
Running in parallel

• First of all, to know how many processors/cores you have available in your computer,

type in the terminal:

• $> lscpu

• The output for this particular workstation is the following:

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 24

On-line CPU(s) list: 0-23

Thread(s) per core: 2

Core(s) per socket: 6

Socket(s): 2

NUMA node(s): 2

Vendor ID: GenuineIntel

CPU family: 6

Model: 44

Model name: Intel(R) Xeon(R) CPU X5670 @ 2.93GHz

Stepping: 2

CPU MHz: 1600.000

CPU max MHz: 2934.0000

CPU min MHz: 1600.0000

BogoMIPS: 5851.91

Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 12288K

NUMA node0 CPU(s): 0-5,12-17

NUMA node1 CPU(s): 6-11,18-23

Number of sockets (physical processors)

Number of cores per socket or physical

processor

Number of threads per core (hyper threading)

Total number of cores available after

hyper threading (virtual cores)

Total number of physical cores

=

Number of cores per socket X Number of sockets

Total number of physical cores = 6 X 2 = 12 cores

This is what makes a processor expensive

Running in parallel

• OpenFOAM® does not take advantage of hyper threading technology (HT).

• HT is basically used by the OS to improve multitasking performance.

• This is what we have in the workstation of the previous example:

• 24 virtual cores (hyper threaded)

• 12 physical cores

• To take full advantage of the hardware, we use the maximum number of physical

cores (12 physical cores in this case) when running in parallel.

• If you use the maximum number of virtual cores, OpenFOAM® will run but it will be

slower in comparison to running with the maximum number of physical cores (or even

less cores).

• Same rule applies when running in clusters/super computers, so always read the

hardware specifications to know the limitations.

Running in parallel

Why use parallel computing?

• Solve larger and more complex problems (scale-up):

Thanks to parallel computing we can solve bigger problems (scalability). A single computer has limited

physical memory, many computers interconnected have access to more memory (distributed memory).

• Provide concurrency (scale-out):

A single computer or processor can only do one thing at a time. Multiple processors or computing

resources can do many things simultaneously.

• Save time (speed-up):

Run faster (speed-up) and increase your productivity, with the potential of saving money in the design

process.

• Save money:

In theory, throwing more resources at a task will shorten its time to completion, with potential cost

savings. Parallel computers can be built from cheap, commodity components.

• Limits to serial computing:

Both physical and practical reasons pose significant constraints to simply building ever faster serial

computers (e.g, transmission speed, CPU clock rate, limits to miniaturization, hardware cooling).

Running in parallel

Speed-up and scalability example

• In the context of high performance computing (HPC), there are two common metrics that measure the scalability

of the application:

• Strong scaling (Amdahl’s law): which is defined as how the solution time varies with the number of

processors for a fixed problem size (number of cells in CFD)

• Weak scaling (Gustafson’s law): which is defined as how the solution time varies with the number of

processors for a fixed problem size per processor (or increasing the problem size with a fix number of

processors).

• In this example, when we reach 12 cores inter-processor communication slow-downs the computation. But if we

increase the problem size for a fix number of processors, we will increase the speed-up.

• The parallel case with 1 processor runs slower than the serial case due to the extra overhead when calling the

MPI library.

Running in parallel

• The method of parallel computing used by OpenFOAM® is known as domain

decomposition, in which the geometry and associated fields are broken into pieces

and distributed among different processors.

Shared memory architectures – Workstations and portable computers

Distributed memory architectures – Clusters and super computers

Running in parallel

Some facts about running OpenFOAM® in parallel:

• Applications generally do not require parallel-specific coding. The

parallel programming implementation is hidden from the user.

• In order to run in parallel you will need an MPI library installation in your

system.

• Most of the applications and utilities run in parallel.

• If you write a new solver, it will be in parallel (most of the times).

• We have been able to run in parallel up to 15000 processors.

• We have been able to run OpenFOAM® using single GPU and multiple

GPUs.

• Do not ask about scalability, that is problem/hardware specific.

• If you want to learn more about MPI and GPU programming, do not look

in my direction.

• And of course, to run in parallel you need the hardware.

Running in parallel

To run OpenFOAM® in parallel you will need to:

• Decompose the domain.

To do so we use the decomposePar utility. You also need the dictionary

decomposeParDict which is located in the system directory.

• Distribute the jobs among the processors or computing nodes.

To do so, OpenFOAM® uses the standard message passing interface (MPI).

By using MPI, each processor runs a copy of the solver on a separate part

of the decomposed domain.

• Additionally, you might want to reconstruct (put back together) the

decomposed domain.

This is done by using the reconstrucPar utility. You do not need a

dictionary to use this utility.

Running in parallel

Domain Decomposition in OpenFOAM®

• The mesh and fields are decomposed using the decomposePar utility.

• They are broken up according to a set of parameters specified in a dictionary named
decomposeParDict that is located in the system directory of the case.

• In the decomposeParDict dictionary the user must set the number of domains in

which the case should be decomposed (using the keyword numberOfSubdomains).

The value used should correspond to the number of physical cores available.

numberOfSubdomains 128;

method scotch;

Number of subdomains

Decomposition method

• In this example, we are subdividing the domain in 128 subdomains, therefore we

should have 128 physical cores available.

• The main goal of domain decomposition is to minimize the inter-processors

communication and the processor workload.

Domain Decomposition Methods

• These are the decomposition methods available in OpenFOAM® 6

• hierarchical

• manual

• metis

• multiLevel

• none

• scotch

• simple

• structured

Running in parallel

We highly recommend you to use this method.

The only input that requires from the user is

the number of subdomains/cores. This method

attempts to minimize the number of processor

boundaries.

• If you want more information about each decomposition method, just read

the source code:

• $WM_PROJECT_DIR/src/parallel/decompose/

Running in parallel

processor0 processor1 processor2 processor3

• Inside each processorN directory you will have the mesh information, boundary conditions,

initial conditions, and the solution for that processor.

Running in parallel – Gathering all together

The information inside the
directories polyMesh/ and

0/ is decomposed using the

utility decomposePar

decomposePar

Running in parallel

$> mpirun –np <NPROCS> <application/utility> –parallel

• The number of processors to use or <NPROCS>, needs to be the same as the

number of partitions (numberOfSubdomains).

• Do not forget to use the flag –parallel.

• After decomposing the mesh, we can run in parallel using MPI.

Running in parallel – Gathering all together

Running in parallel

reconstructPar

• In the decomposed case, you will find the mesh

information, boundary conditions, initial

conditions, and the solution for every processor.

• The information is inside the directory
processorN (where N is the processor number).

• When you reconstruct the case, you glue together

all the information contained in the decomposed

case.

• All the information (mesh, boundary conditions,

initial conditions, and the solution), is transfer to
the original case folder (polyMesh and time

solution directories).

Running in parallel – Gathering all together

Running in parallel

• Summarizing, to run in parallel we proceed in the following way:

1. $> decomposePar

2. $> mpirun –np <NPROCS> <application/utility> –parallel

3. $> reconstructPar

• You can do the post-processing and visualization on the decomposed case

or reconstructed case. We are going to address this later on.

• If you are doing remeshing or using AMR you will need to use
reconstructParMesh before reconstrucPar.

Running in parallel – Gathering all together

Running in parallel

Kelvin Helmholtz instability in a coarse mesh

Processors Clock time (seconds)
Mesh size

in x, y, and z directions

1 955 800 X 160 X 1

2 564 800 X 160 X 1

4 333 800 X 160 X 1

8 234 800 X 160 X 1

12 244 800 X 160 X 1

Volume fraction
www.wolfdynamics.com/wiki/kelvin_helmholtz/ani1.gif

You will find this case in the directory: $PTOFC/parallel/kelvin_helmholtz

http://www.wolfdynamics.com/wiki/kelvin_helmholtz/ani1.gif

Running in parallel

• The traditional way is to first reconstruct the case and then do the post-

processing and visualization on the reconstructed case.

• To do so, we type in the terminal:

1. $> reconstructPar

2. $> paraFoam

• Step 1 reconstruct the case. Remember, you can choose to reconstruct all

the time steps, the last time step or a range of time steps.

• In step 2, we use paraFoam to visualize the reconstructed case.

Visualization of a parallel case

Running in parallel

• An alternative way to visualize the solution, is by proceeding in the following

way

• $> paraFoam –builtin

• The option –builtin let us post-process the decomposed case directly.

• Remember, you will need to select on the object inspector the Decomposed

Case option.

Visualization of a parallel case

Running in parallel

• Both of the previous methods are valid.

• When we use the option –builtin with paraFoam, we have the option to

work on the decomposed case directly.

• That is to say, we do not need to reconstruct the case.

• But wait, there is a third option.

• The third option consist in post-processing each decomposed domain

individually.

• To load all processor directories, you will need to manually create the file
processorN.OpenFOAM (where N is the processor number) in each

processor folder.

• After creating all processorN.OpenFOAM files, you can launch paraFoam

and load each file (the processorN.OpenFOAM files).

• As you can see, this option requires more input from the user.

Visualization of a parallel case

Running in parallel

Decomposing big meshes

• One final word, the utility decomposePar does not run in parallel. So, it is

not possible to distribute the mesh among different computing nodes to do

the partitioning in parallel.

• If you need to partition big meshes, you will need a computing node with

enough memory to handle the mesh. We have been able to decompose

meshes with up to 500.000.000 elements, but we used a computing node

with 512 gigs of memory.

• For example, in a computing node with 16 gigs of memory, it is not possible

to decompose a mesh with 30.000.000. You will need to use a computing

node with at least 32 gigs of memory.

• Same applies for the utility reconstructPar.

Running in parallel

Do all utilities run in parallel?

• At this point, you might be wondering if all solvers/utilities run in parallel.

• To know what solvers/utilities do not run in parallel, in the terminal type:

• $> find $WM_PROJECT_DIR -type f | xargs grep –sl ‘noParallel’

• Paradoxically, the utilities used to decompose the domain and reconstruct the

domain do not run in parallel.

• Another important utility that does not run in parallel is blockMesh. So to generate

big meshes with blockMesh you need to use a big fat computing node.

• Another important utility that does not run in parallel by default is paraFoam.

• To compile paraFoam with MPI support, in the file makeParaView4 (located in the

directory $WM_THIRD_PARTY_DIR), set the option withMPI to true,

• withMPI = true

• While you are working with the file makeParaView4, you might consider enabling

Python support,

• withPYTHON = true

Running in parallel

Exercises

• Choose any tutorial or design your own case and do an scalability test. Scale your case with two different

meshes (a coarse and a fine mesh).

• Run the same case using different partitioning methods. Which method scales better? Do you get the same

results?

• Do you think that the best partitioning method is problem dependent?

• Compare the wall time of a test case using the maximum number of cores and the maximum number of virtual

cores. Which scenario is faster and why?

• Run a parallel case without using the –parallel option. Does it run? Is it faster of slower? How many

outputs do you see on the screen?

• Do you get any speed-up by using renumberMesh?

• What applications do not run in parallel?

