
Merry-go-round:

Pure convection of a passive scalar in a vector 

field – One dimensional tube.

Numerical playground



• We will not run this case, this is a visual and mental exercise 

only.

• You will find this case in the directory

$PTOFC/101FVM/pureConvection

• In this directory, you will also find the README.FIRST file with 

the instructions of how to run the case.

• Hereafter, we will focus our eyes to focus our brain. 

Numerical playground



Pure convection of a scalar in a vector field – One dimensional tube.

Numerical playground

U = (1 0 0)

T = 1

U = zeroGradient

T = zeroGradient

Initial conditions

U = (1 0 0)

T = 0

U = zeroGradient

T = zeroGradient

U = zeroGradient

T = zeroGradient

(0 0 0) (1 0 0)



• This problem has an exact solution in the form of a traveling wave.

• We will use this case to study the different discretization schemes implemented in 

OpenFOAM®.

• In the figure, we show the solution for time = 0.5 s

Numerical playground

www.wolfdynamics.com/wiki/pureconvection/xani1.gif

www.wolfdynamics.com/wiki/pureconvection/xani2.gif

http://www.wolfdynamics.com/wiki/pureconvection/xani1.gif
http://www.wolfdynamics.com/wiki/pureconvection/xani2.gif


Comparison of different spatial discretization schemes.

Euler in time – 100 cells – CFL = 0.1

Linear limiter functions on the Sweby diagram.

Numerical playground

Comparison of different spatial discretization schemes.

Euler in time – 100 cells – CFL = 0.1

Non-linear limiter functions on the Sweby diagram.



Comparison of different gradient limiters.

Linear upwind in space – Euler in time – 100 cells –

CFL 0.1
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Comparison of different gradient limiters.

Linear upwind in space – Euler in time – 100 cells –

CFL 0.1



Comparison of different temporal discretization 

schemes and gradient limiters.

Linear upwind in space – 100 cells – CFL 0.1

Numerical playground

Comparison of Crank Nicolson blending factor using 

cellLimited leastSquares 0.5 gradient limiter.

Linear upwind in space – 100 cells – CFL 0.1



Comparison of Crank Nicolson blending factor using 

cellLimited leastSquares 0.5 gradient limiter.

Linear upwind in space – 100 cells – CFL 0.1

Numerical playground

Comparison of Crank Nicolson blending factor using 

cellMDLimited Gauss linear 1.0 gradient limiter.

Linear upwind in space – 100 cells – CFL 0.1



Comparison of different time-step size (different CFL 

number).

Linear upwind in space – Euler in time – 100 cells 

Numerical playground

Comparison of different mesh sizes.

Linear upwind in space – Euler in time 
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• This case was for your eyes and brain only, but we encourage you to reproduce all 

the previous results,

• Use all the time discretization schemes.

• Use all the spatial discretization schemes.

• Use all the gradient discretization schemes.

• Use gradient limiters.

• Use different mesh resolution.

• Use different time-steps.

• Sample the solution and compare the results.

• Try to find the best combination of numerical schemes.

• Remember, in the README.FIRST file you will find the instructions of                    

how to run the case.
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Exercises

• Which one of the following schemes is useless:

• upwind

• downwind

• linear

• Compare the solution obtained with the following schemes:

• upwind  

• linearUpwind

• MUSCL 

• QUICK 

• cubic 

• UMIST

Are all of them bounded? Are they second order accurate?

• Use the linearUpwind method with Gauss linear and leastSquares for gradient computations, which method 

is more accurate?

• Imagine that you are using the linearUpwind method with no gradient limiters. How will you stabilize the 

solution if it becomes unbounded?

• When using gradient limiters, what is clipping?

• Use the vanLeer method with a CFL number of 0.1 and a CFL number of 0.9, did both solutions converge? 

Are both solutions bounded? 
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Exercises

• By the way, the solver scalarTransportFoam does not report the CFL number on the screen. How will you 

compute the CFL number in this case?

(Hint: you can take a look at the post-processing slides or the utilities directory)

• Which one is more diffusive, spatial discretization or time discretization? 

• Are all time discretization schemes bounded?

• If you are using the Crank-Nicolson scheme, how will you avoid oscillations?

• Does the solution improve if you reduce the time-step?

• Use the upwind scheme and a really fine mesh. Do the accuracy of the solution improve?

• From a numerical point of view, what is the Peclet number? Can it be compare to the Reynolds number?

• If the Peclet number is more than 2, what will happen with your solution if you were using a linear scheme?

(Hint: to change the Peclet number you will need to change the diffusion coefficient)

• Pure convection problems have analytical solutions.  You are asked to design your own tutorial with an 

analytical solution in 2D or 3D.

• Try to break the solver using a time step less than 0.005 seconds.  You are allow to modify the original mesh 

and use any combination of discretization schemes.



Slide:

2D Laplace equation in a square domain.

Numerical playground



• We will not run this case, this is a visual and mental exercise 

only.

• You will find this case in the directory

$PTOFC/101FVM/laplace

• In this directory, you will also find the README.FIRST file with 

the instructions of how to run the case.

• Hereafter, we will focus our eyes to focus our brain. 

Numerical playground
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2D Laplace equation in a square domain
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2D Laplace equation in a square domain

• This case consist of one domain and three different element types.

Hexahedral mesh Triangular mesh Polyhedral mesh

Domain

Detailed section view
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2D Laplace equation in a square domain

This problem has the following 

analytical solution:

• We will study the influence of the element type on the gradients computation.

• We will study the influence of the gradSchemes method and laplacianSchemes

method on the solution.
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2D Laplace equation in a square domain

gradSchemes: 

Gauss linear 

laplacianSchemes: 

Gauss linear orthogonal

A. Hexahedral mesh

B. Triangular mesh

C. Polyhedral mesh

A

C

B

T field
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2D Laplace equation in a square domain

gradSchemes: 

Gauss linear 

laplacianSchemes: 

Gauss linear orthogonal

A. Hexahedral mesh

B. Triangular mesh

C. Polyhedral mesh

field

A

C

B
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2D Laplace equation in a square domain

gradSchemes: 

Gauss linear 

laplacianSchemes: 

Gauss linear limited 1

A. Hexahedral mesh

B. Triangular mesh

C. Polyhedral mesh

field

A

C

B
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2D Laplace equation in a square domain

gradSchemes: 

Gauss leastSquares 

laplacianSchemes: 

Gauss linear orthogonal

A. Hexahedral mesh

B. Triangular mesh

C. Polyhedral mesh

field

A

C

B
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2D Laplace equation in a square domain

gradSchemes: 

Gauss leastSquares

laplacianSchemes: 

Gauss linear limited 1

A. Hexahedral mesh

B. Triangular mesh

C. Polyhedral mesh

field

A

C

B
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2D Laplace equation in a square domain

Sampling location – Polyhedral mesh

Scalar T
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• This case was for your eyes and brain only, but we encourage you to reproduce all 

the previous results.

• In the subdirectory c1 you will find the hexahedral mesh, in the subdirectory c2 you 

will find the triangular mesh, and in the subdirectory c3 you will find the polyhedral 

mesh.

• Use the script runallcases.sh to run all the cases automatically. 

• When launching paraFoam it will give you a warning, accept the default option (yes).

• In paraFoam, go to the File menu and select Load State. Load the state located 

in the directory paraview (state1.pvsm).

• In the window that pops out, give the location of the *.foam files inside each 

subdirectory (c1/c1.foam, c2/c2.foam, and c3/c3.foam). 

• The file state1.pvsm will load a preconfigured state with all the solutions.

• If you are interested in running the cases individually, enter the subdirectory            
and follow the instructions in the README.FIRST file.
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Exercises

• Run the case using all gradient discretization schemes available. Which scheme gives the best results?

• According to the previous results, which element type is the best one? Do you think that the choice of the 

element type is problem dependent (e.g., direction of the flow)?

• Use the leastSquares method for gradient discretization, and the corrected and uncorrected method for 

Laplacian discretization. Do you get the same results in all the meshes? How can you improve the results?

(Hint: look at the corrections)

• Does it make sense to do more non-orthogonal corrections using the uncorrected method?

• Run a case only 1 iteration.  Do you get a converged solution? Is there a difference between 1 and 100 

iterations? Compare the solutions.

• Use a different interpolation method for the diffusion coefficient. Do you get the same results?

• Try to break the solver (this is a difficult task in this case).  You are allow to modify the original mesh and use 

any combination of discretization schemes.



Swing:

Flow in a lid-driven square cavity – Re = 100

Effect of grading and non-orthogonality on the 

accuracy of the solution

Numerical playground
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Orthogonal mesh 

This is a perfect mesh

Non-orthogonal mesh

The overall quality of this mesh is good (in 

terms of non-orthogonality and skewness),   

but by no standard this is a good mesh.

Flow in a lid-driven square cavity – Re = 100

Non-orthogonal mesh vs. orthogonal mesh

• We will use this case to learn how to adjust the numerical schemes according to 

mesh non-orthogonality and grading.
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• And as CFD is not only about pretty colors, we should also 

validate the results

LaplacianSchemes orthogonal – No corrections

Y centerline

X centerline

High-Re Solutions for incompressible flow using the navier-stokes equations and a multigrid method

U. Ghia, K. N. Ghia, C. T. Shin.

Journal of computational physics, 48, 387-411 (1982)
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And as CFD is not only about pretty colors, we should also 

validate the results

LaplacianSchemes limited 1 – Non-orthogonal corrections

Y centerline

X centerline

High-Re Solutions for incompressible flow using the navier-stokes equations and a multigrid method

U. Ghia, K. N. Ghia, C. T. Shin.

Journal of computational physics, 48, 387-411 (1982)
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How to adjust the numerical method to deal with non-orthogonality

17 ddtSchemes

18 {

19 default backward;

20 }

21 

22 gradSchemes

23 {

24 default Gauss linear;

25 //default         cellMDLimited Gauss linear 1;

26

27 grad(p)         Gauss linear;

28 }

29 

30 divSchemes

31 {

32 default none;

33 //div(phi,U)      Gauss linearUpwind default;

34 div(phi,U)      Gauss linear;

35 }

36 

37 laplacianSchemes

38 {

39 default Gauss linear orthogonal;

40 //default         Gauss linear limited 1;

41 }

42 

43 interpolationSchemes

44 {

45 default linear;

46 }

47 

48 snGradSchemes

49 {

50 default orthogonal;

51 //default         limited 1;

52 }

• In the dictionary fvSchemes we can enable non-

orthogonal corrections.

• Non-orthogonal corrections are chosen using the 

keywords laplacianSchemes and snGradSchemes.

• These are the laplacianSchemes and 

snGradSchemes schemes that you will use most of the 

times:

• orthogonal: second order accurate, bounded on 

perfect meshes, without non-orthogonal 

corrections.

• corrected: second order accurate, bounded 

depending on the quality of the mesh, with non-

orthogonal corrections.

• limited     : second order accurate, bounded 

depending on the quality of the mesh, with non-

orthogonal corrections.

• uncorrected: second order accurate, without 

non-orthogonal corrections. Stable but more 

diffusive than limited and corrected.
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17 solvers

18 {

19 p

20 {

21 solver          PCG;

22 preconditioner  DIC;

23 tolerance       1e-06;

24 relTol          0;

38 }

39 

40 pFinal

41 {

42 $p;

43 relTol          0;

44 }

45 

46 U

47 {

48 solver          smoothSolver;

49 smoother        symGaussSeidel;

50 tolerance       1e-08;

51 relTol          0;

52 }

53 }

54 

55 PISO

56 {

57 nCorrectors     1;

58 nNonOrthogonalCorrectors 0;

59 pRefCell        0;

60 pRefValue       0;

61 }

How to adjust the numerical method to deal with non-orthogonality

• Additionally, in the dictionary fvSolution we need to 

define the number of PISO corrections (nCorrectors) and 

non-orthogonal corrections (nNonOrthogonalCorrectors).

• You need to do at least one PISO correction.  Increasing the 

number of PISO correctors will improve the stability and 

accuracy of the solution at a higher computational cost. 

• For orthogonal meshes, 1 PISO correction is ok. But as  

most of the time you will deal with non-orthogonal meshes, 

doing 2 PISO corrections is a good choice.

• If you are using a method with non-orthogonal corrections 

(corrected or limited 1-0.5), you need to define the number 

of non-orthogonal corrections (nNonOrthogonalCorrectors).

• If you use 0 nNonOrthogonalCorrectors, you are 

computing the initial approximation using central differences 

(accurate but unstable), with no explicit correction.

• To take into account the non-orthogonality of the mesh, you 

will need to increase the number of corrections (you get 

better approximations using the previous correction). 

• Usually 2 nNonOrthogonalCorrectors is ok.
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• We will now illustrate a few of the discretization schemes available in 

OpenFOAM® using a model case.

• We will use the lid-driven square cavity case to study the effect of grading 

and non-orthogonality on the accuracy of the solution

• This case is located in the directory:

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend to open the README.FIRST file and type the commands in the terminal, in this way 

you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

$PTOFC/101FVM/nonorthoCavity/
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What are we going to do?

• This is the same case as the one we used during the first tutorial session.  

• The only difference is that we have modified the mesh a little bit in order to add 

grading and non-orthogonality.

• After generating the mesh, we will use the utility checkMesh to control the quality of 

the mesh. Is it a good mesh? 

• We will use this case to learn how to adjust the numerical schemes according to 

mesh non-orthogonality and grading.

• To find the solution we will use icoFoam.

• After finding the numerical solution we will do some sampling.

• At the end, we will do some plotting (using gnuplot or Python) and scientific 

visualization.
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Running the case

1. $> foamCleanTutorials 

2. $> blockMesh 

3. $> checkMesh

4. $> icoFoam | log

5. $> postProcess -func sampleDict -latestTime

6. $> gnuplot gnuplot/gnuplot_script

7. $> paraFoam 

• You will find this tutorial in the directory $PTOFC/101FVM/nonorthoCavity

• In the terminal window type:
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To run the case, follow these steps

• First run the case using the original dictionaries. Did it crash right?

• Now change the laplacianSchemes and snGradSchemes to limited 1. It crashed again but 

this time it ran a few more time-steps, right?

• Now increase the number of nNonOrthogonalCorrectors to 2. It crashed again but it is running 

more time-steps, right?

• Now increase the number of PISO corrections to 2 (nCorrectors). Did it run? 

• Basically we enabled non-orthogonal corrections, we computed better approximations of the 

gradients, and we increased the number of PISO corrections to get better predictions of the field 

variables (U and p).

• Now set the number of nNonOrthogonalCorrectors to 0. Did it crash right? This is telling us 

that the mesh is sensitive to the gradients.

• Now change the laplacianSchemes and snGradSchemes to limited 0 (uncorrected). In this 

case we are not using non-orthogonal corrections, therefore there is no need to increase the 

value of nNonOrthogonalCorrectors.  

• We are using a method that uses a wider stencil to compute the Laplacian, this method is more 

stable but a little bit more diffusive. Did it run?

• At this point, compare the solution obtained with corrected and uncorrected schemes. Which 

one is more diffusive?
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• When it comes to laplacianSchemes and snGradSchemes this is how we 

proceed most of the times (a robust setup),

laplacianSchemes

{

default Gauss linear limited 1;

}

snGradSchemes

{

default limited 1;

}

PISO

{

nCorrectors     2;

nNonOrthogonalCorrectors 1;

}

• This method works fine for meshes with non-orthogonality less than 75.

• If the non-orthogonality is more than 75, you should consider using limited 

0.5, and increasing nCorrectors and nNonOrthogonalCorrectors.

• When the non-orthogonality is more than 85, the best solution is to redo the 

mesh.
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Exercises

• Using the non-orthogonal mesh and the original dictionaries, try to run the solver reducing the time-step.  Do 

you get a solution at all?

• Try to get a solution using the method limited 1 and two nNonOrthogonalCorrectors (leave nCorrectors

equal to 1).

(Hint: try to reduce the time-step)

• If you managed to get a solution using the previous numerical scheme. How long did it take to get the 

solution? Use the robust setup, clock the time and compare with the previous case.  Which one is faster? Do 

you get the same solution?

• Instead of using the non-orthogonal mesh, use a mesh with grading toward all edges.  How will you stabilize 

the solution?

(Hint: take a look at the blockMesh slides in order to add grading to the mesh)

• Try to get a solution using a time-step of 0.05 seconds. Use the original discretization schemes for the gradient 

and convective terms.

(Hint: increase nCorrectors and nNonOrthogonalCorrectors)

• Try to break the solver and interpret the output screen.  You are allow to modify the original mesh and use any 

combination of discretization schemes.



Seesaw:

Sod’s shock tube.

Numerical playground
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Sod’s shock tube

• This case has an analytical solution and plenty of experimental data.

• This is an extreme test case used to test solvers.

• Every single commercial and open source solver use this case for validation of the 

numerical schemes.

• The governing equation of this test case are the Euler equations.
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High Purity Photolysis Shock Tube (NASA Tube)

Shock tube. The driver section, including vacuum pumps, controls, and helium driver gas. 
Photo credit: Stanford University. http://hanson.stanford.edu/index.php?loc=facilities_nasa 

Copyright on the images is held by the contributors. Apart from Fair Use, permission must be sought for any other purpose.
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Sod’s shock tube

Boundary conditions and initial conditions

All walls are slip
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Sod’s shock tube

Analytical solution
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Sod’s shock tube

www.wolfdynamics.com/wiki/shocktube/aniT.gif www.wolfdynamics.com/wiki/shocktube/aniU.gif

www.wolfdynamics.com/wiki/shocktube/anip.gif www.wolfdynamics.com/wiki/shocktube/anigt.gif

http://www.wolfdynamics.com/wiki/shocktube/aniT.gif
http://www.wolfdynamics.com/wiki/shocktube/aniU.gif
http://www.wolfdynamics.com/wiki/shocktube/anip.gif
http://www.wolfdynamics.com/wiki/shocktube/anigt.gif
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Sod’s shock tube

Pressure field

Velocity magnitude field

Density field

Temperature field
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• We will now illustrate a few of the discretization schemes available in 

OpenFOAM® using a severe model case.

• We will use the Sod’s shock tube case. 

• This case is located in the directory:

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend to open the README.FIRST file and type the commands in the terminal, in this way 

you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

$PTOFC/101FVM/shockTube/
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What are we going to do?

• Now is your turn. 

• You are asked to select the best discretization scheme for the physics involve. 

Remember: accuracy, stability and boundedness.

• We will compare your numerical solution with the analytical solution.

• At this point, we are very familiar with the numerical schemes.  It is up to you to 

choose the best setup.

• You can start using the original dictionaries.

• To find the numerical solution we will use sonicFoam. 

• sonicFoam is a transient solver for trans-sonic/supersonic, laminar or turbulent flow 

of a compressible gas. 

• After finding the numerical solution we will do some sampling.

• At the end, we will do some plotting (using gnuplot or Python) and scientific 

visualization.
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Running the case

• You will find this tutorial in the directory $PTOFC/101FVM/schockTube

• Before running the case, you will need to choose the discretization scheme.

• In the terminal window type:

1. $> foamCleanTutorials 

2. $> blockMesh 

3. $> checkMesh

4. $> rm –rf 0

5. $> cp –r 0_org 0

6. $> setFields

7. $> sonicFoam | tee log

8. $> foamCalc mag U

9. $> postProcess -func sampleDict -latestTime

10. $> paraFoam 
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Running the case

• In step 3 we generate the mesh using blockMesh. 

• In step 5 and 6 we copy the original files to the directory 0.  We do this to keep a 

backup of the original files as the file 0/U will be overwritten.

• In step 7 we initialize the solution using setFields.

• In step 8 we run the simulation and save the log file. 

• In step 9 we use the utility foamCalc to compute the magnitude of the velocity vector 

U.  The output is saved as magU.

• In step 10 we use the utility postProcess to do sampling of the field variables.

• Finally, in step 11 we visualize the solution using paraFoam.
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Running the case

• To plot the analytical solution against the numerical solution, go to the directory 
python and run the Python script.

• In the terminal window type:

1. $> cd python

2. $> python sodschocktube.py

• The Python script will save four .png files with the solution.

• Feel free to explore and adapt the Python script to your needs.

• Remember, Python must be installed in order to use the script. 

• We use Anaconda Python 2.7
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Exercises

• Run the case using different time discretization schemes. 

• Run the case using different gradient discretization schemes. 

• Run the case using different convective discretization schemes for the term div(phi,U). 

• Run the case using different convective discretization schemes for the terms div(phi,e) and div(phi,K).  What 

are the variables e and K?

• Extend the case to 2D and 3D. Do you get the same solution?

• Try to run a 2D case using a triangular mesh and adjust the numerical scheme to get  an accurate and stable 

solution.

• Try to run the 1D case using an explicit solver. For the same CFL number, do you have the same time step 

size as for the implicit solver?

(Hint: look for the solver with the word Central)

• Try to break the solver (this is extremely easy in this case).  You are allow to modify the original mesh and use 

any combination of discretization schemes.



• As we mentioned earlier this is not a FVM/CFD course, but we highly advise you to take some time and study the theory in depth.

• There is vast amount of literature in the field of FVM/CFD. We will give you some of our favorite references, which are closed related to what 

you will find in OpenFOAM®.  

• Therefore, we are involuntarily omitting other references which are equally or even more important. 

• The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction With OpenFOAM and Matlab

F. Moukalled, L. Mangani, M. Darwish. 2015, Springer-Verlag

• Finite Volume Methods for Hyperbolic Problems 

R. Leveque. 2002, Cambridge University Press

• Computational Gasdynamics 

C. Laney. 1998, Cambridge University Press

• Computational Techniques for Multiphase Flows 

G. H. Yeoh, J. Tu. 2009, Butterworth-Heinemann

• An Introduction to Computational Fluid Dynamics                                

H. K. Versteeg, W. Malalasekera. 2007, Prentice Hall

• Computational Fluid Dynamics: Principles and Applications             

J. Blazek. 2006, Elsevier Science

• Computational Methods for Fluid Dynamics                                      

J. H. Ferziger, M. Peric. 2001, Springer

• Numerical Heat Transfer and Fluid Flow

S. Patankar. 1980, Taylor & Francis

• A Finite Volume Method for the Prediction of Three-Dimensional Fluid Flow in Complex Ducts

M. Peric. PhD Thesis. 1985. Imperial College, London

• Error analysis and estimation in the Finite Volume method with applications to fluid flows

H. Jasak. PhD Thesis. 1996. Imperial College, London

• Computational fluid dynamics of dispersed two-phase flows at high phase fractions       

H. Rusche. PhD Thesis. 2002. Imperial College, London

• High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws

P. K. Sweby SIAM Journal on Numerical Analysis, Vol. 21, No. 5. (Oct., 1984), pp. 995-1011

Some FVM/CFD references


