
codeStream – Highlights

codeStream – Boundary conditions

• There are many boundary conditions available in OpenFOAM®.

• But from time to time it may happen that you do not find what you are looking for.

• It is possible to implement your own boundary conditions, so in theory you can do whatever you

want.

• Remember, you have the source code.

• To implement your own boundary conditions, you have three options:

• Use codeStream.

• Use high level programing.

• Use an external library (e.g., swak4foam).

• codeStream is the simplest way to implement boundary conditions, and most of the times you

will be able to code boundary conditions with no problem.

• If you can not implement your boundary conditions using codeStream, you can use high level

programming. However, this requires some knowledge on C++ and OpenFOAM® API.

• Hereafter, we are going to work with codeStream and basic high-level programming.

• We are not going to work with swak4Foam because it is an external library that is not officially

supported by the OpenFOAM® foundation. However, it works very well and is relatively easy to

use.

• Hereafter we will work with codeStream, which will let us program directly in the input

dictionaries.

• With codeStream, we will implement our own boundary conditions and initial

conditions without going thru the hustle and bustle of high-level programming.

• If you are interested in high level programming, refer to the supplements.

• In the supplemental slides, we address the following topics: building blocks,

implementing boundary conditions using high level programming, modifying

applications, implementing an application from scratch, and adding the scalar

transport equation to icoFoam.

• High level programming requires some knowledge on C++ and OpenFOAM® API

library. This is the hard part of programming in OpenFOAM®.

• Before doing high level programming, we highly recommend you to try with

codeStream, most of the time it will work.

• Also, before modifying solvers or trying to implement your own solvers, understand

the theory behind the FVM.

• Remember, you can access the API documentation in the following link,

https://cpp.openfoam.org/v7

codeStream – Highlights

https://cpp.openfoam.org/v7

Implementing boundary conditions using codeStream

• OpenFOAM® includes the capability to compile, load and execute C++ code

at run-time.

• This capability is supported via the directive #codeStream, that can be used

in any input file for run-time compilation.

• This directive reads the entries code (compulsory), codeInclude (optional),

codeOptions (optional), and codeLibs (optional), and uses them to

generate the dynamic code.

• The source code and binaries are automatically generated and copied in the
directory dynamicCode of the current case.

• The source code is compiled automatically at run-time.

• The use of codeStream is a very good alternative to avoid high level

programming of boundary conditions or the use of external libraries.

• Hereafter we will use codeStream to implement new boundary conditions,

but have in mind that codeStream can be used in any dictionary.

Implementing boundary conditions using codeStream

patch-name

{

type fixedValue;

value #codeStream

{

codeInclude

#{

#include "fvCFD.H"

#};

codeOptions

#{

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude

#};

codeLibs

#{

-lmeshTools \

-lfiniteVolume

#};

code

#{

#};

};

}

Body of the codeStream directive for boundary conditions

Patch name

Use codeStream to set the value
of the boundary condition

Files needed for compilation

Compilation options

Libraries needed for compilation.

Needed if you want to visualize the

output of the boundary condition
at time zero

Insert your code here.

At this point, you need to know
how to access mesh information

Implementing boundary conditions using codeStream

• Let us implement a parabolic inlet profile.

• The firs step is identifying the patch, its location and the dimensions.

• You can use paraview to get all visual references.

Inlet

velocity-inlet-5

Inlet

velocity-inlet-6

Outlet

pressure-outlet-7

Bounds of velocity-inlet-5 boundary patch

Parabolic inlet profile

Implementation of a parabolic inlet profile using codeStream

Implementing boundary conditions using codeStream

• We will use the following formula to implement the parabolic inlet profile

• For this specific case c is the patch midpoint in the y direction (8), r is the patch

semi-height or radius (8) and Umax is the maximum velocity.

• We should get a parabolic profile similar to this one,

Implementation of a parabolic inlet profile using codeStream

velocity-inlet-5

{

type fixedValue;

value #codeStream

{

codeInclude

#{

#include "fvCFD.H"

#};

codeOptions

#{

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude

#};

codeLibs

#{

-lmeshTools \

-lfiniteVolume

#};

code

#{

#};

};

}

Implementing boundary conditions using codeStream

• The codeStream BC in the body of the file U is as follows,

Patch name

Insert your code here.

At this point, you need to know
how to access mesh information

Depending of what are you trying

to do, you will need to add new

files, options and libraries.

For most of the cases, this part is
always the same.

1 code

2 #{

3 const IOdictionary& d = static_cast<const IOdictionary&>

4 (

5 dict.parent().parent()

6);

7

8 const fvMesh& mesh = refCast<const fvMesh>(d.db());

9 const label id = mesh.boundary().findPatchID("velocity-inlet-5");

10 const fvPatch& patch = mesh.boundary()[id];

11

12 vectorField U(patch.size(), vector(0, 0, 0));

13

14 ...

15 ...

16 ...

17 #};

Implementing boundary conditions using codeStream

• The code section of the codeStream BC in the body of the file U is as follows,

• Lines 3-11, are always standard, they are used to access boundary mesh information.

• In lines 3-6 we access the current dictionary.

• In line 8 we access the mesh database.

• In line 9 we get the label id (an integer) of the patch velocity-inlet-5 (notice that you need to give the name of

the patch).

• In line 10 using the label id of the patch, we access the boundary mesh information.

• In line 12 we initialize the vector field. The statement patch.size() gets the number of faces in the patch, and

the statement vector(0, 0, 0) initializes a zero vector field in the patch.

Remember to update this value with the

actual name of the patch

T
o

 a
c
c
e

s
s
 b

o
u

n
d

a
ry

 m
e

s
h

 i
n

fo
rm

a
ti
o
n

1 code

2 #{

3 ...

4 ...

5 ...

6 const scalar pi = constant::mathematical::pi;

7 const scalar U_0 = 2.; //maximum velocity

8 const scalar p_ctr = 8.; //patch center

9 const scalar p_r = 8.; //patch radius

10

11 forAll(U, i) //equivalent to for (int i=0; patch.size()<i; i++)

12 {

13 const scalar y = patch.Cf()[i][1];

14 U[i] = vector(U_0*(1-(pow(y - p_ctr,2))/(p_r*p_r)), 0., 0.);

15 }

16

17 writeEntry(os, "", U);

18 #};

Implementing boundary conditions using codeStream

• The code section of the codeStream BC in the body of the file U is as follows,

• In lines 6-17 we implement the new boundary condition.

• In lines 6-9 we declare a few constant needed in our implementation.

• In lines 11-15 we use a forAll loop to access the boundary patch face centers and to assign the velocity profile

values. Notice the U was previously initialized.

• In line 13 we get the y coordinates of the patch faces center.

• In line 14 we assign the velocity value to the patch faces center.

• In line 17 we write the U values to the dictionary.

Index used to access the

y coordinate

0 → x

1 → y

2 → z

Assign input profile to vector field U (component x)

Implementing boundary conditions using codeStream

• This case is ready to run, the input files are located in the directory
$PTOFC/101programming/codeStream_BC/2Delbow_UparabolicInlet

• To run the case, type in the terminal,

1. $> cd $PTOFC/101programming/codeStream_BC/2Delbow_UparabolicInlet

2. $> foamCleanTutorials

3. $> fluentMeshToFoam ../../../meshes_and_geometries/fluent_elbow2d_1/ascii.msh

4. $> icoFoam | tee log

5. $> paraFoam

• The codeStream boundary condition is implemented in the file 0/U.

Implementation of a parabolic inlet profile using codeStream

Implementing boundary conditions using codeStream

• If everything went fine, you should get something like this

Implementation of a parabolic inlet profile using codeStream

1 code

2 #{

3 ...

4 ...

5 ...

6 scalarField S(patch.size(), scalar(0));

7

8 forAll(S, i)

9 {

10 const scalar y = patch.Cf()[i][1];

11 S[i] = scalar(2.0*sin(3.14159*y/8.));

12 }

13

14 writeEntry(os, "", S);

15 #};

Implementing boundary conditions using codeStream

• We just implemented the input parabolic profile using a vector field.

• You can do the same using a scalar field, just proceed in a similar way.

• Remember, now we need to use scalars instead of vectors.

• And you will also use an input dictionary holding a scalar field.

Initialize scalar field

Write profile values
in scalar field

Write output to input
dictionary

Loop using scalar field size

Notice that the name of the field does not need to be the same as the name of the input dictionary

codeStream works with scalar and vector fields

Implementing boundary conditions using codeStream

• Let us work in a case a little bit more complicated, a paraboloid input profile.

• As usual, the first step is to get all the spatial references.

Inlet

auto3

Paraboloid inlet profile
Bounds of auto3 boundary patch

Implementation of a paraboloid inlet profile using codeStream

Implementing boundary conditions using codeStream

• We will implement the following equation in the boundary patch auto3.

Implementation of a paraboloid inlet profile using codeStream

auto3

{

type fixedValue;

value #codeStream

{

codeInclude

#{

#include "fvCFD.H"

#};

codeOptions

#{

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude

#};

codeLibs

#{

-lmeshTools \

-lfiniteVolume

#};

code

#{

#};

};

}

Implementing boundary conditions using codeStream

• The codeStream BC in the body of the file U is as follows,

Patch name

Insert your code here.

We will implement the following

equation

For most of the cases, this part is

always the same. But depending of

what are you trying to do, you will

need to add more files, options and

libraries.

1 code

2 #{

3 ...

4 ...

5 ...

6 vectorField U(patch.size(), vector(0, 0, 0));

7

8 const scalar s = 0.5;

9

10 forAll(U, i)

11 {

12 const scalar x = patch.Cf()[i][0];

13 const scalar y = patch.Cf()[i][1];

14 const scalar z = patch.Cf()[i][2];

15

16 U[i] = vector(-1.*(pow(z/s, 2) + pow((y-s)/s,2) - 1.0), 0, 0);

17 }

18

19 writeEntry(os, "", U);

20 #};

Implementing boundary conditions using codeStream

• Hereafter, we only show the actual implementation of the codeStream boundary

condition.

• The rest of the body is a template that you can always reuse. Including the section of

how to access the dictionary and mesh information.

• Remember, is you are working with a vector, you need to use vector fields. Whereas,

if you are working with scalars, you need to use scalars fields.

Initialize vector field

Access faces center
coordinates (x, y, and z)

Initialize scalar

Implementing boundary conditions using codeStream

• This case is ready to run, the input files are located in the directory
$PTOFC/101programming/codeStream_BC/3Delbow_Uparaboloid/

• To run the case, type in the terminal,

1. $> cd $PTOFC/101programming/codeStream_BC/3Delbow_Uparaboloid/

2. $> foamCleanTutorials

3. $> gmshToFoam ../../../meshes_and_geometries/gmsh_elbow3d/geo.msh

4. $> autoPatch 75 -overwrite

5. $> createPatch -overwrite

6. $> renumberMesh -overwrite

7. $> icoFoam | tee log

8. $> paraFoam

• The codeStream boundary condition is implemented in the file 0/U.

Implementation of a paraboloid inlet profile using codeStream

Implementing boundary conditions using codeStream

• If everything went fine, you should get something like this

Implementation of a paraboloid inlet profile using codeStream

Implementing boundary conditions using codeStream

• OpenFOAM® also includes the boundary conditions codedFixedValue and

codedMixed.

• These boundary conditions are derived from codeStream and work in a

similar way.

• They use a friendlier notation and let you access more information of the

simulation database (e.g. time).

• The source code and binaries are automatically generated and copied in the
directory dynamicCode of the current case.

• Another feature of these boundary conditions, is that the code section can be
read from an external dictionary (system/codeDict), which is run-time

modifiable.

• The boundary condition codedMixed works in similar way. This boundary

condition gives you access to fixed values (Dirichlet BC) and gradients

(Neumann BC).

• Let us implement the parabolic profile using codedFixedValue.

codedFixedValue and codedMixed boundary conditions

Implementing boundary conditions using codeStream

patch-name

{

type codedFixedValue;

value uniform (0 0 0);

redirectType name_of_BC;

codeOptions

#{

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude

#};

codeInclude

#{

#include "fvCFD.H"

#include <cmath>

#include <iostream>

#};

code

#{

#};

}

Body of the codedFixedValue boundary conditions

Patch name

Use codedFixedValue and
initializations

Files needed for compilation

Compilation options

In this section we do the actual

implementation of the boundary

condition.

This is the only part of the body

that you will need to change. The

rest of the body is a template that

you can always reuse.

Unique name of the new boundary

condition.

If you have more codedFixedValue
BC, the names must be different

1 code

2 #{

3 const fvPatch& boundaryPatch = patch();

4 const vectorField& Cf = boundaryPatch.Cf();

5 vectorField& field = *this;

6

7 scalar U_0 = 2, p_ctr = 8, p_r = 8;

8

9 forAll(Cf, faceI)

10 {

11 field[faceI] = vector(U_0*(1-(pow(Cf[faceI].y()-p_ctr,2))/(p_r*p_r)),0,0);

12 }

13 #};

Implementing boundary conditions using codeStream

• The code section of the codeStream BC in the body of the file U is as follows,

• Lines 3-5, are always standard, they give us access to mesh and field information in the patch.

• The coordinates of the faces center are stored in the vector field Cf (line 4).

• In this case, as we are going to implement a vector profile, we initialize a vector field where we are going to

assign the profile (line 5).

• In line 7 we initialize a few constants that will be used in our implementation.

• In lines 9-12 we use a forAll loop to access the boundary patch face centers and to assign the velocity profile

values.

• In line 11 we do the actual implementation of the boundary profile (similar to the codeStream case). The

vector field was initialize in line 5.

Implementing boundary conditions using codeStream

• As you can see, the syntax and use of the codedFixedValue and codedMixed

boundary conditions is much simpler than codeStream.

• You can use these instructions as a template. At the end of the day, you only need to

modify the code section.

• Depending of what you want to do, you might need to add new headers and

compilation options.

• Remember, is you are working with a vector, you need to use vector fields. Whereas,

if you are working with scalars, you need to use scalars fields.

• One disadvantage of these boundary conditions, is that you can not visualize the

fields at time zero. You will need to run the simulation for at least one iteration.

• On the positive side, accessing time and other values from the simulation database is

straightforward.

• Time can be accessed by adding the following statement,

this->db().time().value()

codedFixedValue and codedMixed boundary conditions

1 code

2 #{

3 const fvPatch& boundaryPatch = patch();

4 const vectorField& Cf = boundaryPatch.Cf();

5 vectorField& field = *this;

6

7 scalar U_0 = 2, p_ctr = 8, p_r = 8;

8

9 scalar t = this->db().time().value();

10

11 forAll(Cf, faceI)

12 {

13 field[faceI] = vector(sin(t)*U_0*(1-(pow(Cf[faceI].y()-p_ctr,2))/(p_r*p_r))),0,0);

14 }

15 #};

Implementing boundary conditions using codeStream

• Let us add time dependency to the parabolic profile.

• This implementation is similar to the previous one, we will only address how to deal with time.

• In line 8 we access simulation time.

• In line 13 we do the actual implementation of the boundary profile (similar to the codeStream

case). The vector field was initialize in line 5 and time is accessed in line 9.

• In this case, we added time dependency by simple multiplying the parabolic profile by the

function sin(t).

Time

Time dependency

Implementing boundary conditions using codeStream

• This case is ready to run, the input files are located in the directory
$PTOFC/101programming/codeStream_BC/2Delbow_UparabolicInlet_timeDep

• To run the case, type in the terminal,

1. $> cd $PTOFC/101programming/codeStream_BC/2Delbow_UparabolicInlet_timeDep

2. $> foamCleanTutorials

3. $> fluentMeshToFoam ../../../meshes_and_geometries/fluent_elbow2d_1/ascii.msh

4. $> icoFoam | tee log

5. $> paraFoam

• The codeStream boundary condition is implemented in the file 0/U.

Implementation of a parabolic inlet profile using codedFixedValue

Implementing boundary conditions using codeStream

• If everything went fine, you should get something like this

Implementation of a parabolic inlet profile using codedFixedValue

www.wolfdynamics.com/wiki/BCIC/elbow_unsBC1.gif

http://www.wolfdynamics.com/wiki/BCIC/elbow_unsBC1.gif

Implementing boundary conditions using codeStream

• Let us do a final example.

• We will deal with scalar and vector fields at the same

time.

• We will use codedFixedValue.

• For simplicity, we will only show the code section of the

input files.

• Remember, the rest of the body can be used as a

template.

• And depending of what you want to do, you might need

to add new headers, libraries, and compilation options.

• Hereafter we will setup an inlet boundary condition in a

portion of an existing patch.

• By using codedFixedValue BC, we do not need to

modify the actual mesh topology.

• We will assign a velocity field and a scalar field to a set

of faces (dark area in the figure).

• We are going to simulate filling a tank with water.

• We will use the solver interFoam.

Water enters here
This is a face selection in a single boundary patch

The tank is initially empty

Filling a tank using codedFixedValue

1 leftWall

2 {

3 type codedFixedValue;

4 value uniform (0 0 0);

5 redirectType inletProfile1;

6

7 code

8 #{

9 const fvPatch& boundaryPatch = patch();

10 const vectorField& Cf = boundaryPatch.Cf();

11 vectorField& field = *this;

12

13 scalar minz = 0.4;

14 scalar maxz = 0.6;

15 scalar miny = 0.5;

16 scalar maxy = 0.7;

17

18 scalar t = this->db().time().value();

...

...

...

40 #};

41 }

Implementing boundary conditions using codeStream

• Definition of the vector field boundary condition (dictionary file U),

Access boundary mesh

information and initialize
vector field field

Access time

Initialize variables

Unique name of the BC
Do not use the same name in other patches

Use codedFixedValue BC and initialize value.

The initialization is only needed for paraview
in order to visualize something at time zero.

Name of the patch where we want to implement the boundary condition

7 code

8 #{

...

...

...

19

20 forAll(Cf, faceI)

21 {

22

23 if (

24 (Cf[faceI].z() > minz) &&

25 (Cf[faceI].z() < maxz) &&

26 (Cf[faceI].y() > miny) &&

27 (Cf[faceI].y() < maxy)

28)

29 {

30 if (t < 1.)

31 {

32 field[faceI] = vector(1,0,0);

33 }

34 else

35 {

36 field[faceI] = vector(0,0,0);

37 }

38 }

39 }

40 #};

41 }

Implementing boundary conditions using codeStream

Use conditional structure to

select faces according to the
variables defined in lines 13-16

Loop using size of boundary patch (Cf) and iterator

faceI.

This is equivalent to:

for (int faceI=0; Cf.size()<faceI; faceI++)

Use conditional structure to

add time dependency and

assign values to the

selected faces.

The variable field was
initialize in line 11.

Code section. The actual implementation of the BC is done in this section

• Definition of the vector field boundary condition (dictionary file U),

1 leftWall

2 {

3 type codedFixedValue;

4 value uniform 0;

5 redirectType inletProfile2;

6

7 code

8 #{

9 const fvPatch& boundaryPatch = patch();

10 const vectorField& Cf = boundaryPatch.Cf();

11 scalarField& field = *this;

12

13 field = patchInternalField();

14

15 scalar minz = 0.4;

16 scalar maxz = 0.6;

17 scalar miny = 0.5;

18 scalar maxy = 0.7;

20

21 scalar t = this->db().time().value();

22

...

...

...

42 #};

43 }

Implementing boundary conditions using codeStream

• Definition of the scalar field boundary condition (dictionary file alpha.water),

Access boundary mesh

information and initialize
scalar field field

Access time

Initialize variables

Unique name of the BC
Do not use the same name in other patches

Use codedFixedValue BC and initialize value.

The initialization is only needed for paraview
in order to visualize something at time zero.

Name of the patch where we want to implement the boundary condition

Assign value from the internal field to the patch

C
o
d
e
 s

e
c
ti
o
n
.
 T

h
e
 a

c
tu

a
l
im

p
le

m
e
n
ta

ti
o
n
 o

f

th
e
 B

C
 i
s
 d

o
n
e
 i
n
 t
h
is

 s
e
c
ti
o
n

7 code

8 #{

...

...

...

22

23 forAll(Cf, faceI)

24 {

25 if (

26 (Cf[faceI].z() > minz) &&

27 (Cf[faceI].z() < maxz) &&

28 (Cf[faceI].y() > miny) &&

29 (Cf[faceI].y() < maxy)

30)

31 {

32 if (t < 1.)

33 {

34 field[faceI] = 1.;

35 }

36 else

37 {

38 field[faceI] = 0.;

39 }

40 }

41 }

42 #};

43 }

Implementing boundary conditions using codeStream

• Definition of the scalar field boundary condition (dictionary file alpha.water),

Use conditional structure to

select faces according to the
variables defined in lines 13-16

Loop using size of boundary patch (Cf) and iterator

faceI.

This is equivalent to:

for (int faceI=0; Cf.size()<faceI; faceI++)

Use conditional structure to add

time dependency and assign

values to the selected faces.

The variable field was initialize in
line 11.

Code section. The actual implementation of the BC is done in this section

Implementing boundary conditions using codeStream

• This case is ready to run, the input files are located in the directory
$PTOFC/101programming/codeStream_BC/fillBox_BC/

• To run the case, type in the terminal,

1. $> cd $PTOFC/101programming/codeStream_BC/fillBox_BC/

2. $> foamCleanTutorials

3. $> blockMesh

4. $> decomposePar

5. $> mpirun -np 4 interFoam -parallel | tee log

6. $> reconstructPar

7. $> paraFoam

• As you can see, we can also run in parallel with no problem.

• FYI, the stand alone version of Paraview does not handle codedFixedValue BC.

• To visualize the results, you need to use paraFoam with no options (avoid the option

–builtin).

Implementation of a parabolic inlet profile using codedFixedValue

Implementing boundary conditions using codeStream

• If everything went fine, you should get something like this

0

0 01

0 02

0 0

0 0

0 0

0 0 2 0 0 0 1 1 2 1 1 1 2

Visualization of water phase

(alpha.water)

www.wolfdynamics.com/wiki/BCIC/filltank1.gif

Volume integral of water entering the

domain

Implementation of a parabolic inlet profile using codedFixedValue

http://www.wolfdynamics.com/wiki/BCIC/filltank1.gif

