Implementing an application from scratch

Implementing a new application from scratch in OpenFOAM® (or any other
high level programming library), can be an incredible daunting task.

OpenFOAM® comes with many solvers, and as it is today, you do not need
to implement new solvers from scratch.

Of course, if your goal is to write a new solver, you will need to deal with
programming. What you usually do, is take an existing solver and modify it.

But in case that you would like to take the road of implementing new
applications from scratch, we are going to give you the basic building blocks.

We are also going to show how to add basic modifications to existing solvers.

We want to remind you that this requires some knowledge on C++ and
OpenFOAM® API library.

Also, you need to understand the FVM, and be familiar with the basic algebra
of tensors.

Some common sense is also helpful.

Implementing an application from scratch

Let us do a little bit of high level programming, this is the hard part of working
with OpenFOAM®.

At this point, you can work in any directory. But we recommend you to work
iIn your OpenFOAM® user directory, type in the terminal,

1. ‘$> cd SWM PROJECT USER DIR/run

To create the basic structure of a new application, type in the terminal,

1. $> foamNewApp scratchFoam

2. $> cd scratchFoam

The utility foamNewApp, will create the directory structure and all the files needed to

create the new application from scratch. The name of the application is
scratchFoam.

If you want to get more information on how to use foamNewApp, type in the terminal,

1. $> foamNewApp —-help

Implementing an application from scratch

Directory structure of the new boundary condition

scratchFoam/
L createFields.H < Does notexist, we will create it later

—— scratchFoam.C
L Make

The scratchFoam directory contains the source code of the solver.
* scratchFoam. C. contains the starting point to implement the new application.

e createFields. H: in this file we declare all the field variables and initializes the solution.
This file does not exist at this point, we will create it later.

« The Make directory contains compilation instructions.

» Make/files: names all the source files (.C), it specifies the name of the solver and
location of the output file.

* Make/options:. specifies directories to search for include files and libraries to link the
solver against.

« To compile the new application, we use the command wmake.

Implementing an application from scratch

Open the file scratchFoam. C using your favorite text editor, we will use gedit.

At this point you should have this file, this does not do anything. We need to add the
statements to create a working applications.

This is the starting point for new applications.

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

This header is extremely important, it will add all the class
declarations needed to access mesh, fields, tensor algebra, fvm/fvc

#include "£vCFD.H" <4 gperators, time, parallel communication, linear algebra, and so on.

//****

*********************************//

int main (int argc, char *argv]|[])

{

#include "setRootCase.H"
#include "createTime.H"

/] * *
Info<<
<<
<<

Info<<

return

}

*********************************//

nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
" ClockTime = " << runTime.elapsedClockTime() << " s"
nl << endl;

"End\n" << endl;

0;

Implementing an application from scratch

Stating from line 31, add the following statements.

We are going to use the PISO control options, even if we do not have to deal with
velocity-pressure coupling.

30
31

32
33
34
35
36
37
38

39
40
41
42
43
44
45
46

47
48

#include "fvCFD.H™“

#include "pisoControl.H" <« Solution control using PISO class

//*************************************//

int main(int argc, char *argv[])

{

#include "setRootCase.H" <«

#include "createTime.H“ «

#include "createMesh.H“ «

#include "createFields.H“ <«

#include "CourantNo.H" «

#include "initContinuityErrs.H" €

pisoControl piso(mesh); <«

Set directory structure
Create time (object runtime)

Create time (object mesh)

Initialize fields
This source file does not exist yet, we need to create it

Calculates and outputs the Courant Number

Declare and initialize the cumulative continuity error

Assign PISO controls to object mesh. Creates object piso.
Alternatively, you can use the header file createControl.H

Info<< "\nStarting time loop\n" << endl; <€—— QOutput some information

Implementing an application

from scratch

We are going to use the PISO control options, even if we do not have to deal with
velocity-pressure coupling.

49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64

65
66
67
68
69

while (runTime.loop())

{

<4— Time loop

Info<< "Time = " << runTime.timeName () << nl << endl;

#include "CourantNo.H" «— Calculates and outputs the Courant Number

while (piso.correct()) ———— PISO options (correct loop)

{
while (piso.correctNonOrthogonal()) <«¢——

{

fvScalarMatrix Teqn «¢

(
fvm: :dd

+ fvm::div(phi, T
- fvm: :laplacian T)
) ; T —
or

= +V-(¢T) - V- (IVI) =0

TEgn.solve() ;

Solve TEgn
At this point the object
TEqgn holds the solution.

PISO options (non orthogonal corrections
loop)

Create object TEqn.
fvScalarMatrix is a scalar instance of fvMatrix

Model equation (convection-diffusion)
We need to create the scalar field T, vector
field U (used in phi or face fluxes), and the
constant DT.
We will declare these variables in the
createFields.H header file.
In the dictionary fvSchemes, you will need to
define how to compute the differential
operators, that is,

ddt(T)

div(phi, T)

laplacian(DT, T)

Implementing an application from scratch

We are going to use the PISO control options, even if we do not have to deal with
velocity-pressure coupling.

69
70
71

72

73
74
75
76
77
78
79
80
81
82

83
84
85
86

#include "continuityErrs.H" <« Computes continuity errors

runTime.write(); <«——— \Nrite the solution in the runtime folder

It will write the data requested in the file createFields.H

} < At this point we are outside of the time loop

/] * *
Info<<
<<
<<

Info<<

return

*********************************//

nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
" ClockTime = " << runTime.elapsedClockTime() << " s" —
nl << endl;

"End\n" << endl; <«—— Output this message

0; <«— End of the program (exit status).
If everything went fine, the program should return 0.
To now the return value, type in the terminal,
$> echo $?

If you want to compute the CPU time of each iteration,

Write CPU time at the end of the time loop.
add the same statement inside the time loop

Implementing an application from scratch

» Let us create the file createFields. H, type in the terminal,

1. ‘$> touch createFields.H

« Now open the file with your favorite editor, and start to add the following information,

1 Info<< "Reading field T\n" << endl;

2

3 volScalarField T <« Create scalar field T

4 (

5 IOobject <——— Create object for input/output operations

6 (- , :

5 T L N— Name of the dictionary file to read/write

8 runTime.timeName () , € runtime directory

9 mesh, < Object registry

10 IOobject: :MUST_READ, o) _ _

11 IOobject: :AUTO WRITE <€4— Read the dictionary in the runtime directory

12), - (MUST_READ, and write the value in the runtime

13 mesh €——— Link object to mesh SIIEEHRly ((II0)_BRCTIE): _

14) ; If you do not want to write the value, use the option
NO_WRITE

Implementing an application from scratch

Remember, in the file createFields. H, we declare all the variables (or fields) that
we will use (U and T in this case).

The dimensions of the fields are defined in the input dictionaries, you also have the
option to define the dimensions in the source code.

You can also define the fields directly in the source file scratchFoam. C, butitis
good practice to do it in the header. This improves code readability.

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Info<< "Reading field U\n" << endl;

volVectorField U <« Create vector field U
(
IOobject

(
"gr, <4 Name of the dictionary file to read/write

runTime. timeName (),
mesh,

IOobject: :MUST_READ,
IOobject: :AUTO_WRITE

),

mesh

Implementing an application from scratch

« We also need to declare the constant DT, that is read from the dictionary
transportProperties.

* The dimensions are defined in the input dictionary.

33 Info<< "Reading transportProperties\n" << endl;

34

35 IOdictionary transportProperties «¢ Create object transportProperties used to
36 (read data

37 IOobject) o

38 (/ Name of the input dictionary

39 "transportProperties",
40 runTime.constant(), < Location of the input dictionary, in this case
a1 mesh ’ is located in the directory constant

42 IOobject: :MUST READ IF MODIFIED, €—— Re-read data if it is modified

43 IOobject: :NO_WRITE \

3;)) Do not write anything in the dictionary
46

47

48 Info<< "Reading diffusivity DT\n" << endl;

49

50 dimensionedScalar DT <« Create scalar DT (diffusion coefficient)
51 (

52 transportProperties.lookup ("DT") & Access value of DT in the object

53) ; transportProperties

54 o .

55 #include "createPhi . H" < Crea_tes anc_i initializes the relative face-
56 flux field phi.

Implementing an application from scratch

« At this point, we are ready to compile. Type in the terminal,

1. ‘$> wmake

 If everything went fine, you should have a working solver named scratchFoam.

» If you are feeling lazy or you can not fix the compilation errors, you will find the source
code in the directory,

* SPTOFC/l1l0lprogramming/applications/solvers/scratchFoam

You will find a case ready to run in the directory,
$PTOFC/10lprogramming/applications/solvers/scratchFoam/test case

« At this point, we are all familiar with the convection-diffusion equation and
OpenFOAM®, so you know how to run the case. Do your magic.

Implementing an application from scratch

« Let us now add a little bit more complexity, a non-uniform initialization of the scalar
field T.

« Remember codeStream? Well, we just need to proceed in a similar way.

» As you will see, initializing directly in the source code of the solver is more intrusive
than using codeStream in the input dicitionaries.

« It also requires recompiling the application.

* Add the following statements to the createFields.H file, recompile and run again
the test case.

16

17 forall (T, i) <€——— \We add the initialization of T after the its declaration

18 {

19 const scalar x = mesh.C() [1][0]; _

20 const scalar y = mesh.C() [i][1]; — Acce_ss cell center coordlqates.

21 const scalar z = mesh.C()[i][2]; In this case y and z coordinates are not used.

22

23 if (0.3 < x && x < 0.7) <—— (Conditional structure

24 {

25 T[i] = 1.;

26 }

27 }

28 T.write(); < Write field T. As the file createFields.H is outside the time loop
the value is saved in the time directory O

Implementing an application from scratch

« Let us compute a few extra fields. We are going to compute the gradient, divergence,
and Laplacian of T.

* We are going to compute these fields in a explicit way, that is, after finding the
solution of T.

« Therefore we are going to use the operator fvc.

« Add the following statements to the source code of the solver (scratchFoam. C),

68 }
69
70 #include "continuityErrs.H"
71 #include "write.H" « Add this header file
72 runTime.write() ;
73 The file is located in the directory
74 } $PTOFC/101programming/applications/solvers/scratchFoam
In this file we declare and define the new variables, take a look at it

* Recompile the solver and rerun the test case.

* The solver will complain, try to figure out what is the problem (you are missing some
information in the fvSchemes dictionary).

Implementing an application from scratch

Let us talk about the file write. H,

oo d WDNBR

H R R REBRo
b WN RO

56
57
58
59
60
61
62
63
64
65
66
67
68
69

volVectorField gradT(fvc::grad(T)); «

volVectorField gradT_vector

(

IOobject

(
"gradT",
runTime. timeName (),
mesh,
IOobject: :NO_READ,
IOobject: :AUTO_WRITE

),
gradT

volScalarField divGradT

(

IOobject
(
"divGradT",
runTime. timeName () ,
mesh,
IOobject: :NO_READ,
IOobject: :AUTO WRITE
) 14
fvc: :div(gradT)

—

Compute gradient of T.
fvc is the explicit operator, it will compute the
requested value using the solution of T

- 4— Save vector field in output dictionary gradT

Compute divergence of gradT.

The output of this operation is a scalar field.

In this case we compute the quantity inside the scalar field
declaration (line 67).

We use the fvc operator because the solution of gradT is
already known.

\ In the dictionary fvSchemes, you will need to tell the solver how to do
the interpolation of the term div(grad(T))

