
snappyHexMesh
• “Automatic split hex mesher. Refines and snaps to surface.”

• For complex geometries, the mesh generation utility snappyHexMesh can be used.

• The snappyHexMesh utility generates 3D meshes containing hexahedra and split-

hexahedra from a triangulated surface geometry in Stereolithography (STL) format.

• The mesh is generated from a dictionary file named snappyHexMeshDict located in

the system directory and a triangulated surface geometry file located in the directory
constant/triSurface.

Mesh generation using snappyHexMesh

1

snappyHexMesh workflow

Mesh generation using snappyHexMesh

2

• To generate a mesh with snappyHexMesh we proceed as follows:

• Generation of a background or base mesh.

• Geometry definition.

• Generation of a castellated mesh or cartesian mesh.

• Generation of a snapped mesh or body fitted mesh.

• Addition of layers close to the surfaces or boundary layer meshing.

• Check/enforce mesh quality.

blockMesh or external mesher

OpenFOAM mesh

snappyHexMesh

Background mesh Geometry (STL file)

snappyHexMesh workflow – Background mesh

• The background or base mesh can be generated using blockMesh or an

external mesher.

• The following criteria must be observed when creating the background

mesh:

• The mesh must consist purely of hexes.

• The cell aspect ratio should be approximately 1, at least near the

STL surface.

• There must be at least one intersection of a cell edge with the

STL surface.

Mesh generation using snappyHexMesh

3

blockMesh or external mesher

OpenFOAM mesh

snappyHexMesh

Background mesh Geometry (STL file)

snappyHexMesh workflow – Geometry (STL file)

• The STL geometry can be obtained from any geometry modeling tool.

• The STL file can be made up of a single surface describing the geometry, or

multiple surfaces that describe the geometry.

• In the case of a STL file with multiple surfaces, we can use local refinement

in each individual surface. This gives us more control when generating the

mesh.

• The STL geometry is always located in the directory
constant/triSurface

Mesh generation using snappyHexMesh

4

blockMesh or external mesher

OpenFOAM mesh

snappyHexMesh

Background mesh Geometry (STL file)

snappyHexMesh workflow

• The meshing utility snappyHexMesh reads the dictionary

snappyHexMeshDict located in the directory system.

• The castellation, snapping, and boundary layer meshing steps are controlled
by the dictionary snappyHexMeshDict.

• The final mesh should be always located in the directory
constant/polyMesh

Mesh generation using snappyHexMesh

5

blockMesh or external mesher

OpenFOAM mesh

snappyHexMesh

Background mesh Geometry (STL file)

snappyHexMesh workflow

• All the volume and surface refinement is done in reference to the

background or base mesh.

Base cell RL 1 RL 2

* RL = refinement level

and so on …

Mesh generation using snappyHexMesh

6

snappyHexMesh workflow

• The process of generating a mesh using snappyHexMesh will be described using this figure.

• The objective is to mesh a rectangular shaped region (shaded grey in the figure) surrounding an object

described by a STL surface (shaded green in the figure).

• This is an external mesh (e.g. for external aerodynamics). You can also generate an internal mesh (e.g. flow in

a pipe).

Mesh generation using snappyHexMesh

7

Step 1. Creating the background hexahedral mesh

• Before snappyHexMesh is executed the user must create a background mesh of hexahedral cells that fills the entire region as

shown in the figure. This can be done by using blockMesh or any other mesher.

• The following criteria must be observed when creating the background mesh:

• The mesh must consist purely of hexes.

• The cell aspect ratio should be approximately 1, at least near the STL surface.

• There must be at least one intersection of a cell edge with the STL surface.

snappyHexMesh workflow

Mesh generation using snappyHexMesh

8

Step 2. Cell splitting at feature edges

• Cell splitting is performed according to the specification supplied by the user in the castellatedMeshControls sub-dictionary in
the snappyHexMeshDict dictionary.

• The splitting process begins with cells being selected according to specified edge features as illustrated in the figure.
• The feature edges can be extracted from the STL geometry file using the utility surfaceFeatureExtract.

snappyHexMesh workflow

Mesh generation using snappyHexMesh

9

Step 3. Cell splitting at surfaces

• Following feature edges refinement, cells are selected for splitting in the locality of specified surfaces as illustrated in the figure.

• The surface refinement (splitting) is performed according to the specification supplied by the user in the
refinementMeshControls in the castellatedMeshControls sub-dictionary in the snappyHexMeshDict dictionary.

snappyHexMesh workflow

Mesh generation using snappyHexMesh

10

Step 4. Cell removal

• Once the feature edges and surface splitting is complete, a process of cell removal begins.

• The region in which cells are retained are simply identified by a location point within the region, specified by the locationInMesh
keyword in the castellatedMeshControls sub-dictionary in the snappyHexMeshDict dictionary.

• Cells are retained if, approximately speaking, 50% or more of their volume lies within the region.

snappyHexMesh workflow

Mesh generation using snappyHexMesh

11

snappyHexMesh workflow

Mesh generation using snappyHexMesh

12

Step 5. Cell splitting in specified regions

• Those cells that lie within one or more specified volume regions can be further split by a region (in the figure, the rectangular

region within the red rectangle).

• The information related to the refinement of the volume regions is supplied by the user in the refinementRegions block in the
castellatedMeshControls sub-dictionary in the snappyHexMeshDict dictionary.

• This is a valid castellated or cartesian mesh that can be used for a simulation.

Step 6. Snapping to surfaces

• After deleting the cells in the region specified and refining the volume mesh, the points are snapped on the surface to create a

conforming mesh.
• The snapping is controlled by the user supplied information in the snapControls sub-dictionary in snappyHexMeshDict.

• Sometimes, the default snapControls options are not enough and you will need to adjust the values to get a good mesh, so it is
advisable to save the intermediate steps with a high writing precision (controlDict).

• This is a valid snapped or body fitted mesh that can be used for a simulation.

snappyHexMesh workflow

Mesh generation using snappyHexMesh

13

Step 7. Mesh layers

• The mesh output from the snapping stage may be suitable for simulation, although it can produce some irregular cells along

boundary surfaces.

• There is an optional stage of the meshing process which introduces boundary layer meshing in selected parts of the mesh.
• This information is supplied by the user in the addLayersControls sub-dictionary in the snappyHexMeshDict dictionary.

• This is the final step of the mesh generation process using snappyHexMesh.

• This is a valid body fitted mesh with boundary layer meshing, that can be used for a simulation.

snappyHexMesh workflow

Mesh generation using snappyHexMesh

14

Mesh generation using snappyHexMesh

15

snappyHexMesh in action
www.wolfdynamics.com/wiki/shm/ani.gif

http://www.wolfdynamics.com/wiki/shm/ani.gif

• Let us study the snappyHexMesh dictionary in

details.

• We are going to work with the case we just saw in

action.

• You will find this case in the directory:

M101_wolf

Mesh generation using snappyHexMesh

16

Let us explore the snappyHexMeshDict dictionary.

• Open the dictionary snappyHexMeshDict with your favorite text editor (we use

gedit).

• The dictionary snappyHexMeshDict consists of five main sections:

• geometry

Definition of geometry entities to be used for meshing

• castellatedMeshControls

Definition of feature, surface and volume mesh refinement

• snapControls

Definition of surface mesh snapping and advanced parameters

• addLayersControls

Definition of boundary layer meshing and advanced parameters

• meshQualityControls

Definition of mesh quality metrics

Mesh generation using snappyHexMesh

17

castellatedMesh true; //or false

snap true; //or false

addLayers true; //or false

geometry

{

...

...

}

castellatedMeshControls

{

...

...

}

snapControls

{

...

...

}

addLayersControls

{

...

...

}

meshQualityControls

{

...

...

}

Let us explore the snappyHexMeshDict dictionary.

• The snappyHexMesh dictionary is made up of five sections, namely:

geometry, castellatedMeshControls, snapControls,

addLayersControls and meshQualityControls. Each section

controls a step of the meshing process.

• In the first three lines we can turn off and turn on the different

meshing steps. For example, if we want to generate a body fitted

mesh with no boundary layer we should proceed as follows:

castellatedMesh true;

snap true;

addLayers false;

Mesh generation using snappyHexMesh

18

castellatedMesh true; //or false

snap true; //or false

addLayers true; //or false

geometry

{

...

...

}

castellatedMeshControls

{

...

...

}

snapControls

{

...

...

}

addLayersControls

{

...

...

}

meshQualityControls

{

...

...

}

Let us explore the snappyHexMeshDict dictionary.

• Have in mind that there are more than 70

parameters to control in
snappyHexMeshDict dictionary.

• Adding the fact that there is no native GUI, it

can be quite tricky to control the mesh

generation process.

• Nevertheless, snappyHexMesh generates

really good hexa dominant meshes.

• Hereafter, we will only comment on the most

important parameters.

• The parameters that you will find in the
snappyHexMeshDict dictionaries distributed

with the tutorials, in our opinion are robust and

will work most of the times.

May be located In a separated file

Mesh generation using snappyHexMesh

19

geometry

{

wolfExtruded.stl

{

type triSurfaceMesh;

name wolf;

regions

{

wolflocal

{

name wolf_wall;

}

}

}

box

{

type searchableBox;

min (-100.0 -120.0 -50.0);

max (100.0 120.0 150.0);

}

sphere

{

type searchableSphere;

centre (120.0 -100.0 50.0);

radius 40.0;

}

}

Let us explore the snappyHexMeshDict dictionary.

• In this section we read in the STL geometry. Remember, the input
geometry is always located in the directory constant/triSurface

• We can also define geometrical entities that can be used to refine the

mesh, create regions, or generate baffles.

• You can add multiple STL files.

• If you do not give a name to the surface, it will take the name of the

STL file.

• The geometrical entities are created inside snappyHexMesh.

Note 1:

If you want to know what geometrical entities are available, just

misspelled something in the type keyword.

Note 1

Mesh generation using snappyHexMesh

STL file to read

Name of the surface inside snappyHexMesh

Use this option if you have a STL with multiple patches defined

This is the name of the region or surface patch in the STL

User-defined patch name. This is the final name of the patch

Name of geometrical entity

Name of geometrical entity

20

Geometry controls section

castellatedMeshControls

{

//Refinement parameters

maxLocalCells 100000;

maxGlobalCells 2000000;

nCellsBetweenLevels 1;

...

...

//Explicit feature edge refinement

features

(

...

...

);

//Surface based refinement

refinementSurfaces

{

...

...

}

//Region-wise refinement

refinementRegions

{

...

...

}

//Mesh selection

locationInMesh (-100.0 0.0 50.0);

}

Let us explore the snappyHexMeshDict dictionary.

• In the castellatedMeshControls section, we define the global

refinement parameters, explicit feature edge refinement,

surface based refinement, region-wise refinement and the

material point.

• In this step, we are generating the castellated mesh.

Note 1:

The material point indicates where we want to create the mesh,

that is, inside or outside the body to be meshed.

Dictionary block

Dictionary block

Dictionary block

Note 1

Mesh generation using snappyHexMesh

21

Castellated mesh controls section

castellatedMeshControls

{

// Refinement parameters

maxLocalCells 100000;

maxGlobalCells 2000000;

minRefinementCells 0;

maxLoadUnbalance 0.10;

nCellsBetweenLevels 1;

//Local curvature and

//feature angle refinement

resolveFeatureAngle 30;

planarAngle 30;

allowFreeStandingZoneFaces true;

//Explicit feature edge refinement

features

(

{

file "wolfExtruded.eMesh";

level 2;

}

);

...

...

...

}

Note 1:

This parameter controls the transition between cell

refinement levels.

Note 2:

This parameter controls the local curvature refinement. The

higher the value, the less features it captures. For example

if you use 100, it will not add refinement in high curvature

areas. It also controls edge feature snapping, high values

will not resolve sharp angles in surface intersections.

Note 3:

This file is automatically created when you use the utility
surfaceFeatureExtract. The file is located in the

directory constant/triSurface

Note 2

Let us explore the snappyHexMeshDict dictionary.

Note 3

Note 1

Dictionary block

Mesh generation using snappyHexMesh

22

Castellated mesh controls section

castellatedMeshControls

{

...

...

...

//Surface based refinement

refinementSurfaces

{

//wolf was defined in the geometry section

wolf

{

level (1 1); //Global refinement

regions

{

wolflocal

{

level (2 4);

patchInfo

{

type wall;

}

}

}

}

...

...

}

Note 1:

The surface wolf was defined in the geometry section.

Note 2:

The region wolflocal was defined in the geometry section.

Note 3:

Named region in the STL file. This refinement is local.

To use the surface refinement in the regions, the local

regions must exist in STL file. We created a pointer to this

region in the geometry section.

Note 4:

You can only define patches of type wall or patch.

Let us explore the snappyHexMeshDict dictionary.

Note 3

Note 4

Local refinement

Dictionary block

Note 1

Note 2

Mesh generation using snappyHexMesh

23

Castellated mesh controls section

castellatedMeshControls

{

//Surface based refinement

refinementSurfaces

{

...

...

...

//This surface or geometrical entity

//was defined in geometry section

sphere

{

level (1 1);

faceZone face_inner;

cellZone cell_inner;

cellZoneInside inside;

//faceType internal;

}

}

...

...

}

Let us explore the snappyHexMeshDict dictionary.

Note 1:

Optional specification of what to do with faceZone faces:

internal: keep them as internal faces (default)

baffle: create baffles from them. This gives more freedom in mesh

motion

boundary: create free-standing boundary faces (baffles but

without the shared points)

e.g., faceType internal;

Note 1

Dictionary block

Mesh generation using snappyHexMesh

24

Castellated mesh controls section

castellatedMeshControls

{

...

...

...

//Region-wise refinement

refinementRegions

{

//This region or geometrical entity

//was defined in the geometry section

box

{

mode inside;

levels ((1 1));

}

}

//Mesh selection

locationInMesh (-100.0 0.0 50.0);

}

Let us explore the snappyHexMeshDict dictionary.

Dictionary block

Note 1

Note 1:

This region or geometrical entity was created in the geometry section.

Mesh generation using snappyHexMesh

25

At this point we have a valid mesh (cartesian)

Castellated mesh controls section

castellatedMeshControls

{

...

...

...

//Region-wise refinement

refinementRegions

{

//This region or geometrical entity

//was defined in the geometry section

box

{

mode inside;

levels ((1 1));

}

}

//Mesh selection

locationInMesh (-100.0 0.0 50.0);

}

This point defines where do you want the mesh.

Can be internal mesh or external mesh.

• If the point is inside the STL it is an internal mesh.

• If the point is inside the background mesh and outside the

STL it is an external mesh.

Let us explore the snappyHexMeshDict dictionary.

Dictionary block

Mesh generation using snappyHexMesh

26

Castellated mesh controls section

snapControls

{

//Number of patch smoothing iterations

//before finding correspondence to surface

nSmoothPatch 3;

tolerance 2.0;

//- Number of mesh displacement relaxation

//iterations.

nSolveIter 30;

//- Maximum number of snapping relaxation

//iterations. Should stop before upon

//reaching a correct mesh.

nRelaxIter 5;

// Feature snapping

//Number of feature edge snapping iterations.

nFeatureSnapIter 10;

//Detect (geometric only) features by

//sampling the surface (default=false).

implicitFeatureSnap false;

// Use castellatedMeshControls::features

// (default = true)

explicitFeatureSnap true;

multiRegionFeatureSnap false;

}

Let us explore the snappyHexMeshDict dictionary.

Note 1

Note 3

Note 2

Mesh generation using snappyHexMesh

27

Snap mesh controls section

Note 1:

The higher the value the better the body fitted mesh. The default value

is 30. If you are having problems with the mesh quality (related to the

snapping step), try to increase this value to 300. Have in mind that this

will increase the meshing time.

Note 2:

Increase this value to improve the quality of the body fitted mesh.

Note 3:

Increase this value to improve the quality of the edge features.

• In this step, we are generating the body fitted mesh.

addLayersControls

{

//Global parameters

relativeSizes true;

expansionRatio 1.2;

finalLayerThickness 0.5;

minThickness 0.1;

layers

{

wolf_wall

{

nSurfaceLayers 3;

//Local parameters

//expansionRatio 1.3;

//finalLayerThickness 0.3;

//minThickness 0.1;

}

}

// Advanced settings

nGrow 0;

featureAngle 130;

maxFaceThicknessRatio 0.5;

nSmoothSurfaceNormals 1;

nSmoothThickness 10;

minMedianAxisAngle 90;

maxThicknessToMedialRatio 0.3;

nSmoothNormals 3;

slipFeatureAngle 30;

nRelaxIter 5;

nBufferCellsNoExtrude 0;

nLayerIter 50;

nRelaxedIter 20;

}

Let us explore the snappyHexMeshDict dictionary.

Note 2

Note 3 Note 1:

In this section we select the patches where we want to add the

layers. We can add multiple patches (if they exist).

Note 2:

This patch was created in the geometry section.

Note 3:

Specification of feature angle above which layers are collapsed

automatically.

• In this step, we are generating the boundary layer mesh.

Note 1

Mesh generation using snappyHexMesh

28

Boundary layer mesh controls section

meshQualityControls

{

maxNonOrtho 75;

maxBoundarySkewness 20;

maxInternalSkewness 4;

maxConcave 80;

minVol 1.00E-13;

minTetQuality 1e15;

//minTetQuality -1e30;

minArea -1;

minTwist 0.02;

minDeterminant 0.001;

minFaceWeight 0.05;

minVolRatio 0.01;

minTriangleTwist -1;

minFlatness 0.5;

nSmoothScale 4;

errorReduction 0.75;

}

Let us explore the snappyHexMeshDict dictionary.

Note 1:

Maximum non-orthogonality angle.

Note 2:

Maximum skewness angle.

• During the mesh generation process, the mesh quality is continuously

monitored.
• The mesher snappyHexMesh will try to generate a mesh using the

mesh quality parameters defined by the user.

• If a mesh motion or topology change introduces a poor quality cell or

face the motion or topology change is undone to revert the mesh back

to a previously valid error free state.

Note 1

Note 2

Mesh generation using snappyHexMesh

29

Mesh quality controls section

debugFlags

(

// write intermediate meshes

mesh

// write current mesh intersections as .obj files

intersections

// write information about explicit feature edge

// refinement

featureSeeds

// write attraction as .obj files

attraction

// write information about layers

layerInfo

);

writeFlags

(

// write volScalarField with cellLevel for

// postprocessing

scalarLevels

// write cellSets, faceSets of faces in layer

layerSets

// write volScalarField for layer coverage

layerFields

);

Let us explore the snappyHexMeshDict dictionary.

• At the end of the dictionary you will find the sections: debugFlags

and writeFlags

• By default they are commented. If you uncomment them you will

enable debug information.

• debugFlags and writeFlags will produce a lot of outputs that you

can use to post process and troubleshoot the different steps of

the meshing process.

Mesh generation using snappyHexMesh

30

Mesh debug and write controls sections

Let us generate the mesh of the wolf dynamics logo.

• This tutorial is located in the directory:

• M101_wolf

• In this case we are going to generate a body fitted mesh with boundary layer. This is an

external mesh.

• Before generating the mesh take a look at the dictionaries and files that will be used.

• These are the dictionaries and files that will be used.

• system/snappyHexMeshDict

• system/surfaceFeatureExtractDict

• system/meshQualityDict

• system/blockMeshDict

• constant/triSurface/wolfExtruded.stl

• constant/triSurface/wolfExtruded.eMesh

• The file wolfExtruded.eMesh is generated after using the utility

surfaceFeatureExtract, which reads the dictionary surfaceFeatureExtractDict.

Mesh generation using snappyHexMesh

31

• To generate the mesh, in the terminal window type:

Let us generate the mesh of the wolf dynamics logo.

Mesh generation using snappyHexMesh

• To visualize the mesh, in the terminal window type:

• $> paraFoam

• Remember to use the VCR controls in paraView/paraFoam to visualize the

mesh intermediate steps.

1. $> foamCleanTutorials

2. $> blockMesh

3. $> surfaceFeatureExtract

4. $> snappyHexMesh

5. $> checkMesh –latestTime

32

Let us generate the mesh of the wolf dynamics logo.

• In the case directory you will find the time folders 1, 2, and 3, which contain

the castellated mesh, snapped mesh and boundary layer mesh respectively.
In this case, snappyHexMesh automatically saved the intermediate steps.

• Before running the simulation, remember to transfer the solution from the
latest mesh to the directory constant/polyMesh, in the terminal type:

Mesh generation using snappyHexMesh

1. $> cp 3/polyMesh/* constant/polyMesh

2. $> rm –rf 1

3. $> rm –rf 2

4. $> rm –rf 3

5. $> checkMesh –latestTime

33

• If you want to avoid the additional steps of transferring the final mesh to the
directory constant/polyMesh by not saving the intermediate steps, you

can proceed as follows:

• $> snappyHexMesh –overwrite

• When you proceed in this way, snappyHexMesh automatically saves the

final mesh in the directory constant/polyMesh.

• Have in mind that you will not be able to visualize the intermediate steps.

• Also, you will not be able to restart the meshing process from a saved state

(castellated or snapped mesh).

• Unless it is strictly necessary, from this point on we will not save the

intermediate steps.

Let us generate the mesh of the wolf dynamics logo.

Mesh generation using snappyHexMesh

34

• At this point, we have a valid mesh to run a simulation.

• Have in mind that before running the simulation you will need to set the
boundary and initial conditions in the directory 0.

• The name and base type information of the boundary patches is saved in
the file constant/polyMesh/boundary.

• Remember, the base type (patch type defined in the file
constant/polyMesh/boundary) and the primitive type of the boundary

conditions (patch type defined in the fields dictionary in the directory 0),

must be compatible.

• You also need to use the same naming convention. That is, the name of the
patches defined in the file constant/polyMesh/boundary and the name

of the patches defined in the files inside the directory 0, must be the same.

Let us generate the mesh of the wolf dynamics logo.

Mesh generation using snappyHexMesh

35

Let us generate the mesh of the wolf dynamics logo.

Mesh generation using snappyHexMesh

36

The constant/polyMesh/boundary dictionary

• First at all, this file is automatically generated after you create the mesh or you convert it from a

third party format.

• In this file, the geometrical information related to the base type patch of each boundary of the

domain is specified.

• The base type boundary condition is the actual surface patch where we are going to apply a

primitive type boundary condition (or numerical boundary condition).

• The primitive type boundary condition assign a field value to the surface patch (base type).

• You define the numerical type patch (or the value of the boundary condition), in the directory 0

or time directories.

• The name and base type of the patches was defined in the dictionaries blockMeshDict and

snappyHexMeshDict.

• You can change the name if you do not like it. Do not use strange symbols or white spaces.

• You can also change the base type. For instance, you can change the type of the patch maxY

from wall to patch.

Let us generate the mesh of the wolf dynamics logo.

Mesh generation using snappyHexMesh

37

18 9

19 (

20 minX

21 {

22 type wall;

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 466399;

26 }

27 maxX

28 {

29 type wall;

30 inGroups 1(wall);

31 nFaces 400;

32 startFace 466799;

33 }

34 minY

35 {

36 type empty;

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 467199;

40 }

41 maxY

42 {

43 type wall;

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 467599;

47 }

48 minZ

49 {

50 type wall;

51 inGroups 1(wall);

52 nFaces 400;

53 startFace 467999;

54 }

minY

minX

minZ

maxY

maxX

maxZ

wolf_wall

sphere

sphere_slave

Number of surface patches

In the list bellow there must be 9 patches

definition.

Let us generate the mesh of the wolf dynamics logo.

Mesh generation using snappyHexMesh

38

18 9

19 (

20 minX

21 {

22 type wall;

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 466399;

26 }

27 maxX

28 {

29 type wall;

30 inGroups 1(wall);

31 nFaces 400;

32 startFace 466799;

33 }

34 minY

35 {

36 type empty;

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 467199;

40 }

41 maxY

42 {

43 type wall;

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 467599;

47 }

48 minZ

49 {

50 type wall;

51 inGroups 1(wall);

52 nFaces 400;

53 startFace 467999;

54 }

Name and type of the surface patches

• The name and base type of the patch is given by the user.

• In this case the name and base type was assigned in the
dictionaries blockMeshDict and snappyHexMeshDict.

• You can change the name if you do not like it. Do not use

strange symbols or white spaces.

• You can also change the base type. For instance, you can

change the type of the patch maxY from wall to patch.

nFaces and startFace keywords

• Unless you know what you are doing, you do not

need to change this information.

• Basically, this is telling you the starting face and ending face

of the patch.

• This information is created automatically when generating

the mesh or converting the mesh.

Name

Type

nFaces

startFace

Let us generate the mesh of the wolf dynamics logo.

Mesh generation using snappyHexMesh

39

55 maxZ

56 {

57 type wall;

58 inGroups 1(wall);

59 nFaces 400;

60 startFace 466399;

61 }

62 wolf_wall

63 {

64 type wall;

65 inGroups 1(wall);

66 nFaces 400;

67 startFace 466799;

68 }

69 sphere

70 {

71 type empty;

72 inGroups 1(wall);

73 nFaces 400;

74 startFace 467199;

75 }

76 sphere_slave

77 {

78 type wall;

79 inGroups 1(wall);

80 nFaces 400;

81 startFace 467599;

82 }

83)

Name and type of the surface patches

• The name and base type of the patch is given by the user.

• In this case the name and base type was assigned in the
dictionaries blockMeshDict and snappyHexMeshDict.

• You can change the name if you do not like it. Do not use

strange symbols or white spaces.

• You can also change the base type. For instance, you can

change the type of the patch maxY from wall to patch.

nFaces and startFace keywords

• Unless you know what you are doing, you do not

need to change this information.

• Basically, this is telling you the starting face and ending face

of the patch.

• This information is created automatically when generating

the mesh or converting the mesh.

nFaces

startFace

Name

Type

• When generating the mesh using OpenFOAM®, it is extremely important to

start from a clean case directory.

• To clean all the case directory, in the terminal type:

• $> foamCleanTutorials

• To only erase the mesh information, in the terminal type:

• $> foamCleanPolyMesh

• If you are planning to start the meshing from a previous saved state, you do

not need to clean the case directory.

• Before proceeding to compute the solution, remember to always check the

quality of the mesh.

Cleaning the case directory

Mesh generation using snappyHexMesh

40

snappyHexMesh guided tutorials

41

• Our first case will be a mesh around a cylinder.

• This is a simple geometry, but we will use it to study all the meshing steps

and introduce a few advanced features.

• This case is located in the directory M1cyl

• Meshing with snappyHexMesh.

• Meshing case 1. 3D Cylinder (external mesh), with

feature edge refinement.

• From this point on, please follow me.

• We are all going to work at the same pace.

• Remember, $PTOFC is pointing to the path where you

unpacked the tutorials.

snappyHexMesh guided tutorials

M1cyl/C1

42

3D Cylinder with edge refinement.

No edge refinement Edge refinement

snappyHexMesh guided tutorials

43

• If the geometry has sharp angles and you want to resolve those edges, you should

use edge refinement.

• In this case and as we are interested in resolving the sharp angles, the mesh with no

edge refinement is not acceptable.

3D Cylinder with edge refinement.

snappyHexMesh guided tutorials

44

• We use edge refinement when we have sharp angles.

• In the left figure there is no need to use edge refinement

• In the right figure (and depending of what you want to do), you will need to use edge

refinement.

3D Cylinder with edge refinement.

• How do we control curvature refinement and enable edge refinement?

• In the file snappyHexMeshDict, look for the following entry:

castellatedMeshControls

{

...

...

...

//Local curvature and

//feature angle refinement

resolveFeatureAngle 30;

...

...

...

//Explicit feature edge refinement

features

(

{

file “surfacemesh.eMesh";

level 0;

}

);

...

...

...

}

To control curvature refinement

To enable and

control edge

refinement level

snappyHexMesh guided tutorials

45

3D Cylinder with edge refinement.

angle

0: mark the whole surface for refinement

180: do not mark any STL face for refinement

resolveFeatureAngle

If angle is more than resolveFeatureAngle

the adjacent STL faces will be marked for refinement

How resolveFeatureAngle works?

angle < resolveFeatureAngle

No curvature refinement

snappyHexMesh guided tutorials

46

STL

3D Cylinder with edge refinement.

STL

angle

0: mark the whole surface for refinement

180: do not mark any STL face for refinement

resolveFeatureAngle

If angle is more than resolveFeatureAngle

the adjacent STL faces will be marked for refinement

How resolveFeatureAngle works?

angle > resolveFeatureAngle

Curvature refinement

snappyHexMesh guided tutorials

47

3D Cylinder with edge refinement.

• How do we control surface refinement?

• In the file snappyHexMeshDict, look for the following entry:

castellatedMeshControls

{

...

...

...

//Surface based refinement

refinementSurfaces

{

banana_stlSurface

{

level (2 4);

}

}

...

...

...

}

To control surface refinement.

The first digit controls the global

surface refinement level and the second

digit controls the curvature refinement

level, according to the angle set in the

entry resolveFeatureAngle

snappyHexMesh guided tutorials

48

3D Cylinder with edge refinement.

snappyHexMesh guided tutorials

49

• How do we create refinement regions?

• In the file snappyHexMeshDict, look for the following entry:

geometry

{

...

...

...

refinementBox

{

type searchableBox;

min (-2 -2 -2);

max (2 2 2);

}

...

...

...

};

Name of refinement region

Geometrical entity type.

This is the zone where we

want to apply the refinement

Dimensions of geometrical entity

3D Cylinder with edge refinement.

snappyHexMesh guided tutorials

50

• How do we create refinement regions?

• In the file snappyHexMeshDict, look for the following entry:

castellatedMeshControls

{

...

...

...

refinementRegions

{

refinementBox

{

mode inside;

levels ((1e15 1));

}

}

...

...

...

}

Name of the region

created in the geometry section

Type of refinement (inside,

outside, or distance mode)

Distance from the surface

A large value covers the whole region

Refinement level

Explicit feature edge refinement level 0

resolveFeatureAngle 110

Surface based refinement level (2 2)

Explicit feature edge refinement level 0

resolveFeatureAngle 60

Surface based refinement level (2 2)

Effect of various parameters on edge capturing and surface refinement

• To control edges capturing you can decrease the value of resolveFeatureAngle.

• Be careful, this parameter also controls curvature refinement, so if you choose a low

value you also will be adding a lot of refinement on the surface.

3D Cylinder with edge refinement.

snappyHexMesh guided tutorials

51

Explicit feature edge refinement level 0

resolveFeatureAngle 60

Surface based refinement level (2 2)

Explicit feature edge refinement level 4

resolveFeatureAngle 60

Surface based refinement level (2 2)

3D Cylinder with edge refinement.

Effect of various parameters on edge capturing and surface refinement

• To control edges refinement level, you can change the value of the explicit feature

edge refinement level.

snappyHexMesh guided tutorials

52

Explicit feature edge refinement level 6

resolveFeatureAngle 5

Surface based refinement level (2 4)

Explicit feature edge refinement level 0

resolveFeatureAngle 5

Surface based refinement level (2 4)

3D Cylinder with edge refinement.

Effect of various parameters on edge capturing and surface refinement

• To control edges refinement level, you can change the value of the explicit feature

edge refinement level.

snappyHexMesh guided tutorials

53

Explicit feature edge refinement level 0

resolveFeatureAngle 60

Surface based refinement level (2 4)

Explicit feature edge refinement level 4

resolveFeatureAngle 60

Surface based refinement level (2 2)

3D Cylinder with edge refinement.

Effect of various parameters on edge capturing and surface refinement

• To control surface refinement level, you can change the value of the surface based

refinement level.

• The first digit controls the global surface refinement level and the second digit

controls the curvature refinement level.

snappyHexMesh guided tutorials

54

Explicit feature edge refinement level 0

resolveFeatureAngle 60

Surface based refinement level (2 4)

Explicit feature edge refinement level 0

resolveFeatureAngle 5

Surface based refinement level (2 4)

3D Cylinder with edge refinement.

Effect of various parameters on edge capturing and surface refinement

• To control surface refinement due to curvature together with control based surface

refinement level, you can change the value of resolveFeatureAngle, and surface

based refinement level

snappyHexMesh guided tutorials

55

3D Cylinder with edge refinement.

surfacemesh.stl

{

extractionMethod extractFromSurface;

extractFromSurfaceCoeffs

{

includedAngle 150;

}

subsetFeatures

{

nonManifoldEdges yes;

openEdges yes;

}

writeObj yes;

}

• Let us explore the dictionary surfaceFeatureExtractDict used by the

utility surfaceFeatureExtract.

• This utility will extract surface features (sharp angles) according to an angle

criterion (includedAngle).

Name of the STL.

The STL file is located

in constant/triSurface

Angle criterion

to extract features

If you want to save

the .obj files

Features edges

Features edges

snappyHexMesh guided tutorials

56

3D Cylinder with edge refinement.

surfacemesh.stl

{

extractionMethod extractFromSurface;

extractFromSurfaceCoeffs

{

includedAngle 150;

}

subsetFeatures

{

nonManifoldEdges yes;

openEdges yes;

}

writeObj yes;

}

• Let us explore the dictionary surfaceFeatureExtractDict used by the

utility surfaceFeatureExtract.

• This utility will extract surface features (sharp angles) according to an angle

criterion (includedAngle).

Name of the STL.

The STL file is located

in constant/triSurface

Angle criterion

to extract features

If you want to save

the .obj files

STL

angle

Mark edges whose adjacent surface normals

are at an angle less than includedAngle

0: selects no edges

180: selects all edge

includedAngle

If angle is less than includedAngle

this feature will be marked

snappyHexMesh guided tutorials

57

3D Cylinder with edge refinement.

• If you want to have a visual representation of the feature edges, you can use

paraview/paraFoam.

• Just look for the filter Feature Edges.

• Have in mind that the angle you need to define in paraview/paraFoam is the complement of the
angle you define in the dictionary surfaceFeatureExtractDict

snappyHexMesh guided tutorials

58

• In this case we are going to generate a body fitted mesh with edge refinement. This is an

external mesh.

• These are the dictionaries and files that will be used.

• system/snappyHexMeshDict

• system/surfaceFeatureExtractDict

• system/meshQualityDict

• system/blockMeshDict

• constant/triSurface/surfacemesh.stl

• constant/triSurface/surfacemesh.eMesh

• The file surfacemesh.eMesh is generated after using the utility surfaceFeatureExtract,

which reads the dictionary surfaceFeatureExtractDict.

• The utility surfaceFeatureExtract, will save a set of *.obj files with the captured edges.

These files are located in the directory constant/extendedFeatureEdgeMesh. You can

use paraview to visualize the *.obj files.

3D Cylinder with edge refinement.

snappyHexMesh guided tutorials

59

• Let us generate the mesh, in the terminal window type:

3D Cylinder with edge refinement.

snappyHexMesh guided tutorials

1. $> foamCleanTutorials

2. $> surfaceFeatureExtract

3. $> blockMesh

4. $> snappyHexMesh –overwrite

5. $> checkMesh –latestTime

6. $> paraFoam

60

• In step 2 we extract the sharp angles from the geometry.

• In step 3 we generate the background mesh.

• In step 4 we generate the body fitted mesh. Have in mind that as we use the
option –overwrite, we are not saving the intermediate steps.

• In step 5 we check the mesh quality.

• Meshing with snappyHexMesh.

• Meshing case 2. 3D Cylinder (external mesh), with

feature edge refinement and boundary layer.

• From this point on, please follow me.

• We are all going to work at the same pace.

• Remember, $PTOFC is pointing to the path where you

unpacked the tutorials.

snappyHexMesh guided tutorials

M1cyl/C2

61

Your final mesh should looks like this one

3D Cylinder with edge refinement and boundary layer.

snappyHexMesh guided tutorials

62

• How do we enable boundary layer?

• In the file snappyHexMeshDict, look for the following entry:

3D Cylinder with edge refinement and boundary layer.

castellatedMesh true; //or false

snap true; //or false

addLayers true; //or false

...

...

...

Set this parameter to

true if you want to

enable boundary layer

meshing

snappyHexMesh guided tutorials

63

• How do we enable boundary layer?

• In the file snappyHexMeshDict, look for the section addLayersControls:

3D Cylinder with edge refinement and boundary layer.

addLayersControls

{

//Global parameters

relativeSizes true;

expansionRatio 1.2;

finalLayerThickness 0.5;

minThickness 0.1;

layers

{

banana_stlSurface

{

nSurfaceLayers 3;

}

}

// Advanced settings

...

...

...

}

Name of the surface or user-defined

patch where you want to add the

boundary layer mesh.

snappyHexMesh guided tutorials

64

• How do we control boundary layer collapsing?

• In the file snappyHexMeshDict, look for the section addLayersControls:

3D Cylinder with edge refinement and boundary layer.

addLayersControls

{

...

...

...

// Advanced settings

nGrow 0;

featureAngle 130;

...

...

...

}

Increase this value to avoid BL

collapsing

snappyHexMesh guided tutorials

65

3D Cylinder with edge refinement and boundary layer.

relativeSizes true

expansionRatio 1.2

finalLayerThickness 0.5

minThickness 0.1

featureAngle 130

nSurfaceLayers 3

Surface based refinement level (2 4)

relativeSizes false

expansionRatio 1.2

firstLayerThickness 0.025

minThickness 0.01

featureAngle 130

nSurfaceLayers 3

Surface based refinement level (2 4)

Effect of different parameters on the boundary layer meshing

snappyHexMesh guided tutorials

66

3D Cylinder with edge refinement and boundary layer.

Effect of different parameters on the boundary layer meshing

• When the option relativeSizes is true, the boundary layer meshing is done relative to the size

of the cells next to the surface.

• This option requires less user intervention but can not guarantee a uniform boundary layer.

• Also, it is quite difficult to set a desired thickness of the first layer.

snappyHexMesh guided tutorials

67

3D Cylinder with edge refinement and boundary layer.

Effect of different parameters on the boundary layer meshing

• When the option relativeSizes is false, we give the actual thickness of the layers.

• This option requires a lot user intervention but it guarantees a uniform boundary layer and the

desired layer thickness.

snappyHexMesh guided tutorials

68

3D Cylinder with edge refinement and boundary layer.

relativeSizes true

expansionRatio 1.2

finalLayerThickness 0.5

minThickness 0.1

featureAngle 130

nSurfaceLayers 3

Surface based refinement level (2 4)

relativeSizes true

expansionRatio 1.2

finalLayerThickness 0.5

minThickness 0.1

featureAngle 130

nSurfaceLayers 3

Surface based refinement level (2 2)

Effect of different parameters on the boundary layer meshing

• When the option relativeSizes is true and in order to have a uniform boundary layer, we need

to have a uniform surface refinement.

• Nevertheless, we still do not have control on the desired thickness of the first layer.

snappyHexMesh guided tutorials

69

3D Cylinder with edge refinement and boundary layer.

relativeSizes true

expansionRatio 1.2

finalLayerThickness 0.5

minThickness 0.1

featureAngle 130

nSurfaceLayers 3

Surface based refinement level (2 2)

relativeSizes true

expansionRatio 1.2

finalLayerThickness 0.5

minThickness 0.1

featureAngle 30

nSurfaceLayers 3

Surface based refinement level (2 2)

Effect of different parameters on the boundary layer meshing

• To avoid boundary layer collapsing close to the corners, we can increase the value of the

boundary layer parameter featureAngle.

snappyHexMesh guided tutorials

70

3D Cylinder with edge refinement and boundary layer.

Effect of different parameters on the boundary layer meshing

• The disadvantage of setting relativeSizes to false, is that it is difficult to control the expansion

ratio from the boundary layer meshing to the far mesh.

• To control this transition, we can add a refinement region at the surface with distance mode.

relativeSizes false

nSurfaceLayers 6

relativeSizes false

nSurfaceLayers 6

Refinement region at the stl surface:

mode distance;

levels ((0.05 4))

snappyHexMesh guided tutorials

71

• To generate the mesh, in the terminal window type:

3D Cylinder with edge refinement and boundary layer.

snappyHexMesh guided tutorials

1. $> foamCleanTutorials

2. $> surfaceFeatureExtract

3. $> blockMesh

4. $> snappyHexMesh -overwrite

5. $> checkMesh –latestTime

6. $> paraFoam

72

• At the end of the meshing process you will get the following information

regarding the boundary layer meshing:

3D Cylinder with edge refinement and boundary layer.

patch faces layers overall thickness

[m] [%]

----- ----- ------ --- ---

banana_stlSurface 4696 3 0.0569 95.9

Layer mesh : cells:48577 faces:157942 points:61552

• This is a general summary of the boundary layer meshing.

• Pay particular attention to the overall and thickness information.

• Overall is roughly speaking the thickness of the whole boundary layer.

• Thickness is the percentage of the patch that has been covered with the boundary layer mesh. A thickness of

100% means that the whole patch has been covered (a perfect BL mesh).

snappyHexMesh guided tutorials

73

• If you want to visualize the boundary layer thickness, you can enable
writeFlags in the snappyhexMeshDict dictionary,

3D Cylinder with edge refinement and boundary layer.

...

...

...

writeFlags

(

scalarLevels; // write volScalarField with cellLevel for postprocessing

layerSets; // write cellSets, faceSets of faces in layer

layerFields; // write volScalarField for layer coverage

);

...

...

...

snappyHexMesh guided tutorials

74

• Then you can use paraview/paraFoam to visualize the boundary layer

coverage.

3D Cylinder with edge refinement and boundary layer.

Boundary layer thickness and number of layers

snappyHexMesh guided tutorials

75

The yellow surface represent the BL coverage

• After creating the mesh and if you do not like the inflation layer or you want to

try different layer parameters, you do not need to start the meshing process

from scratch.

• To restart the meshing process from a saved state you need to save the

intermediate steps (castellation and snapping), and then create the inflation

layers starting from the snapped mesh.

• That is, do not use the option snappyHeshMesh -overwrite.

• Also, in the dictionary controlDict remember to set the entry startFrom

to latestTime or the time directory where the snapped mesh is saved (in

this case 2).

• Before restarting the meshing, you will need to turn off the castellation and

snapping options and turn on the boundary layer options in the
snappyHexMeshDict dictionary.

3D Cylinder with edge refinement and boundary layer.

snappyHexMesh guided tutorials

76

3D Cylinder with edge refinement and boundary layer.

snappyHexMesh guided tutorials

77

• Remember, before restarting the meshing you will need to modify the
snappyHexMeshDict dictionary as follows:

• At this point, you can restart the meshing process by typing in the terminal,

• $> snappyHexMesh

• By the way, you can restart the boundary layer mesh from a previous mesh

with a boundary layer.

• So in theory, you an add one layer at a time, this will give you more control

but it will require more manual work and some scripting.

castellatedMesh false;

snap false;

addLayers true;

• How do I know if my mesh is OK?

• If your goal is to predict the forces at the walls, you should have a surface mesh

and boundary layer mesh fine enough to resolve well the forces.

• Also, if there is transition to turbulence you should resolve very well the boundary

layer.

• To have an idea is you are resolving well the forces, you can do a grid refinement

study. Have in mind that these studies can be really expensive.

1 2 3 4

Q
u

a
n

ti
ty

 o
f

in
te

re
s

t

Mesh number or refinement level

M1 M2

M3 M4

3D Cylinder with edge refinement and boundary layer.

snappyHexMesh guided tutorials

78

• How do I know if my mesh is OK?

• To avoid smearing gradients close to the walls, remember to control the transition

from the boundary layer mesh to the far field mesh.

3D Cylinder with edge refinement and boundary layer.

snappyHexMesh guided tutorials

79

• And also you will need to have a mesh fine enough to resolve the flow features

far from the body.

• Meshing with snappyHexMesh.

• Meshing case 3. 3D Cylinder (external mesh), with

feature edge refinement and boundary layer, using a

STL file with multiple surfaces.

• From this point on, please follow me.

• We are all going to work at the same pace.

• Remember, $PTOFC is pointing to the path where you

unpacked the tutorials.

snappyHexMesh guided tutorials

M1cyl/C3

80

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

snappyHexMesh guided tutorials

81

STL visualization with a single surface using paraview (the

single surface in represented with a single color)

STL visualization with multiple surfaces using paraview (each

color corresponds to a different surface)

• When you use a STL with multiple surfaces, you have more control over the meshing process.

• By default, STL files are made up of one single surface.

• If you want to create the multiple surfaces you will need to do it in the solid modeler.

• Alternatively, you can split the STL manually or using the utility surfaceAutoPatch.

• Loading multiple STLs is equivalent to using a STL with multiple surfaces.

• When you use a STL with multiple surfaces, you have more control over the meshing process.

• In this case, we were able to use different refinement parameters in the lateral and central

surface patches of the cylinder.

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

snappyHexMesh guided tutorials

82

• How do we assign different names to different surface patches?

• In the file snappyHexMeshDict, look for the following entry:

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

geometry

{

surfacemesh.stl

{

type triSurfaceMesh;

name stlSurface;

regions

{

patch0 Named region in the STL file

{

name surface0; User-defined patch name

} This is the name you need to use when

setting the boundary layer meshing

patch1

{

name surface1;

}

patch2

{

name surface2;

}

}

}

...

...

...

}

snappyHexMesh guided tutorials

83

• How do we refine user defined surface patches?

• In the file snappyHexMeshDict, look for the following entry:

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

castellatedMeshControls

{

...

...

...

refinementSurfaces

{

level (2 2);

regions

{

patch0

{

level (2 2);

patchInfo

{

type wall;

}

}

...

...

...

}

}

...

...

...

}

snappyHexMesh guided tutorials

84

Local refinement level

Global refinement level

Local surface patch

Type of the patch.

This information is optional

• How do we control curvature refinement on surface patches?

• In the file snappyHexMeshDict, look for the following entry:

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

castellatedMeshControls

{

...

...

...

refinementSurfaces

{

level (2 2);

regions

{

patch0

{

level (2 4);

patchInfo

{

type wall;

}

}

...

...

...

}

}

...

...

...

}

snappyHexMesh guided tutorials

85

Local curvature refinement (in red)

Global refinement level

Local surface patch

• How do we control curvature refinement on surface patches?

• In the file snappyHexMeshDict, look for the following entry:

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

castellatedMeshControls

{

...

...

...

//Local curvature and

//feature angle refinement

resolveFeatureAngle 60;

...

...

...

}

snappyHexMesh guided tutorials

86

The default value is 30.

Using a higher value will capture

less features.

• How do we control boundary layer meshing on the surface patches?

• In the file snappyHexMeshDict, look for the following entry:

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

addLayersControls

{

//Global parameters

relativeSizes true;

expansionRatio 1.2;

finalLayerThickness 0.5;

minThickness 0.1;

layers

{

“surface.*”

{

nSurfaceLayers 5;

}

surface0

{

nSurfaceLayers 3;

expansionRatio 1.0;

finalLayerThickness 0.25;

minThickness 0.1;

}

}

//Advanced settings

...

...

...

}

Global BL parameters

Local surface patch

Local BL parameters

POSIX wildcards are permitted

snappyHexMesh guided tutorials

87

• Let us first create the STL file with multiple surfaces.

• In the directory geo, you will find the original STL file.

• In the terminal type:

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

snappyHexMesh guided tutorials

1. $> cd geo

2. $> surfaceAutoPatch geo.stl output.stl 130

3. $> cp output.stl ../constant/triSurface/surfacemesh.stl

4. $> cd ..

5. $> paraview

• The utility surfaceAutoPatch will read the original STL file (geo.stl), and it will find the

patches using an angle criterion of 130 (similar to the angle criterion used with the utility
surfaceFeatureExtract). It writes the new STL geometry in the file output.stl.

• By the way, it is better to create the STL file with multiple surfaces directly in the solid modeler.

• FYI, there is an equivalent utility for meshes, autoPatch. So if you forgot to define the

patches, this utility will automatically find the patches according to an angle criterion.
88

• If you open the file output.stl, you will notice that there are three

surfaces defined in the STL file. The different surfaces are defined in by the

following sections:

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

solid patch0

…

endsolid patch0

solid patch1

…

endsolid patch1

solid patch2

…

endsolid patch2

• The name of the solid sections are

automatically given by the utility
surfaceAutoPatch.

• The convention is as follows: patch0,

patch1, pathc2, … patchN.

• If you do not like the names, you can

change them directly in the STL file.

Surface patch 3

Surface patch 2

Surface patch 1

snappyHexMesh guided tutorials

89

• The new STL file is already in the constant/triSurface directory.

• To generate the mesh, in the terminal window type:

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

snappyHexMesh guided tutorials

1. $> foamCleanTutorials

2. $> surfaceFeatureExtract

3. $> blockMesh

4. $> snappyHexMesh -overwrite

5. $> checkMesh –latestTime

• To visualize the mesh, in the terminal window type:

6. $> paraFoam

90

• This case is ready to run using the solver simpleFoam. But before running,

you will need to set the boundary and initial conditions.

• You will need to manually modify the file constant/polyMesh/boundary

• Remember:

• Base type boundary conditions are defined in the file boundary located

in the directory constant/polyMesh.

• Primitive or numerical type boundary conditions are defined in the field
variables files located in the directory 0 or the time directory from which

you want to start the simulation (e.g. U, p).

• The name of the base type boundary conditions and numerical type

boundary conditions needs to be the same.

• Also, the base type boundary condition needs to be compatible with the

numerical type boundary condition.

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

snappyHexMesh guided tutorials

91

• This case is ready to run with simpleFoam.

• If you are in a hurry and you do not want to create/edit the files 0/U, 0/p,

constant/polyMesh/boundary, follow these steeps to run the case:

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

snappyHexMesh guided tutorials

1. $> cp 0_org/* 0

2. $> cp system/boundary_org constant/polyMesh/boundary

3. $> renumberMesh –overwrite

4. $> simpleFoam > log | tail –f log

92

• Meshing with snappyHexMesh.

• Meshing case 4. 2D Cylinder (external mesh).

• From this point on, please follow me.

• We are all going to work at the same pace.

• Remember, $PTOFC is pointing to the path where you

unpacked the tutorials.

snappyHexMesh guided tutorials

M1cyl/C4

93

2D Cylinder

snappyHexMesh guided tutorials

94

From 3D To 2D

• To generate a 2D mesh using snappyHexMesh, we need to start from a 3D. After all,

snappyHexMesh is a 3D mesher.

• To generate a 2D mesh (and after generating the 3D mesh), we use the utility
extrudeMesh.

• The utility extrudeMesh works by projecting a face into a mirror face. Therefore,

the faces need to parallel.

2D Cylinder

snappyHexMesh guided tutorials

95

• At most, the input geometry and the background mesh need to have the same width.

• If the input geometry is larger than the background mesh, it will be automatically cut

by the faces of the background mesh.

• In this case, the input geometry will be cut by the two lateral patches of the

background mesh.

• If you want to take advantage of symmetry in 3D, you can cut the geometry in half

using one of the faces of the background mesh.

Geometry width

Background mesh width

FACE 1

FACE 2

The utility extrudeMesh works by

projecting FACE 1 into FACE 2.

Therefore, the faces need to be

parallel.

2D Cylinder

snappyHexMesh guided tutorials

96

• How do we create the 2D mesh?

• After generating the 3D mesh, we use the utility extrudeMesh.

• This utility reads the extrudeMeshDict,

constructFrom patch;

sourceCase “.”

sourcePatches (minZ);

exposedPatchName maxZ;

extrudeModel linearNormal

nLayers 1;

linearNormalCoeffs

{

thickness 1;

}

mergeFaces false;

Name of source patch

Name of the mirror patch

Number of layers to use in the linear extrusion.

As this is a 2D case we must use 1 layer

Thickness of the extrusion.

It is highly recommended to use a value of 1

2D Cylinder

snappyHexMesh guided tutorials

97

• To generate the mesh, in the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> snappyHexMesh –overwrite

4. $> extrudeMesh

5. $> checkMesh –latestTime

6. $> paraFoam

• Remember, the utility extrudeMesh (step 4) reads the dictionary

extrudeMeshDict, which is located in the directory system.

• Meshing with snappyHexMesh.

• Meshing case 5. Ahmed body (external mesh)

• From this point on, please follow me.

• We are all going to work at the same pace.

• Remember, $PTOFC is pointing to the path where you

unpacked the tutorials.

snappyHexMesh guided tutorials

M3_ahmed

98

snappyHexMesh guided tutorials

99

Ahmed body

• At this point, we all have a clear idea of how snappyHexMesh works.

• If not, please raise your hand.

• So let us go free styling and let us play around with this case.

snappyHexMesh guided tutorials

100

Ahmed body

• In our YouTube channel you will find a playlist with many videos for this case. The playlist is

titled: CFD workflow tutorial using open-source tools.

• You can find our YouTube channel in the following link:

https://www.youtube.com/channel/UCNNBm3KxVS1rGeCVUU1p61g

• In these videos, we show a few extra features and some tips and tricks to take the most out of
snappyHexMesh.

• If you get lost, read the REAME.FIRST file that you will find in the working directory.

• The dictionaries snappyHexMeshDict and blockMeshDict used in this case are very

clean and ready to use. So feel free to use them as your templates.

• Our best advice is not to get lost in all the options available in the dictionary
snappyHexMeshDict. Most of the times the default options will work fine.

• That being said, you only need to read in the geometries, set the feature edges and surface

refinement levels, choose in which surfaces you want to add the boundary layers, and choose

how many layers you want to add.

• Final advices:

• If you are working with a complicated geometry, add one layer at a time.

• Use paraFoam/paraview to get visual references.

• Always check the quality of your mesh.

https://www.youtube.com/channel/UCNNBm3KxVS1rGeCVUU1p61g

