
Dam break free surface flow

Physical and numerical side of the

problem:

• In this case we are going to use the VOF

method. This method solves the incompressible

Navier-Stokes equations plus an additional

equation to track the volume fraction (free

surface location).

• We are going to work in a 2D domain but the

problem can be extended to 3D easily.

• As this is a multiphase case, we need to define

the physical properties for each phase involved

(viscosity, density and surface tension).

• Additionally, we need to define the gravity vector

and initialize the two flows.

• This is an unsteady case.

Dam break free surface flow

Workflow of the case

Dam break free surface flow

setFields

interFoam

sampling

functionObjects

paraview

blockMesh

Mesh Initial conditions

Dam break free surface flow

At the end of the day you should get something like this

VOF Fraction

www.wolfdynamics.com/wiki/dambreak/ani1.gif

Hydrostatic pressure
www.wolfdynamics.com/wiki/dambreak/ani2.gif

At the end of the day you should get something like this

Dam break free surface flow

http://www.wolfdynamics.com/wiki/dambreak/ani1.gif
http://www.wolfdynamics.com/wiki/dambreak/ani2.gif

Dam break free surface flow

• Let us run our first case. Go to the directory:

• $PTOFC is pointing to the directory where you extracted the training material.

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of

how to run the case. In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh,

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on. These files can be used to run the case

automatically by typing in the terminal, for example, sh run_solver.

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this

way, you will get used with the command line interface and OpenFOAM® commands.

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases.

$PTOFC/2d_dambreak

Dam break free surface flow

• If you are using the lab workstations, you will need to source OpenFOAM® (load

OpenFOAM® environment).

• To source OpenFOAM®, type in the terminal:

• $> of6

• To use PyFoam (a plotting utility) you will need to source it. Type in the terminal:

• $> anaconda3

• Remember, every time you open a new terminal window you need to source

OpenFOAM® and PyFoam.

• Also, you might need to load OpenFOAM® again after loading PyFoam.

• By default, when installing OpenFOAM® and PyFoam you do not need to do this.

This is our choice as we have many things installed and we want to avoid conflicts

between applications.

Loading OpenFOAM® environment

What are we going to do?

Dam break free surface flow

• We will use this case to introduce the multiphase solver interFoam.

• interFoam is a solver for 2 incompressible, isothermal immiscible fluids using a VOF

(volume of fluid) phase-fraction based interface capturing approach

• We will define the physical properties of two phases and we are going to initialize

these phases.

• We will define the gravity vector in the dictionary g.

• After finding the solution, we will visualize the results. This is an unsteady case so

now we are going to see things moving.

• We are going to briefly address how to post-process multiphase flows.

Let us explore the case directory

Dam break free surface flow

The blockMeshDict dictionary file

• This dictionary is located in the system

directory.

• We are using scaling (line 17).

• In lines 19-45, we define the vertices coordinates.

17 convertToMeters 0.146;

18

19 vertices

20 (

21 (0 0 0) //Vertex0

22 (2 0 0)

23 (2.16438 0 0)

24 (4 0 0)

25 (0 0.32876 0)

26 (2 0.32876 0)

27 (2.16438 0.32876 0)

28 (4 0.32876 0)

29 (0 4 0)

30 (2 4 0)

31 (2.16438 4 0)

32 (4 4 0)

33 (0 0 0.1)

34 (2 0 0.1)

35 (2.16438 0 0.1)

36 (4 0 0.1)

37 (0 0.32876 0.1)

38 (2 0.32876 0.1)

39 (2.16438 0.32876 0.1)

40 (4 0.32876 0.1)

41 (0 4 0.1)

42 (2 4 0.1)

43 (2.16438 4 0.1)

44 (4 4 0.1) //Vertex 23

45);

Dam break free surface flow

The blockMeshDict dictionary file

• In this case we are defining five blocks.

• In the common faces, the blocks share vertices with the same
index number, blockMesh recognizes these faces as internal

(we do not need to define them in the boundary section). For

example, block 0 and block 2 share the vertices (4 5 17 16).

• We are using uniform grading in all blocks.

• All edges are straight lines by default.

47 blocks

48 (

49 hex (0 1 5 4 12 13 17 16) (23 8 1) simpleGrading (1 1 1) //Block 0

50 hex (2 3 7 6 14 15 19 18) (19 8 1) simpleGrading (1 1 1) //Block 1

51 hex (4 5 9 8 16 17 21 20) (23 42 1) simpleGrading (1 1 1) //Block 2

52 hex (5 6 10 9 17 18 22 21) (4 42 1) simpleGrading (1 1 1) //Block 3

53 hex (6 7 11 10 18 19 23 22) (19 42 1) simpleGrading (1 1 1) //Block 4

54);

55

56 edges

57 (

58);

BLOCK 0 BLOCK 1

BLOCK 2 BLOCK 4

B
L

O
C

K
 3

Common face

Dam break free surface flow

The blockMeshDict dictionary file

• The boundary patches leftWall, rightWall and

lowerWall are of base type wall.

• Notice that each boundary patch groups many

faces.

• Remember, we assign the primitive type

boundary conditions (numerical values), in the
field files found in the directory 0

60 boundary

61 (

62 leftWall

63 {

64 type wall;

65 faces

66 (

67 (0 12 16 4)

68 (4 16 20 8)

69);

70 }

71 rightWall

72 {

73 type wall;

74 faces

75 (

76 (7 19 15 3)

77 (11 23 19 7)

78);

79 }

80 lowerWall

81 {

82 type wall;

83 faces

84 (

85 (0 1 13 12)

86 (1 5 17 13)

87 (5 6 18 17)

88 (2 14 18 6)

89 (2 3 15 14)

90);

91 }

Dam break free surface flow

The blockMeshDict dictionary file

• The boundary patch atmosphere is of base type

patch.

• Notice that we do not define the front and back

patches, these patches are automatically group in

the boundary patch defaultFaces of base type

empty.

• Remember, we assign the primitive type

boundary conditions (numerical values), in the
field files found in the directory 0

• We do not need to merge faces.

92 atmosphere

93 {

94 type patch;

95 faces

96 (

97 (8 20 21 9)

98 (9 21 22 10)

99 (10 22 23 11)

100);

101 }

102);

103

104 mergePatchPairs

105 (

106);

Dam break free surface flow

The boundary dictionary file

• This dictionary is located in the constant/polyMesh directory.

• This file is automatically created when generating or converting the mesh.

• In this case, we do not need to modify this file. All the base type boundary conditions and
name of the patches were assigned in the blockMeshDict file.

• The defaultFaces boundary patch contains all patches that we did not define in the boundary

section.

• If you change the name or the base type of a boundary patch, you will need to modify the field
files in the directory 0.

47 defaultFaces

48 {

49 type empty;

50 inGroups 1(empty);

51 nFaces 4563;

52 startFace 4640;

53 }

Dam break free surface flow

The constant directory

• In this directory, we will find the following compulsory dictionary files:

• g

• transportProperties

• turbulenceProperties

• g contains the definition of the gravity vector.

• transportProperties contains the definition of the physical properties of

each phase.

• turbulenceProperties contains the definition of the turbulence model to

use.

Dam break free surface flow

• This dictionary file is located in the directory
constant.

• For multiphase flows, this dictionary is

compulsory.

• In this dictionary we define the gravity vector (line

19).

• Pay attention to the class type (line 12).

The g dictionary file

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class uniformDimensionedVectorField;

13 location "constant";

14 object g;

15 }

17

18 dimensions [0 1 -2 0 0 0 0];

19 value (0 -9.81 0);

Dam break free surface flow

• This dictionary file is located in the directory
constant.

• We first define the name of the phases (line 18).

In this case we are defining the names water and

air. The first entry in this list is the primary phase

(water).

• The name of the phases is given by the user.

• In this file we set the kinematic viscosity (nu),

density (rho) and transport model

(transportModel) of the phases.

• We also define the surface tension (sigma).

The transportProperties dictionary file

18 phases (water air);

19

20 water

21 {

22 transportModel Newtonian;

23 nu [0 2 -1 0 0 0 0] 1e-06;

24 rho [1 -3 0 0 0 0 0] 1000;

25 }

26

27 air

28 {

29 transportModel Newtonian;

30 nu [0 2 -1 0 0 0 0] 1.48e-05;

31 rho [1 -3 0 0 0 0 0] 1;

32 }

33

34 sigma [1 0 -2 0 0 0 0] 0.07;

Primary phase

Dam break free surface flow

• In this dictionary file we select what model we would like to use (laminar or

turbulent).

• This dictionary is compulsory.

• As we do not want to model turbulence, the dictionary is defined as follows,

The turbulenceProperties dictionary file

18 simulationType laminar;

Dam break free surface flow

The 0 directory

• In this directory, we will find the dictionary files that contain the boundary and

initial conditions for all the primitive variables.

• As we are solving the incompressible laminar Navier-Stokes equations using

the VOF method, we will find the following field files:

• alpha.water (volume fraction of water phase)

• p_rgh (pressure field minus hydrostatic component)

• U (velocity field)

Dam break free surface flow

The file 0/alpha.water

17 dimensions [0 0 0 0 0 0 0];

18

19 internalField uniform 0;

20

21 boundaryField

22 {

23 leftWall

24 {

25 type zeroGradient;

26 }

27

28 rightWall

29 {

30 type zeroGradient;

31 }

32

33 lowerWall

34 {

35 type zeroGradient;

36 }

37

38 atmosphere

39 {

40 type inletOutlet;

41 inletValue uniform 0;

42 value uniform 0;

43 }

44

45 defaultFaces

46 {

47 type empty;

48 }

49 }

• This file contains the boundary and initial conditions

for the non-dimensional scalar field alpha.water

• This file is named alpha.water, because the

primary phase is water (we defined the primary
phase in the transportProperties dictionary).

• Initially, this field is initialized as 0 in the whole

domain (line 19). This means that there is no water in

the domain at time 0. Later, we will initialize the

water column and this file will be overwritten with a

non-uniform field for the internalField.

• For the leftWall, rightWall, and lowerWall patches

we are using a zeroGradient boundary condition (we

are just extrapolating the internal values to the

boundary face).

• For the atmosphere patch we are using an

inletOutlet boundary condition. This boundary

condition avoids backflow into the domain. If the flow

is going out it will use zeroGradient and if the flow is

coming back it will assign the value set in the

keyword inletValue (line 41).

• The defaultFaces patch is of primitive type empty.

Dam break free surface flow

The file 0/p_rgh

17 dimensions [1 -1 -2 0 0 0 0];

18

19 internalField uniform 0;

20

21 boundaryField

22 {

23 leftWall

24 {

25 type fixedFluxPressure;

26 value uniform 0;

27 }

29 rightWall

30 {

31 type fixedFluxPressure;

32 value uniform 0;

33 }

35 lowerWall

36 {

37 type fixedFluxPressure;

38 value uniform 0;

39 }

41 atmosphere

42 {

43 type totalPressure;

44 p0 uniform 0;

45 U U;

46 phi phi;

47 rho rho;

48 psi none;

49 gamma 1;

50 value uniform 0;

51 }

53 defaultFaces

54 {

55 type empty;

56 }

57 }

• This file contains the boundary and initial conditions

for the dimensional field p_rgh. The dimensions of

this field are given in Pascal (line 17)

• This scalar field contains the value of the static

pressure field minus the hydrostatic component.

• This field is initialized as 0 in the whole domain (line

19).

• For the leftWall, rightWall, and lowerWall patches

we are using a fixedFluxPressure boundary

condition (refer to the source code or doxygen

documentation to know more about this boundary

condition).

• For the atmosphere patch we are using the

totalPressure boundary condition (refer to the

source code or doxygen documentation to know

more about this boundary condition).

• The defaultFaces patch is of primitive type empty.

Dam break free surface flow

The file 0/U

17 dimensions [0 1 -1 0 0 0 0];

18

19 internalField uniform (0 0 0);

20

21 boundaryField

22 {

23 leftWall

24 {

25 type fixedValue;

26 value uniform (0 0 0);

27 }

28 rightWall

29 {

30 type fixedValue;

31 value uniform (0 0 0);

32 }

33 lowerWall

34 {

35 type fixedValue;

36 value uniform (0 0 0);

37 }

38 atmosphere

39 {

40 type pressureInletOutletVelocity;

41 value uniform (0 0 0);

42 }

43 defaultFaces

44 {

45 type empty;

46 }

47 }

• This file contains the boundary and initial conditions

for the dimensional vector field U.

• We are using uniform initial conditions and the

numerical value is (0 0 0) (keyword internalField in

line 19).

• The leftWall, rightWall, and lowerWall patches are

no-slip walls, therefore we impose a fixedValue

boundary condition with a value of (0 0 0) at the wall.

• For the outlet patch we are using a zeroGradient

boundary condition (we are just extrapolating the

internal values to the boundary face).

• For the atmosphere patch we are using the

pressureInlterOutletVelocity boundary condition

(refer to the source code or doxygen documentation

to know more about this boundary condition).

• The defaultFaces patch is of primitive type empty.

Dam break free surface flow

The system directory

• The system directory consists of the following compulsory dictionary files:

• controlDict

• fvSchemes

• fvSolution

• controlDict contains general instructions on how to run the case.

• fvSchemes contains instructions for the discretization schemes that will be

used for the different terms in the equations.

• fvSolution contains instructions on how to solve each discretized linear

equation system.

Dam break free surface flow

18 application interFoam;

19

20 startFrom startTime;

21

22 startTime 0;

23

24 stopAt endTime;

25

26 endTime 1;

27

28 deltaT 0.001;

29

30 writeControl adjustableRunTime;

31

32 writeInterval 0.05;

33

34 purgeWrite 0;

35

36 writeFormat ascii;

37

38 writePrecision 8;

39

40 writeCompression uncompressed;

41

42 timeFormat general;

43

44 timePrecision 8;

45

46 runTimeModifiable yes;

47

48 adjustTimeStep yes;

49

50 maxCo 1;

51 maxAlphaCo 1;

52 maxDeltaT 1;

• This case starts from time 0 (startTime).

• It will run up to 1 second (endTime).

• The initial time step of the simulation is 0.001 seconds (deltaT).

• It will write the solution every 0.05 seconds (writeInterval) of

simulation time (runTime). It will automatically adjust the time

step (adjustableRunTime), in order to save the solution at the

precise write interval.

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat).

• The write precision is 8 digits (writePrecision). It will only save

eight digits in the output files.

• And as the option runTimeModifiable is on, we can modify all

these entries while we are running the simulation.

• In line 48 we turn on the option adjustTimeStep. This option

will automatically adjust the time step to achieve the maximum

desired courant number (lines 50-51). We also set a maximum

time step in line 52.

• Remember, the first time step of the simulation is done using

the value set in line 28 and then it is automatically scaled to

achieve the desired maximum values (lines 50-51).

The controlDict dictionary

Dam break free surface flow

58 functions

59 {

62

63 minmaxdomain

64 {

65 type fieldMinMax;

66

67 functionObjectLibs ("libfieldFunctionObjects.so");

68

69 enabled true; //true or false

70

71 mode component;

72

73 outputControl timeStep;

74 outputInterval 1;

75

76 log true;

77

78 fields (p U alpha.water);

79 }

109 };

• Let us take a look at the functionObjects definitions.

• In lines 63-79 we define the fieldMinMax functionObject

which computes the minimum and maximum values of

the field variables (p U alpha.water).

The controlDict dictionary

Dam break free surface flow

58 functions

59 {

84 water_in_domain

85 {

86 type cellSource;

87 functionObjectLibs ("libfieldFunctionObjects.so");

88 enabled true;

89

90 //outputControl outputTime;

91 outputControl timeStep;

92 outputInterval 1;

93

94 log true;

95

96 valueOutput false;

97

98 source all;

99

100 operation volIntegrate;

101 fields

102 (

103 alpha.water

104);

105 }

109 };

The controlDict dictionary

• Let us take a look at the functionObjects definitions.

• In lines 84-105 we define the cellSource functionObject

which computes the volume integral (volIntegrate) of the

field variable alpha.water in all the domain.

• Basically, we are monitoring the quantity of water in the

domain.

Dam break free surface flow

18 ddtSchemes

19 {

20 default Euler;

21 }

22

23 gradSchemes

24 {

25 default Gauss linear;

26 }

27

28 divSchemes

29 {

30 div(rhoPhi,U) Gauss linearUpwind grad(U);

31 div(phi,alpha) Gauss vanLeer;

32 div(phirb,alpha) Gauss linear;

33 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

34 }

35

36 laplacianSchemes

37 {

38 default Gauss linear corrected;

39 }

40

41 interpolationSchemes

42 {

43 default linear;

44 }

45

46 snGradSchemes

47 {

48 default corrected;

49 }

• In this case, for time discretization (ddtSchemes) we are

using the Euler method.

• For gradient discretization (gradSchemes) we are using the

Gauss linear method.

• For the discretization of the convective terms (divSchemes)

we are using linearUpwind interpolation method for the term

div(rhoPhi,U).

• For the term div(phi,alpha) we are using vanLeer

interpolation. For the term div(phirb,alpha) we are using

linear interpolation. These terms are related to the volume

fraction equation.

• For the term div(((rho*nuEff)*dev2(T(grad(U))))) we are

using linear interpolation (this term is related to the

turbulence modeling).

• For the discretization of the Laplacian (laplacianSchemes

and snGradSchemes) we are using the Gauss linear

corrected method

• This method is second order accurate but oscillatory.

• Remember, at the end of the day we want a solution that is

second order accurate.

The fvSchemes dictionary

Dam break free surface flow

18 solvers

19 {

20 "alpha.water.*"

21 {

22 nAlphaCorr 2;

23 nAlphaSubCycles 1;

24 cAlpha 1;

25

26 MULESCorr yes;

27 nLimiterIter 3;

28

29 solver smoothSolver;

30 smoother symGaussSeidel;

31 tolerance 1e-8;

32 relTol 0;

33 }

34

35 pcorr

36 {

37 solver PCG;

38 preconditioner DIC;

39 tolerance 1e-8;

40 relTol 0;

41 }

42

43 p_rgh

44 {

45 solver PCG;

46 preconditioner DIC;

47 tolerance 1e-06;

48 relTol 0.01;

49 }

• To solve the volume fraction or alpha.water (lines 20-33) we

are using the smoothSolver method.

• In line 26 we turn on the semi-implicit method MULES. The

keyword nLimiterIter controls the number of MULES iterations

over the limiter.

• To have more stability it is possible to increase the number of

loops and corrections used to solve alpha.water (lines 22-23).

• The keyword cAlpha (line 24) controls the sharpness of the

interface (1 is usually fine for most cases).

• In lines 35-41 we setup the solver for pcorr (pressure

correction).

• In lines 43-49 we setup the solver for p_rgh.

• FYI, in this case pcorr is solved only one time at the beginning

of the computation.

The fvSolution dictionary

Dam break free surface flow

51 p_rghFinal

52 {

53 $p_rgh;

54 relTol 0;

55 }

56

57 "(U|Ufinal)"

58 {

59 solver smoothSolver;

60 smoother symGaussSeidel;

61 tolerance 1e-06;

62 relTol 0;

70 }

71 }

72

73 PIMPLE

74 {

75 momentumPredictor yes;

76 nOuterCorrectors 1;

77 nCorrectors 3;

78 nNonOrthogonalCorrectors 1;

79 }

80

81 relaxationFactors

82 {

83 fields

84 {

85 ".*" 1;

86 }

87 equations

88 {

89 ".*" 1;

90 }

91 }

• In lines 51-55 we setup the solver for p_rghFinal. This

correspond to the last iteration in the loop (we can use a tighter

convergence criteria to get more accuracy without increasing

the computational cost)

• In lines 57-70 we setup the solver for U.

• In lines 73-79 we setup the entries related to the pressure-

velocity coupling method used (PIMPLE in this case). Setting

the keyword nOuterCorrectors to 1 is equivalent to running

using the PISO method.

• To gain more stability we can increase the number of correctors

(lines 76-78), however this will increase the computational cost.

• In lines 81-91 we setup the under-relaxation factors related to

the PIMPLE method. By setting the coefficients to one we are

not under-relaxing.

The fvSolution dictionary

Dam break free surface flow

The system directory

• In the system directory you will find the following optional dictionary files:

• decomposeParDict

• setFieldsDict

• probesDict

• decomposeParDict is read by the utility decomposePar. This dictionary

file contains information related to the mesh partitioning. This is used when

running in parallel.

• setFieldsDict is read by the utility setFields. This utility set values on

selected cells/faces.

• probesDict is read by the utility probeLocations. This utility sample

field values at a given location.

Dam break free surface flow

The setFieldsDict dictionary

18 defaultFieldValues

19 (

20 volScalarFieldValue alpha.water 0

21);

22

23 regions

24 (

25 boxToCell

26 {

27 box (0 0 -1) (0.1461 0.292 1);

28 fieldValues

29 (

30 volScalarFieldValue alpha.water 1

31);

32 }

33);

• This dictionary file is located in the directory system.

• In lines 18-21 we set the default value to be 0 in the whole

domain (no water).

• In lines 25-32, we initialize a rectangular region (box)

containing water (alpha.water 1).

• In this case, setFields will look for the dictionary file

alpha.water and it will overwrite the original values

according to the regions defined in setFieldsDict.

• If you are interested in initializing the vector field U, you can

proceed as follows volVectorFieldValue U (0 0 0)

boxToCell region

Dam break free surface flow

W
a
te

r
a
lp

h
a
.w

a
te

r
=

 1

Air
alpha.water = 0

The probesDict dictionary

17 type probes;

18

19 fields

20 (

21 alpha.water

22 U

23 p_rgh

24 p

25);

26

27 probeLocations

28 (

29 (0.292 0 0)

30 (0.292 0.0240 0)

31 (0.292 0.0480 0)

32 (0.316 0.0480 0)

33 (0.316 0.0240 0)

34);

Dam break free surface flow

Fields to sample.

Points location.

The sampled information is always saved in the directory
postProcessing/probesDict

As we are sampling starting from time 0, the sampled data will be located in

the directory:

postProcessing/probesDict/0

The files alpha.water, p_rgh, p, and U located in the directory

postProcessing/probesDict/0 contain the sampled data. Feel free to

open them using your favorite text editor.

Use probes.

Running the case

• You will find this tutorial in the directory $PTOFC/101OF/damBreak

• In the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> checkMesh

4. $> cp 0/alpha.water.org 0/alpha.water

5. $> setFields

6. $> paraFoam

7. $> interFoam > log.interFoam | tail –f log.interFoam

8. $> probeLocations

9. $> paraFoam

Dam break free surface flow

Running the case

• In step 2 we generate the mesh.

• In step 3 we check the mesh quality.

• In step 4 we copy the information of the backup file alpha.water.org to the file

alpha.water. We do this because in the next step the utility setFields will

overwrite the file alpha.water, so it is a good idea to keep a backup.

• In step 5 we initialize the solution using the utility setFields. This utility reads the

dictionary setFieldsDict located in the system directory.

• In step 6 we use paraFoam to visualize the initialization. Remember to select the

field alpha.water in paraFoam.

• In step 7 we run the simulation.

• In step 8 we use the utility probeLocations to sample field values at given

locations. This utility reads the dictionary probesDict.

• Finally, in step 9 we visualize the solution.

Dam break free surface flow

• To plot the sampled data using gnuplot you can proceed as follows. To enter to the

gnuplot prompt type in the terminal:

1. $> gnuplot

Dam break free surface flow

1. gnuplot> plot [][0:1.2] “postProcessing/probes/0/alpha.water” u 1:2 pt 7 w lp,

“ ” u 1:3 pt 7 w lp, “ ” u 1:4 pt 7 w lp,

“ ” u 1:5 pt 7 w lp, “ ” u 1:6 pt 7 w lp

2. gnuplot> plot [][] “postProcessing/probes/0/p_rgh” u 1:2 pt 7 w lp,

“ ” u 1:3 pt 7 w lp, “ ” u 1:4 pt 7 w lp,

“ ” u 1:5 pt 7 w lp, “ ” u 1:6 pt 7 w lp

3. gnuplot> plot [][] “postProcessing/probes/0.05/p” u 1:2 pt 7 w lp,

“ ” u 1:3 pt 7 w lp, “ ” u 1:4 pt 7 w lp,

“ ” u 1:5 pt 7 w lp, “ ” u 1:6 pt 7 w lp

4. gnuplot> exit

To exit gnuplot

• Now that we are inside the gnuplot prompt, we can type,

• The output of steps 2 and 3 is the following:

Dam break free surface flow

alpha.water vs. time p_rgh vs. time

Courant Number mean: 0.134923 max: 0.684053

Interface Courant Number mean: 0.0189168 max: 0.427165

deltaT = 0.00137741

Time = 1

PIMPLE: iteration 1

smoothSolver: Solving for alpha.water, Initial residual = 0.00337527, Final residual = 5.40522e-11, No Iterations 3

Phase-1 volume fraction = 0.127626 Min(alpha.water) = -2.58492e-09 Max(alpha.water) = 1

MULES: Correcting alpha.water

MULES: Correcting alpha.water

Phase-1 volume fraction = 0.127626 Min(alpha.water) = -5.15558e-06 Max(alpha.water) = 1

DILUPBiCG: Solving for Ux, Initial residual = 0.00700056, Final residual = 2.94138e-09, No Iterations 3

DILUPBiCG: Solving for Uy, Initial residual = 0.00998841, Final residual = 1.67247e-09, No Iterations 3

DICPCG: Solving for p_rgh, Initial residual = 0.0158756, Final residual = 0.00013496, No Iterations 6

time step continuity errors : sum local = 3.17548e-05, global = -5.59901e-06, cumulative = -7.36376e-05

DICPCG: Solving for p_rgh, Initial residual = 0.000889262, Final residual = 7.94541e-06, No Iterations 30

time step continuity errors : sum local = 1.86402e-06, global = -9.55375e-08, cumulative = -7.37331e-05

DICPCG: Solving for p_rgh, Initial residual = 8.5497e-05, Final residual = 7.6903e-07, No Iterations 33

time step continuity errors : sum local = 1.80667e-07, global = 3.47462e-09, cumulative = -7.37296e-05

ExecutionTime = 9.47 s ClockTime = 9 s

fieldMinMax minmaxdomain output:

min(p) = -43.4411 at location (0.0698261 0.584 0.0073)

max(p) = 979.237 at location (0.23487 0 0.0073)

min(U) = (0.0129996 -0.0121795 0) at location (0.00634783 0.00299994 0.0073)

max(U) = (0.0129996 -0.0121795 0) at location (0.00634783 0.00299994 0.0073)

min(alpha.water) = -5.15558e-06 at location (0.272957 0.105428 0.0073)

max(alpha.water) = 1 at location (0.0317391 0.00299994 0.0073)

cellSource water_in_domain output:

volIntegrate() of alpha.water = 0.000633354

The output screen

• This is the output screen of the interFoam solver.

• The interface courant number is more restrictive than the flow courant number.

• When solving multiphase flows, is always desirable to keep the interface courant number less than 1.

Flow courant number

Interface courant number

3 pressure correctors

and no non-orthogonal
corrections

alpha.water
residuals

alpha.water is bounded between 0 and 1

nAlphaCorr 2

Volume integral functionObject

Tighter tolerance (p_rghFinal)

is only applied to this iteration
(the final one)

nAlphaSubCycles 1
Only one loop

Dam break free surface flow

Post-processing multiphase flows in paraFoam

• To visualize the volume fraction, proceed as follows,

1. In the Properties tab select

alpha.water in Volume Fields

2. Select alpha.water in

the Active Variable drop-

down menu

3. Select Surface in the

Representation drop-down
menu

Air
alpha.water = 0

W
a
te

r
a
lp

h
a
.w

a
te

r
=

 1

Interface
alpha.water = 0.5

4. To animate the solution, press Play in the VCR Controls

Dam break free surface flow

Post-processing multiphase flows in paraFoam

• To visualize a surface representing the interface, proceed as follows,

1. Select the filter Contour

2. Select alpha.water or the field you

want to use to plot the iso-surface (it

has to be a scalar)

3. Enter the value 0.5 which

corresponds to the interface
between water and air

Iso-surface representing

the interface between
water and air

4. Press apply

5. To animate the solution, press Play in the VCR Controls

Dam break free surface flow

Post-processing multiphase flows in paraFoam

• To visualize all the cells representing the water fraction, proceed as follows,

1. Select the filter Threshold

2. Select alpha.water or the field

you want to use to visualize the

cells (it has to be a scalar)

3. Select the range you want to

visualize. To visualize the
water select Minimum 0.5 and

Maximum 1.

4. Press apply

Cells representing the
water location

5. To animate the solution, press Play in the VCR Controls

Dam break free surface flow

Exercises

Dam break free surface flow

• Instead of using the boundary condition totalPressure and pressureInletOutletVelocity for the patch

atmosphere, try to use zeroGradient. Do you get the same results? Any comments?

(Hint: this combination of boundary conditions will give you an error, read carefully the screen, you
will need to add a fix in the file fvSolution)

• Instead of using the boundary condition fixedFluxPressure for the walls, try to use zeroGradient. Do you get

the same results? Any comments?

• Use a functionObject to compute the volume integral of alpha.water in the whole domain.

(Hint: the functionOnject already exist in the dictionary controlDict, take a look at the doxygen

documentation to learn how to use it)

• Run the simulation in a close domain. Does the volume integral of alpha.water remains the same? Why the

value is not constant when the domain is open?

• Use a functionObject to measure the average pressure at the obstacle.

(Hint: the easiest way is to create a new patch to define the obstacle)

• How many initialization methods are there available in the dictionary setFieldsDict?

(Hint: use the banana method)

• Try to use a different initialization method and multiple regions.

Exercises

Dam break free surface flow

• Run the simulation using Gauss upwind instead of Gauss vanLeer for the term div(phi,alpha) (fvSchemes).

Do you get the same quantitative results?

• Run a numerical experiment for cAlpha equal to 0, 1, and 2. Do you see any difference in the solution? What

about computing time?

• Try to improve the resolution of the free surface.

(Hint: try to increase the mesh resolution and set cAlpha = 2)

• Use the solver GAMG instead of using the solver PCG for the variable p_rgh. Do you see any difference on

the solution or computing time?

• Increase the number of nOuterCorrector to 2 and study the output screen. What difference do you see?

• Turn off the MULES corrector (MULESCorr). Do you see any difference on the solution or computing time?

• If you set the gravity vector to (0 0 0), what do you think will happen?

• Try to break the solver and identify the cause of the error. You are free to try any kind of setup.

