1 -3 0 0 0 0 0] 1000;

25 }

26 

27 air

28 {

29 transportModel  Newtonian;

30 nu              [0 2 -1 0 0 0 0] 1.48e-05;

31 rho             [1 -3 0 0 0 0 0] 1;

32 }

33 

34 sigma           [1 0 -2 0 0 0 0] 0.07;

Primary phase 
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• In this dictionary file we select what model we would like to use (laminar or 

turbulent).

• This dictionary is compulsory.

• As we do not want to model turbulence, the dictionary is defined as follows,

The turbulenceProperties dictionary file

18 simulationType    laminar;

Dam break free surface flow



The 0 directory

• In this directory, we will find the dictionary files that contain the boundary and 

initial conditions for all the primitive variables.

• As we are solving the incompressible laminar Navier-Stokes equations using 

the VOF method, we will find the following field files:

• alpha.water (volume fraction of water phase)

• p_rgh (pressure field minus hydrostatic component)

• U (velocity field)

Dam break free surface flow



The file 0/alpha.water

17 dimensions      [0 0 0 0 0 0 0];

18 

19 internalField   uniform 0;

20 

21 boundaryField

22 {

23 leftWall

24 {

25 type            zeroGradient;

26 }

27 

28 rightWall

29 {

30 type            zeroGradient;

31 }

32 

33 lowerWall

34 {

35 type            zeroGradient;

36 }

37 

38 atmosphere

39 {

40 type            inletOutlet;

41 inletValue      uniform 0;

42 value           uniform 0;

43 }

44 

45 defaultFaces

46 {

47 type            empty;

48 }

49 }

• This file contains the boundary and initial conditions 

for the non-dimensional scalar field alpha.water

• This file is named alpha.water, because the 

primary phase is water (we defined the primary 
phase in the transportProperties dictionary).

• Initially, this field is initialized as 0 in the whole 

domain (line 19). This means that there is no water in 

the domain at time 0.  Later, we will initialize the 

water column and this file will be overwritten with a 

non-uniform field for the internalField.

• For the leftWall, rightWall, and lowerWall patches 

we are using a zeroGradient boundary condition (we 

are just extrapolating the internal values to the 

boundary face).

• For the atmosphere patch we are using an 

inletOutlet boundary condition.  This boundary 

condition avoids backflow into the domain. If the flow 

is going out it will use zeroGradient and if the flow is 

coming back it will assign the value set in the 

keyword inletValue (line 41).

• The defaultFaces patch is of primitive type empty.
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The file 0/p_rgh

17 dimensions      [1 -1 -2 0 0 0 0];

18 

19 internalField   uniform 0;

20 

21 boundaryField

22 {

23 leftWall

24 {

25 type            fixedFluxPressure;

26 value           uniform 0;

27 }

29 rightWall

30 {

31 type            fixedFluxPressure;

32 value           uniform 0;

33 }  

35 lowerWall

36 {

37 type            fixedFluxPressure;

38 value           uniform 0;

39 }

41 atmosphere

42 {

43 type            totalPressure;

44 p0              uniform 0;

45 U               U;

46 phi             phi;

47 rho             rho;

48 psi             none;

49 gamma           1;

50 value           uniform 0;

51 }  

53 defaultFaces

54 {

55 type            empty;

56 }

57 }

• This file contains the boundary and initial conditions 

for the dimensional field p_rgh.  The dimensions of 

this field are given in Pascal (line 17)

• This scalar field contains the value of the static 

pressure field minus the hydrostatic component.

• This field is initialized as 0 in the whole domain (line 

19). 

• For the leftWall, rightWall, and lowerWall patches 

we are using a fixedFluxPressure boundary 

condition (refer to the source code or doxygen 

documentation to know more about this boundary 

condition).

• For the atmosphere patch we are using the 

totalPressure boundary condition (refer to the 

source code or doxygen documentation to know 

more about this boundary condition).

• The defaultFaces patch is of primitive type empty.
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The file 0/U

17 dimensions      [0 1 -1 0 0 0 0];

18

19 internalField   uniform (0 0 0);

20

21 boundaryField

22 {

23 leftWall

24 {

25 type            fixedValue;

26 value           uniform (0 0 0);

27 }

28 rightWall

29 {

30 type            fixedValue;

31 value           uniform (0 0 0);

32 }

33 lowerWall

34 {

35 type            fixedValue;

36 value           uniform (0 0 0);

37 }

38 atmosphere

39 {

40 type            pressureInletOutletVelocity;

41 value           uniform (0 0 0);

42 }

43 defaultFaces

44 {

45 type            empty;

46 }

47 }

• This file contains the boundary and initial conditions 

for the dimensional vector field U. 

• We are using uniform initial conditions and the 

numerical value is (0 0 0) (keyword internalField in 

line 19).

• The leftWall, rightWall, and lowerWall patches are 

no-slip walls, therefore we impose a fixedValue 

boundary condition with a value of (0 0 0) at the wall.

• For the outlet patch we are using a zeroGradient

boundary condition (we are just extrapolating the 

internal values to the boundary face).

• For the atmosphere patch we are using the 

pressureInlterOutletVelocity boundary condition

(refer to the source code or doxygen documentation 

to know more about this boundary condition).

• The defaultFaces patch is of primitive type empty.

Dam break free surface flow



The system directory

• The system directory consists of the following compulsory dictionary files: 

• controlDict 

• fvSchemes

• fvSolution

• controlDict contains general instructions on how to run the case. 

• fvSchemes contains instructions for the discretization schemes that will be 

used for the different terms in the equations.  

• fvSolution contains instructions on how to solve each discretized linear 

equation system. 

Dam break free surface flow



18   application     interFoam;

19   

20   startFrom       startTime;

21   

22   startTime       0;

23   

24   stopAt          endTime;

25   

26   endTime         1;

27   

28   deltaT          0.001;

29   

30   writeControl    adjustableRunTime;

31   

32   writeInterval   0.05;

33   

34   purgeWrite      0;

35   

36   writeFormat     ascii;

37   

38   writePrecision  8;

39   

40   writeCompression uncompressed;

41   

42   timeFormat      general;

43   

44   timePrecision   8;

45   

46   runTimeModifiable yes;

47   

48   adjustTimeStep  yes;

49   

50   maxCo           1;

51   maxAlphaCo      1;

52   maxDeltaT       1;

• This case starts from time 0 (startTime).

• It will run up to 1 second (endTime). 

• The initial time step of the simulation is 0.001 seconds (deltaT).

• It will write the solution every 0.05 seconds (writeInterval) of 

simulation time (runTime).  It will automatically adjust the time 

step (adjustableRunTime), in order to save the solution at the 

precise write interval.

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat).

• The write precision is  8 digits (writePrecision). It will only save 

eight digits in the output files.

• And as the option runTimeModifiable is on, we can modify all 

these entries while we are running the simulation.

• In line 48 we turn on the option adjustTimeStep. This option 

will automatically adjust the time step to achieve the maximum 

desired courant number (lines 50-51). We also set a maximum 

time step in line 52.

• Remember, the first time step of the simulation is done using 

the value set in line 28 and then it is automatically scaled to 

achieve the desired maximum values (lines 50-51). 

The controlDict dictionary
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58   functions

59   {

62   

63   minmaxdomain

64   {

65   type fieldMinMax;

66   

67   functionObjectLibs ("libfieldFunctionObjects.so");

68   

69   enabled true; //true or false

70   

71   mode component;

72   

73   outputControl timeStep;

74   outputInterval 1;

75   

76   log true;

77   

78   fields (p U alpha.water);

79   }

109  };

• Let us take a look at the functionObjects definitions.

• In lines 63-79 we define the fieldMinMax functionObject 

which computes the minimum and maximum values of 

the field variables (p U alpha.water).

The controlDict dictionary
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58   functions

59   {

84   water_in_domain

85   {

86   type            cellSource;

87   functionObjectLibs ("libfieldFunctionObjects.so");

88   enabled         true;

89   

90   //outputControl     outputTime;

91   outputControl   timeStep;

92   outputInterval  1;

93   

94   log            true;

95   

96   valueOutput     false;

97   

98   source          all;

99   

100  operation       volIntegrate;

101  fields

102  (

103  alpha.water

104  );

105  }

109  };

The controlDict dictionary

• Let us take a look at the functionObjects definitions.

• In lines 84-105 we define the cellSource functionObject 

which computes the volume integral (volIntegrate) of the 

field variable alpha.water in all the domain.

• Basically, we are monitoring the quantity of water in the 

domain.
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18 ddtSchemes

19 {

20 default Euler;

21 }

22 

23 gradSchemes

24 {

25 default Gauss linear;

26 }

27 

28 divSchemes

29 {

30 div(rhoPhi,U)  Gauss linearUpwind grad(U);

31 div(phi,alpha)  Gauss vanLeer;

32 div(phirb,alpha) Gauss linear;

33 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

34 }

35 

36 laplacianSchemes

37 {

38 default Gauss linear corrected;

39 }

40 

41 interpolationSchemes

42 {

43 default linear;

44 }

45 

46 snGradSchemes

47 {

48 default corrected;

49 }

• In this case, for time discretization (ddtSchemes) we are 

using the Euler method.

• For gradient discretization (gradSchemes) we are using the 

Gauss linear method. 

• For the discretization of the convective terms (divSchemes) 

we are using linearUpwind interpolation method for the term 

div(rhoPhi,U).

• For the term div(phi,alpha) we are using vanLeer 

interpolation.  For the term div(phirb,alpha) we are using 

linear interpolation.  These terms are related to the volume 

fraction equation.

• For the term div(((rho*nuEff)*dev2(T(grad(U))))) we are 

using linear interpolation (this term is related to the 

turbulence modeling).

• For the discretization of the Laplacian (laplacianSchemes

and snGradSchemes) we are using the Gauss linear 

corrected method 

• This method is second order accurate but oscillatory. 

• Remember, at the end of the day we want a solution that is 

second order accurate.

The fvSchemes dictionary
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18 solvers

19 {

20 "alpha.water.*"

21 {

22 nAlphaCorr      2;

23 nAlphaSubCycles 1;

24 cAlpha          1;

25 

26 MULESCorr       yes;

27 nLimiterIter    3;

28 

29 solver          smoothSolver;

30 smoother        symGaussSeidel;

31 tolerance       1e-8;

32 relTol          0;

33 }

34 

35 pcorr

36 {

37 solver          PCG;

38 preconditioner  DIC;

39 tolerance       1e-8;

40 relTol          0;

41 }

42 

43 p_rgh

44 {

45 solver          PCG;

46 preconditioner  DIC;

47 tolerance       1e-06;

48 relTol          0.01;

49 }

• To solve the volume fraction or alpha.water (lines 20-33) we 

are using the smoothSolver method. 

• In line 26 we turn on the semi-implicit method MULES. The 

keyword nLimiterIter controls the number of MULES iterations 

over the limiter.

• To have more stability it is possible to increase the number of 

loops and corrections used to solve alpha.water (lines 22-23). 

• The keyword cAlpha (line 24) controls the sharpness of the 

interface (1 is usually fine for most cases).

• In lines 35-41 we setup the solver for pcorr (pressure 

correction).

• In lines 43-49 we setup the solver for p_rgh.  

• FYI, in this case pcorr is solved only one time at the beginning 

of the computation.

The fvSolution dictionary
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51 p_rghFinal

52 {

53 $p_rgh;

54 relTol          0;

55 }

56 

57 "(U|Ufinal)"

58 {

59 solver          smoothSolver;

60 smoother        symGaussSeidel;

61 tolerance       1e-06;

62 relTol          0;

70 }

71 }

72 

73 PIMPLE

74 {

75 momentumPredictor   yes;

76 nOuterCorrectors    1;

77 nCorrectors         3;

78 nNonOrthogonalCorrectors 1;

79 }

80 

81 relaxationFactors

82 {

83 fields

84 {

85 ".*" 1;

86 }

87 equations

88 {

89 ".*" 1;

90 }

91 }

• In lines 51-55 we setup the solver for p_rghFinal. This 

correspond to the last iteration in the loop (we can use a tighter 

convergence criteria to get more accuracy without increasing 

the computational cost)

• In lines 57-70 we setup the solver for U.  

• In lines 73-79 we setup the entries related to the pressure-

velocity coupling method used (PIMPLE in this case). Setting 

the keyword nOuterCorrectors to 1 is equivalent to running 

using the PISO method.

• To gain more stability we can increase the number of correctors 

(lines 76-78), however this will increase the computational cost. 

• In lines 81-91 we setup the under-relaxation factors related to 

the PIMPLE method.  By setting the coefficients to one we are 

not under-relaxing.  

The fvSolution dictionary
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The system directory

• In the system directory you will find the following optional dictionary files: 

• decomposeParDict

• setFieldsDict

• probesDict

• decomposeParDict is read by the utility decomposePar.  This dictionary 

file contains information related to the mesh partitioning. This is used when 

running in parallel. 

• setFieldsDict is read by the utility setFields.  This utility set values on 

selected cells/faces. 

• probesDict is read by the utility probeLocations.  This utility sample 

field values at a given location. 
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The setFieldsDict dictionary

18 defaultFieldValues

19 (

20 volScalarFieldValue alpha.water 0

21 );

22 

23 regions

24 (

25 boxToCell

26 {

27 box (0 0 -1) (0.1461 0.292 1);

28 fieldValues

29 (

30 volScalarFieldValue alpha.water 1

31 );

32 }

33 );

• This dictionary file is located in the directory system.

• In lines 18-21 we set the default value to be 0 in the whole 

domain (no water).

• In lines 25-32, we initialize a rectangular region (box) 

containing water (alpha.water 1). 

• In this case, setFields will look for the dictionary file 

alpha.water and it will overwrite the original values 

according to the regions defined in setFieldsDict.

• If you are interested in initializing the vector field U, you can 

proceed as follows volVectorFieldValue U (0 0 0)

boxToCell region

Dam break free surface flow
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The probesDict dictionary

17    type probes;

18

19 fields

20 (

21 alpha.water

22 U

23 p_rgh

24 p

25 );

26 

27 probeLocations

28 (

29 (0.292 0 0)

30 (0.292 0.0240 0)

31 (0.292 0.0480 0)

32 (0.316 0.0480 0)

33 (0.316 0.0240 0)

34 );  

Dam break free surface flow

Fields to sample.

Points location.

The sampled information is always saved in the directory 
postProcessing/probesDict

As we are sampling starting from time 0, the sampled data will be located in 

the directory:

postProcessing/probesDict/0

The files alpha.water, p_rgh, p, and U located in the directory 

postProcessing/probesDict/0 contain the sampled data. Feel free to 

open them using your favorite text editor.

Use probes.



Running the case

• You will find this tutorial in the directory $PTOFC/101OF/damBreak

• In the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh 

3. $> checkMesh 

4. $> cp 0/alpha.water.org 0/alpha.water

5. $> setFields

6. $> paraFoam

7. $> interFoam > log.interFoam | tail –f log.interFoam 

8. $> probeLocations

9. $> paraFoam 

Dam break free surface flow



Running the case

• In step 2 we generate the mesh.

• In step 3 we check the mesh quality. 

• In step 4 we copy the information of the backup file alpha.water.org to the file 

alpha.water.  We do this because in the next step the utility setFields will 

overwrite the file alpha.water, so it is a good idea to keep a backup.

• In step 5 we initialize the solution using the utility setFields. This utility reads the 

dictionary setFieldsDict located in the system directory. 

• In step 6 we use paraFoam to visualize the initialization. Remember to select the 

field alpha.water in paraFoam.

• In step 7 we run the simulation. 

• In step 8 we use the utility probeLocations to sample field values at given 

locations. This utility reads the dictionary probesDict.

• Finally, in step 9 we visualize the solution. 
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• To plot the sampled data using gnuplot you can proceed as follows. To enter to the 

gnuplot prompt type in the terminal:

1. $> gnuplot

Dam break free surface flow

1. gnuplot> plot [][0:1.2] “postProcessing/probes/0/alpha.water” u 1:2 pt 7 w lp,

“ ” u 1:3 pt 7 w lp, “ ” u 1:4 pt 7 w lp,

“ ” u 1:5 pt 7 w lp, “ ” u 1:6 pt 7 w lp

2. gnuplot> plot [][] “postProcessing/probes/0/p_rgh” u 1:2 pt 7 w lp,

“ ” u 1:3 pt 7 w lp, “ ” u 1:4 pt 7 w lp,

“ ” u 1:5 pt 7 w lp, “ ” u 1:6 pt 7 w lp

3. gnuplot> plot [][] “postProcessing/probes/0.05/p” u 1:2 pt 7 w lp,

“ ” u 1:3 pt 7 w lp, “ ” u 1:4 pt 7 w lp,

“ ” u 1:5 pt 7 w lp, “ ” u 1:6 pt 7 w lp

4. gnuplot> exit

To exit gnuplot

• Now that we are inside the gnuplot prompt, we can type,



• The output of steps 2 and 3 is the following:

Dam break free surface flow

alpha.water vs. time p_rgh vs. time



Courant Number mean: 0.134923 max: 0.684053

Interface Courant Number mean: 0.0189168 max: 0.427165

deltaT = 0.00137741

Time = 1

PIMPLE: iteration 1

smoothSolver:  Solving for alpha.water, Initial residual = 0.00337527, Final residual = 5.40522e-11, No Iterations 3

Phase-1 volume fraction = 0.127626  Min(alpha.water) = -2.58492e-09  Max(alpha.water) = 1

MULES: Correcting alpha.water

MULES: Correcting alpha.water

Phase-1 volume fraction = 0.127626  Min(alpha.water) = -5.15558e-06  Max(alpha.water) = 1

DILUPBiCG:  Solving for Ux, Initial residual = 0.00700056, Final residual = 2.94138e-09, No Iterations 3

DILUPBiCG:  Solving for Uy, Initial residual = 0.00998841, Final residual = 1.67247e-09, No Iterations 3

DICPCG:  Solving for p_rgh, Initial residual = 0.0158756, Final residual = 0.00013496, No Iterations 6

time step continuity errors : sum local = 3.17548e-05, global = -5.59901e-06, cumulative = -7.36376e-05

DICPCG:  Solving for p_rgh, Initial residual = 0.000889262, Final residual = 7.94541e-06, No Iterations 30

time step continuity errors : sum local = 1.86402e-06, global = -9.55375e-08, cumulative = -7.37331e-05

DICPCG:  Solving for p_rgh, Initial residual = 8.5497e-05, Final residual = 7.6903e-07, No Iterations 33

time step continuity errors : sum local = 1.80667e-07, global = 3.47462e-09, cumulative = -7.37296e-05

ExecutionTime = 9.47 s  ClockTime = 9 s

fieldMinMax minmaxdomain output:

min(p) = -43.4411 at location (0.0698261 0.584 0.0073)

max(p) = 979.237 at location (0.23487 0 0.0073)

min(U) = (0.0129996 -0.0121795 0) at location (0.00634783 0.00299994 0.0073)

max(U) = (0.0129996 -0.0121795 0) at location (0.00634783 0.00299994 0.0073)

min(alpha.water) = -5.15558e-06 at location (0.272957 0.105428 0.0073)

max(alpha.water) = 1 at location (0.0317391 0.00299994 0.0073)

cellSource water_in_domain output:

volIntegrate() of alpha.water = 0.000633354

The output screen

• This is the output screen of the interFoam solver.

• The interface courant number is more restrictive than the flow courant number.

• When solving multiphase flows, is always desirable to keep the interface courant number less than 1.  

Flow courant number

Interface courant number

3 pressure correctors 

and no non-orthogonal 
corrections 

alpha.water 
residuals

alpha.water is bounded between 0 and 1

nAlphaCorr 2

Volume integral functionObject

Tighter tolerance (p_rghFinal) 

is only applied to this iteration 
(the final one)

nAlphaSubCycles 1
Only one loop

Dam break free surface flow



Post-processing multiphase flows in paraFoam

• To visualize the volume fraction, proceed as follows,

1. In the Properties tab select 

alpha.water in Volume Fields 

2. Select alpha.water in 

the Active Variable drop-

down menu

3. Select Surface in the 

Representation drop-down 
menu

Air
alpha.water = 0

W
a
te

r
a
lp

h
a
.w

a
te

r 
=

 1

Interface
alpha.water = 0.5

4. To animate the solution, press Play in the VCR Controls

Dam break free surface flow



Post-processing multiphase flows in paraFoam

• To visualize a surface representing the interface, proceed as follows,

1. Select the filter Contour

2. Select alpha.water or the field you 

want to use to plot the iso-surface (it 

has to be a scalar)

3. Enter the value 0.5 which 

corresponds to the interface 
between water and air

Iso-surface representing 

the interface between 
water and air

4. Press apply

5. To animate the solution, press Play in the VCR Controls

Dam break free surface flow



Post-processing multiphase flows in paraFoam

• To visualize all the cells representing the water fraction, proceed as follows,

1. Select the filter Threshold

2. Select alpha.water or the field 

you want to use to visualize the 

cells (it has to be a scalar)

3. Select the range you want to 

visualize.  To visualize the 
water select Minimum 0.5 and 

Maximum 1.

4. Press apply

Cells representing the 
water location

5. To animate the solution, press Play in the VCR Controls

Dam break free surface flow



Exercises

Dam break free surface flow

• Instead of using the boundary condition totalPressure and pressureInletOutletVelocity for the patch

atmosphere, try to use zeroGradient.  Do you get the same results? Any comments?

(Hint: this combination of boundary conditions will give you an error, read carefully the screen, you 
will need to add a fix in the file fvSolution)

• Instead of using the boundary condition fixedFluxPressure for the walls, try to use zeroGradient. Do you get 

the same results? Any comments?

• Use a functionObject to compute the volume integral of alpha.water in the whole domain.

(Hint: the functionOnject already exist in the dictionary controlDict, take a look at the doxygen 

documentation to learn how to use it)

• Run the simulation in a close domain. Does the volume integral of alpha.water remains the same? Why the 

value is not constant when the domain is open?

• Use a functionObject to measure the average pressure at the obstacle.

(Hint: the easiest way is to create a new patch to define the obstacle)

• How many initialization methods are there available in the dictionary setFieldsDict?

(Hint: use the banana method)

• Try to use a different initialization method and multiple regions. 



Exercises

Dam break free surface flow

• Run the simulation using Gauss upwind instead of Gauss vanLeer for the term div(phi,alpha) (fvSchemes).  

Do you get the same quantitative results?

• Run a numerical experiment for cAlpha equal to 0, 1, and 2.  Do you see any difference in the solution? What 

about computing time?

• Try to improve the resolution of the free surface.

(Hint: try to increase the mesh resolution and set cAlpha = 2)

• Use the solver GAMG instead of using the solver PCG for the variable p_rgh.  Do you see any difference on 

the solution or computing time?

• Increase the number of nOuterCorrector to 2 and study the output screen. What difference do you see?

• Turn off the MULES corrector (MULESCorr). Do you see any difference on the solution or computing time? 

• If you set the gravity vector to (0 0 0), what do you think will happen?

• Try to break the solver and identify the cause of the error.  You are free to try any kind of setup.


