
• In the directory $WM_PROJECT_DIR/applications/test, you will

find the source code of several test cases that show the usage of most

of the OpenFOAM® classes.

• We highly encourage you to take a look at these test cases and try to

understand how to use the classes.

• We will use these basic test cases to understand the following base

classes: tensors, fields, mesh, and basic discretization.

• For your convenience, we already copied the directory
$WM_PROJECT_DIR/applications/test into the directory

$PTOFC/programming_playground/test

Programming in OpenFOAM®. Building blocks

• During this session we will study the building blocks to write basic

programs in OpenFOAM®:

• First, we will start by taking a look at the algebra of tensors in

OpenFOAM®.

• Then, we will take a look at how to generate tensor fields from tensors.

• Next, we will learn how to access mesh information.

• Finally we will see how to discretize a model equation and solve the

linear system of equations using OpenFOAM® classes and templates.

• And of course, we are going to program a little bit in C++. But do not be

afraid, after all this is not a C++ course.

Programming in OpenFOAM®. Building blocks

• Remember, all OpenFOAM® components are implemented in library form for

easy re-use.

• OpenFOAM® encourage code re-use. So basically we are going to take

something that already exist and we are going to modify it to fix our needs.

• We like to call this method CPAC (copy-paste-adapt-compile).

Basic tensor classes in OpenFOAM®

Tensor Rank Common name Basic class Access function

0 Scalar scalar

1 Vector vector x(), y(), z()

2 Tensor tensor xx(), xy(), xz() …

Programming in OpenFOAM®. Building blocks

• OpenFOAM® represents scalars, vectors and matrices as tensor fields. A zero rank

tensor is a scalar, a first rank tensor is a vector and a second rank tensor is a matrix.

• OpenFOAM® contains a C++ class library named primitive
($FOAM_SRC/OpenFOAM/primitives/). In this library, you will find the classes for

the tensor mathematics.

• In the following table, we show the basic tensor classes available in OpenFOAM®,

with their respective access functions.

• We can access the component or using the xz () access function,

• In OpenFOAM®, the second rank tensor (or matrix)

Basic tensor classes in OpenFOAM®

Programming in OpenFOAM®. Building blocks

tensor T(1, 2, 3, 4, 5, 6, 7, 8, 9);

can be declared in the following way

Basic tensor classes in OpenFOAM®

Programming in OpenFOAM®. Building blocks

• For instance, the following statement,

• Notice that to output information to the screen in OpenFOAM®, we use the function

Info instead of the function cout (used in standard C++).

• The function cout will work fine, but it will give you problems when running in parallel.

Info << “Txz = “ << T.xz () << endl;

• Will generate the following screen output,

$> Txz = 3

Algebraic tensor operations in OpenFOAM®

Operation Remarks
Mathematical

description

OpenFOAM®

description

Addition a + b a + b

Scalar multiplication sa s * a

Outer product rank a, b >=1 ab a * b

Inner product rank a, b >=1 a.b a & b

Double inner product rank a, b >=2 a:b a && b

Magnitude |a| mag(a)

Determinant det T det(T)

You can find a complete list of all operators in the programmer’s guide

Programming in OpenFOAM®. Building blocks

• Tensor operations operate on the entire tensor entity.

• OpenFOAM® syntax closely mimics the syntax used in written mathematics, using descriptive

functions (e.g. mag) or symbolic operators (e.g. +).

• OpenFOAM® also follow the standard rules of linear algebra when working with tensors.

• Some of the algebraic tensor operations are listed in the following table (where a and b are

vectors, s is a scalar, and T is a tensor).

Dimensional units in OpenFOAM®

Programming in OpenFOAM®. Building blocks

• As we already know, OpenFOAM® is fully dimensional.

• Dimensional checking is implemented as a safeguard against implementing

a meaningless operation.

• OpenFOAM® encourages the user to attach dimensional units to any tensor

and it will perform dimension checking of any tensor operation.

• You can find the dimensional classes in the directory
$FOAM_SRC/OpenFOAM/dimensionedTypes/

• The dimensions can be hardwired directly in the source code or can be

defined in the input dictionaries.

• From this point on, we will be attaching dimensions to all the tensors.

Dimensional units in OpenFOAM®

1 dimensionedTensor sigma

2 (

3 “sigma”,

4 dimensionSet(1, -1, -2, 0, 0, 0, 0),

5 tensor(10e6,0,0,0,10e6,0,0,0,10e6)

6);

Programming in OpenFOAM®. Building blocks

• Units are defined using the dimensionSet class tensor, with its units defined using

the dimensioned<Type> template class, the <Type> being scalar, vector, tensor,

etc. The dimensioned<Type> stores the variable name, the dimensions and the

tensor values.

• For example, a tensor with dimensions is declare in the following way:

• In line 1 we create the object sigma.

• In line 4, we use the class dimensonSet to attach units to the object sigma.

• In line 5, we set the input values of the tensor sigma.

Units correspondence in dimensionSet

dimensionSet (kg, m, s, K, mol, A, cd)

Programming in OpenFOAM®. Building blocks

1 dimensionedTensor sigma

2 (

3 “sigma”,

4 dimensionSet(1, -1, -2, 0, 0, 0, 0),

5 tensor(10e6,0,0,0,10e6,0,0,0,10e6)

6);

• The units of the class dimensionSet are defined as follows

• Therefore, the tensor sigma,

• Has pressure units or

Dimensional units examples

Programming in OpenFOAM®. Building blocks

• To attach dimensions to any tensor, you need to access dimensional units class.

• To do so, just add the header file dimensionedTensor.H to your program.

#include “dimensionedTensor.H”

...

...

...

dimensionedTensor sigma

(

"sigma",

dimensionSet(1, -1, -2, 0, 0, 0, 0),

tensor(1e6,0,0,0,1e6,0,0,0,1e6)

);

Info<< "Sigma: " << sigma << endl;

...

...

...

• The output of the previous program should looks like this:

sigma sigma [1 -1 -2 0 0 0 0] (1e+06 0 0 0 1e+06 0 0 0 1e+06)

Dimensional units examples

Programming in OpenFOAM®. Building blocks

• As for base tensors, you can access the information of dimensioned tensors.

• For example, to access the name, dimensions, and values of a dimensioned tensor,

you can proceed as follows:

Info<< "Sigma yy (22) value: " << sigma.value().yy() << endl;

• To extract a value of a dimensioned tensor, you can proceed as follows:

Info << “Sigma name: “ << sigma.name () << endl;

Info << “Sigma dimensions: “ << sigma.dimensions () << endl;

Info << “Sigma value: “ << sigma.value () << endl;

• Note that the value() member function first converts the expression to a tensor, which

has a yy() member function.

• The dimensionedTensor class does not have a yy() member function, so it is not

possible to directly get its value by using sigma.yy().

OpenFOAM® lists and fields

Programming in OpenFOAM®. Building blocks

• OpenFOAM® frequently needs to store sets of data and perform mathematical

operations.

• OpenFOAM® provides an array template class List<Type>, making it possible to

create a list of any object of class Type that inherits the functions of the Type. For

example a List of vector is List<vector>.

• Lists of the tensor classes are defined in OpenFOAM® by the template class

Field<Type>.

• For better code legibility, all instances of Field<Type>, e.g. Field<vector>, are

renamed using typedef declarations as scalarField, vectorField, tensorField,

symmTensorField, tensorThirdField and symmTensorThirdField.

• You can find the field classes in the directory
$FOAM_SRC/OpenFOAM/fields/Fields.

• Algebraic operations can be performed between fields, subject to obvious restrictions

such as the fields having the same number of elements.

• OpenFOAM® also supports operations between a field and a zero rank tensor, e.g.

all values of a Field U can be multiplied by the scalar 2 by simple coding the

following line, U = 2.0 * U.

Construction of a tensor field in OpenFOAM®

Programming in OpenFOAM®. Building blocks

#include "tensorField.H"

...

...

...

tensorField tf1(2, tensor::one);

Info<< "tf1: " << tf1 << endl;

tf1[0] = tensor(1, 2, 3, 4, 5, 6, 7, 8, 9);

Info<< "tf1: " << tf1 << endl;

Info<< "2.0*tf1: " << 2.0*tf1 << endl;

...

...

...

• To create fields, you need to access the tensor class.

• To do so, just add the header file tensorField.H to your program. This class

inherit all the tensor algebra.

• In this example, we created a list of two tensor fields (tf1), and both tensors are

initialized to one.

• We can access components on the list using the access operator [].

Example of use of tensor and field classes

Programming in OpenFOAM®. Building blocks

• In the directory $PTOFC/programming_playground/my_tensor you will find a

tensor class example.

• The original example is located in the directory
$PTOFC/programming_playground/test/tensor. Feel free to compare the

files to spot the differences.

• Before compiling the file, let us recall how applications are structure,

working_directory/

├── applicationName.C

├── header-files.H

└── Make

├── files

└── options

• applicationName.C: is the actual source code of the application.

• header_files.H: header files required to compile the application.

Programming in OpenFOAM®. Building blocks

• Before compiling the file, let us recall how applications are structure.

working_directory/

├── applicationName.C

├── header-files.H

└── Make

├── files

└── options

• The Make directory contains compilation instructions.

• files: names all the source files (.C), it specifies the name of the new application and

the location of the output file.

• options: specifies directories to search for include files and libraries to link the solver

against.

• At the end of the file files, you will find the following line of code,

EXE = $(FOAM_USER_APPBIN)/my_Test-tensor

• This is telling the compiler to name your application my_Test-tensor and to copy the executable

in the directory $FOAM_USER_APPBIN.

• To avoid conflicts between applications, always remember to give a proper name and a location

to your programs and libraries.

Example of use of tensor and field classes

Programming in OpenFOAM®. Building blocks

• Let us now compile the tensor class example. Type in the terminal:

1. $> cd $PTOFC/programming_playground/my_tensor

2. $> wmake

3. $> my_Test-tensor

• In step 2, we used wmake (distributed with OpenFOAM®) to compile the

source code.

• The name of the executable will be my_Test-tensor and it will be located in
the directory $FOAM_USER_APPBIN (as specified in the file Make/files)

• At this point, take a look at the output and study the file Test-tensor.C.

Try to understand what we have done.

• After all, is not that difficult. Right?

Example of use of tensor and field classes

• At this point, we are a little bit familiar with tensor, fields, and lists in

OpenFOAM®.

• They are the base to building applications in OpenFOAM®.

• Let us now take a look at the whole solution process:

• Creation of the tensors.

• Mesh assembly.

• Fields creation.

• Equation discretization.

• All by using OpenFOAM® classes and template classes

Programming in OpenFOAM®. Building blocks

Discretization of a tensor field in OpenFOAM®

Programming in OpenFOAM®. Building blocks

• The discretization is done using the FVM (Finite Volume Method).

• The cells are contiguous, i.e., they do not overlap and completely fill the domain.

• Dependent variables and other properties are stored at the cell centroid.

• No limitations on the number of faces bounding each cell.

• No restriction on the alignment of each face.

• The mesh class polyMesh is used to construct the polyhedral mesh using the

minimum information required.

• You can find the polyMesh classes in the directory $FOAM_SRC/OpenFOAM/meshes

• The fvMesh class extends the polyMesh class to include additional data needed for

the FVM discretization.

• You can find the fvMesh classes in the directory
$FOAM_SRC/src/finiteVolume/fvMesh

Discretization of a tensor field in OpenFOAM®

Programming in OpenFOAM®. Building blocks

• The template class geometricField relates a tensor

field to a fvMesh.

• Using typedef declarations geometricField is renamed

to volField (cell center), surfaceField (cell faces), and

pointField (cell vertices).

• You can find the geometricField classes in the directory
$FOAM_SRC/OpenFOAM/fields/GeometricFields.

• The template class geometricField stores internal

fields, boundary fields, mesh information, dimensions,

old values and previous iteration values.

• A geometricField inherits all the tensor algebra of its

corresponding field, has dimension checking, and can

be subjected to specific discretization procedures.

• Let us now access the mesh information of a simple

case.

Data stored in the fvMesh class

Class Description Symbol
Access

function

volScalarField Cell volumes V()

surfaceVectorField Face area vector Sf()

surfaceScalarField Face area magnitude magSf()

volVectorField Cell centres C()

surfaceVectorField Face centres Cf()

surfaceScalarField Face fluxes Phi()

Programming in OpenFOAM®. Building blocks

Accessing fields defined in a mesh

Programming in OpenFOAM®. Building blocks

• To access fields defined at cell centers of the mesh you need to use the class

volField.

• The class volField can be accessed by adding the header volFields.H to your

program.

volScalarField p

(

IOobject

(

"p",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

Info<< p << endl;

Info<< p.boundaryField()[0] << endl;

Create scalar volField p

Assign and initialization of

scalar volField to the
mesh

Output some information

Accessing fields using for loops

Programming in OpenFOAM®. Building blocks

• To access fields using for loops, we can use OpenFOAM® macro forAll, as follows,

forAll(mesh.boundaryMesh(), patchI)

Info << "Patch " << patchI << ": " << mesh.boundary()[patchI].name() << " with "

<< mesh.boundary()[patchI].Cf().size() << " faces. Starts at total face "

<< mesh.boundary()[patchI].start() << endl;

• In the previous statement mesh.boundaryMesh() is the size of the loop, and patchI

is the iterator. The iterator always starts from zero.

• The forAll loop is equivalent to the standard for loop in C++.

for (int i = 0; i < mesh.boundaryMesh().size(); i++)

Info << "Patch " << i << ": " << mesh.boundary()[i].name() << " with "

<< mesh.boundary()[i].Cf().size() << " faces. Starts at total face "

<< mesh.boundary()[i].start() << endl;

• Notice that we used as iterator i instead of patchI, this does not make any

difference.

Outputs name of patch

Outputs size of patch (number of faces)

Outputs starting face of patch

Equation discretization in OpenFOAM®

Programming in OpenFOAM®. Building blocks

• At this stage, OpenFOAM® converts the PDEs into a set of linear algebraic

equations, A x = b, where x and b are volFields (geometricField).

• A is a fvMatrix, which is created by the discretization of a geometricField and

inherits the algebra of its corresponding field, and it supports many of the standard

algebraic matrix operations.

• The fvm (finiteVolumeMethod) and fvc (finiteVolumeCalculus) classes contain

static functions for the differential operators, and discretize any geometricField.

• fvm returns a fvMatrix, and fvc returns a geometricField.

• In the directories $FOAM_SRC/finiteVolume/finiteVolume/fvc and

$FOAM_SRC/finiteVolume/finiteVolume/fvm you will find the respective

classes.

• Remember, the PDEs or ODEs we want to solve involve derivatives of tensor fields

with respect to time and space. What we re doing at this point, is applying the finite

volume classes to the fields, and assembling a linear system.

Discretization of the basic PDE terms in OpenFOAM®

Term description
Mathematical

expression

fvm::

fvc::

Laplacian
laplacian(phi)

laplacian(Gamma, phi)

Time derivative
ddt(phi)

ddt(rho,phi)

Convection
div(psi,scheme)

div(psi,phi)

Source
Sp(rho,phi)

SuSp(rho,phi)

,

,

,

vol<type>Field scalar, volScalarField surfaceScalarField

The list is not complete

Programming in OpenFOAM®. Building blocks

Discretization of the basic PDE terms in OpenFOAM®

Programming in OpenFOAM®. Building blocks

• To discretize the fields in a valid mesh, we need to access the finite volume class.
This class can be accessed by adding the header fvCFD.H to your program.

• To discretize the scalar transport equation in a mesh, we can proceed as follows,

solve

(

fvm::ddt(T)

+ fvm::div(phi,T)

- fvm::laplacian(DT,T)

);

Assemble and solve

linear system arising form
the discretization

Discretize equations

• Remember, you will need to first create the mesh, and initialize the variables and

constants. That is, all the previous steps.

• Finally, everything we have done so far inherits all parallel directives. There is no

need for specific parallel programming.

Discretization of the basic PDE terms in OpenFOAM®

Programming in OpenFOAM®. Building blocks

• The previous discretization is equivalent to,

fvScalarMatrix TEqn

(

fvm::ddt(T)

+ fvm::div(phi,T)

- fvm::laplacian(DT,T)

);

Teqn.solve();

Creates object TEqn that

contains the coefficient matrix
arising from the discretization

Discretize equations

• Here, fvScalarMatrix contains the matrix derived from the discretization of the model

equation.

• fvScalarMatrix is used for scalar fields and fvVectorMatrix is used for vector fields.

• This syntax is more general, since it allows the easy addition of terms to the model

equations.

Solve the linear system Teqn

Discretization of the basic PDE terms in OpenFOAM®

Programming in OpenFOAM®. Building blocks

• At this point, OpenFOAM® assembles and solves the following linear system,

Coefficient Matrix (sparse, square)

The coefficients depend on geometrical quantities,
fluid properties and non linear equations

Boundary conditions
and source terms

Unknow quantity

Programming in OpenFOAM®. Building blocks

• Let us study a fvMesh example. First let us compile the program my_Test-

mesh. Type in the terminal,

1. $> cd $PTOFC/programming_playground/my_mesh/

2. $> wmake

• To access the mesh information, we need to use this program in a valid

mesh.

Example of use of tensor and field classes

1. $> cd $PTOFC/programming_playground/my_mesh/cavity

2. $> blockMesh

3. $> my_Test-mesh

• At this point, take a look at the output and study the file Test-mesh.C. Try to

understand what we have done.

• FYI, the original example is located in the directory
$PTOFC/programming_playground/test/mesh.

A few OpenFOAM® programming references

Programming in OpenFOAM®. Building blocks

• You can access the API documentation in the following link, https://cpp.openfoam.org/v5/

• You can access the coding style guide in the following link, https://openfoam.org/dev/coding-style-guide/

• You can report programming issues in the following link, https://bugs.openfoam.org/rules.php

• You can access openfoamwiki coding guide in the following link,

http://openfoamwiki.net/index.php/OpenFOAM_guide

• You can access the user guide in the following link, https://cfd.direct/openfoam/user-guide/

• You can read the OpenFOAM® Programmer’s guide in the following link (it seems that this guide is not

supported anymore), http://foam.sourceforge.net/docs/Guides-a4/ProgrammersGuide.pdf

A few good C++ references

• The C++ Programming Language. B. Stroustrup. 2013, Addison-Wesley.

• The C++ Standard Library. N. Josuttis. 2012, Addison-Wesley.

• C++ for Engineers and Scientists. G. J. Bronson. 2012, Cengage Learning.

• Sams Teach Yourself C++ in One Hour a Day. J. Liberty, B. Jones. 2004, Sams Publishing.

• C++ Primer. S. Lippman, J. Lajoie, B. Moo. 2012, Addison-Wesley.

• http://www.cplusplus.com/

• http://www.learncpp.com/

• http://www.cprogramming.com/

• http://www.tutorialspoint.com/cplusplus/

• http://stackoverflow.com/

https://cpp.openfoam.org/v5/
https://openfoam.org/dev/coding-style-guide/
https://bugs.openfoam.org/rules.php
http://openfoamwiki.net/index.php/OpenFOAM_guide
https://cfd.direct/openfoam/user-guide/
http://foam.sourceforge.net/docs/Guides-a4/ProgrammersGuide.pdf
http://www.cplusplus.com/
http://www.learncpp.com/
http://www.cprogramming.com/
http://www.tutorialspoint.com/cplusplus/
http://stackoverflow.com/

