
• Implementing a new application from scratch in OpenFOAM® (or any other 

high level programming library), can be an incredible daunting task. 

• OpenFOAM® comes with many solvers, and as it is today, you do not need 

to implement new solvers from scratch.

• Of course, if your goal is to write a new solver, you will need to deal with 

programming. What you usually do, is take an existing solver and modify it.

• But in case that you would like to take the road of implementing new 

applications from scratch, we are going to give you the basic building blocks.

• We are also going to show how to add basic modifications to existing solvers.

• We want to remind you that this requires some knowledge on C++ and 

OpenFOAM® API library.

• Also, you need to understand the FVM, and be familiar with the basic algebra 

of tensors.

• Some common sense is also helpful.

Implementing an application from scratch



Implementing an application from scratch

• Let us do a little bit of high level programming, this is the hard part of working 

with OpenFOAM®.

• At this point, you can work in any directory. But we recommend you to work 

in your OpenFOAM® user directory, type in the terminal,

1. $> cd $WM_PROJECT_USER_DIR/run 

• To create the basic structure of a new application, type in the terminal,

1. $> foamNewApp scratchFoam

2. $> cd scratchFoam

• The utility foamNewApp, will create the directory structure and all the files needed to 

create the new application from scratch. The name of the application is

scratchFoam.

• If you want to get more information on how to use foamNewApp, type in the terminal, 

1. $> foamNewApp –help



Implementing an application from scratch

Directory structure of the new boundary condition

scratchFoam/

├── createFields.H

├── scratchFoam.C

└── Make

├── files

└── options

The scratchFoam directory contains the source code of the solver.

• scratchFoam.C: contains the starting point to implement the new application.

• createFields.H: in this file we declare all the field variables and initializes the solution. 

This file does not exist at this point, we will create it later.

• The Make directory contains compilation instructions.

• Make/files: names all the source files (.C), it specifies the name of the solver and 

location of the output file.

• Make/options: specifies directories to search for include files and libraries to link the 

solver against. 

• To compile the new application, we use the command wmake.

Does not exist, we will create it later



Implementing an application from scratch

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

#include "fvCFD.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

int main(int argc, char *argv[])

{

#include "setRootCase.H"

#include "createTime.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< "  ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

Info<< "End\n" << endl;

return 0;

}

• Open the file scratchFoam.C using your favorite text editor, we will use gedit.

• At this point you should have this file, this does not do anything. We need to add the 

statements to create a working applications.

• This is the starting point for new applications.

This header is extremely important, it will add all the class 

declarations needed to access mesh, fields, tensor algebra, fvm/fvc 
operators, time, parallel communication, linear algebra, and so on.



Implementing an application from scratch

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

#include "fvCFD.H“

#include "pisoControl.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

int main(int argc, char *argv[])

{

#include "setRootCase.H“

#include "createTime.H“

#include "createMesh.H“

#include "createFields.H“

#include "CourantNo.H“

#include "initContinuityErrs.H“

pisoControl piso(mesh);

Info<< "\nStarting time loop\n" << endl;

Set directory structure

Create time (object runtime)

Create time (object mesh)

Initialize fields  
This source file does not exist yet, we need to create it

Calculates and outputs the Courant Number

Declare and initialize the cumulative continuity error

Assign PISO controls to object mesh.  Creates object piso.
Alternatively, you can use the header file createControl.H

Output some information

• Stating from line 31, add the following statements.

• We are going to use the PISO control options, even if we do not have to deal with 

velocity-pressure coupling.

Solution control using PISO class



Implementing an application from scratch

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

while (runTime.loop())

{

Info<< "Time = " << runTime.timeName() << nl << endl;

#include "CourantNo.H"

while (piso.correct())

{

while (piso.correctNonOrthogonal())

{

fvScalarMatrix Teqn

(

fvm::ddt(T)

+ fvm::div(phi, T)

- fvm::laplacian(DT, T)

);

TEqn.solve();

}        

}

• We are going to use the PISO control options, even if we do not have to deal with 

velocity-pressure coupling.

Time loop

Calculates and outputs the Courant Number

PISO options (correct loop)

PISO options (non orthogonal corrections 
loop)

Model equation (convection-diffusion)

We need to create the scalar field T, vector 

field U (used in phi or face fluxes), and the 

constant DT.

We will declare these variables in the 

createFields.H header file.

In the dictionary fvSchemes, you will need to 

define how to compute the differential 

operators, that is,

ddt(T)

div(phi, T)
laplacian(DT, T)

Solve TEqn

At this point the object 
TEqn holds the solution. 

Create object TEqn. 

fvScalarMatrix is a scalar instance of fvMatrix 



Implementing an application from scratch

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

#include "continuityErrs.H"

runTime.write();

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< "  ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

Info<< "End\n" << endl;

return 0;

}

• We are going to use the PISO control options, even if we do not have to deal with 

velocity-pressure coupling.

Computes continuity errors

Write the solution in the runtime folder

It will write the data requested in the file createFields.H

W
ri
te

 C
P

U
 t
im

e
 a

t 
th

e
 e

n
d

 o
f 
th

e
 t
im

e
 l
o
o

p
. 

If
 y

o
u

 w
a

n
t 
to

 c
o

m
p

u
te

 t
h

e
 C

P
U

 t
im

e
 o

f 
e

a
c
h

 i
te

ra
ti
o

n
, 

a
d

d
 t
h

e
 s

a
m

e
 s

ta
te

m
e

n
t 
in

s
id

e
 t
h

e
 t
im

e
 l
o
o

p

Output this message

End of the program (exit status).  

If everything went fine, the program should return 0.

To now the return value, type in the terminal,
$> echo $?

At this point we are outside of the time loop



Implementing an application from scratch

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Info<< "Reading field T\n" << endl;

volScalarField T

(

IOobject

(

"T",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

• Let us create the file createFields.H, type in the terminal, 

1. $> touch createFields.H

• Now open the file with your favorite editor, and start to add the following information,

Create scalar field T

Name of the dictionary file to read/write

runtime directory

Read the dictionary in the runtime directory 

(MUST_READ, and write the value in the runtime 

directory (AUTO_WRITE).

If you do not want to write the value, use the option 
NO_WRITE

Create object for input/output operations

Link object to mesh

Object registry



Implementing an application from scratch

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Info<< "Reading field U\n" << endl;

volVectorField U

(

IOobject

(

"U",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

• Remember, in the file createFields.H, we declare all the variables (or fields) that 

we will use (U and T in this case).

• The dimensions of the fields are defined in the input dictionaries, you also have the 

option to define the dimensions in the source code.

• You can also define the fields directly in the source file scratchFoam.C, but it is 

good practice to do it in the header. This improves code readability.

Create vector field U

Name of the dictionary file to read/write



Implementing an application from scratch

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Info<< "Reading transportProperties\n" << endl;

IOdictionary transportProperties

(

IOobject

(

"transportProperties",

runTime.constant(),

mesh,

IOobject::MUST_READ_IF_MODIFIED,

IOobject::NO_WRITE

)

);

Info<< "Reading diffusivity DT\n" << endl;

dimensionedScalar DT

(

transportProperties.lookup("DT")

);

#include "createPhi.H"

• We also need to declare the constant DT, that is read from the dictionary 
transportProperties.

• The dimensions are defined in the input dictionary.

Create object transportProperties used to 

read data

Name of the input dictionary

Location of the input dictionary, in this case 

is located in the directory constant

Re-read data if it is modified

Do not write anything in the dictionary

Create scalar DT (diffusion coefficient)

Access value of DT in the object 

transportProperties

Creates and initializes the relative face-

flux field phi.



Implementing an application from scratch

• At this point, we are ready to compile. Type in the terminal,

1. $> wmake

• If everything went fine, you should have a working solver named scratchFoam.

• If you are feeling lazy or you can not fix the compilation errors, you will find the source 

code in the directory, 

• $PTOFC/101programming/applications/solvers/scratchFoam

• You will find a case ready to run in the directory,

$PTOFC/101programming/applications/solvers/scratchFoam/test_case

• At this point, we are all familiar with the convection-diffusion equation and 

OpenFOAM®, so you know how to run the case.  Do your magic.



Implementing an application from scratch

• Let us now add a little bit more complexity, a non-uniform initialization of the scalar 

field T.

• Remember codeStream? Well, we just need to proceed in a similar way.

• As you will see, initializing directly in the source code of the solver is more intrusive 

than using codeStream in the input dicitionaries.

• It also requires recompiling the application.

• Add the following statements to the createFields.H file, recompile and run again 

the test case. 

16

17

18

19

20

21

22

23

24

25

26

27

28

forAll(T, i)

{

const scalar x = mesh.C()[i][0];

const scalar y = mesh.C()[i][1];

const scalar z = mesh.C()[i][2];

if ( 0.3 < x && x < 0.7)

{

T[i] = 1.;

}

}

T.write();

We add the initialization of T after the its declaration

Access cell center coordinates.
In this case y and z coordinates are not used. 

Conditional structure

Write field T.  As the file createFields.H is outside the time loop 
the value is saved in the time directory 0



Implementing an application from scratch

• Let us compute a few extra fields.  We are going to compute the gradient, divergence, 

and Laplacian of T.

• We are going to compute these fields in a explicit way, that is, after finding the 

solution of T.  

• Therefore we are going to use the operator fvc.

• Add the following statements to the source code of the solver (scratchFoam.C),

68

69

70

71

72

73

74

}

#include "continuityErrs.H"

#include "write.H"

runTime.write();

}
The file is located in the directory 

$PTOFC/101programming/applications/solvers/scratchFoam

In this file we declare and define the new variables, take a look at it

Add this header file

• Recompile the solver and rerun the test case.  

• The solver will complain, try to figure out what is the problem (you are missing some 
information in the fvSchemes dictionary).



Implementing an application from scratch

• Let us talk about the file write.H,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

56

57

58

59

60

61

62

63

64

65

66

67

68

69

volVectorField gradT(fvc::grad(T));

volVectorField gradT_vector

(

IOobject

(

"gradT",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

gradT

);

...

volScalarField divGradT

(

IOobject

(

"divGradT",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

fvc::div(gradT)

);

...

Compute gradient of T.

fvc is the explicit operator, it will compute the 

requested value using the solution of T 

Save vector field in output dictionary gradT

Compute divergence of gradT.

The output of this operation is a scalar field.

In this case we compute the quantity inside the scalar field 

declaration (line 67).

We use the fvc operator because the solution of gradT is 
already known.

In the dictionary fvSchemes, you will need to tell the solver how to do 
the interpolation of the term div(grad(T))


