
Finite Volume Method: A Crash introduction

• Before continuing, we want to remind you that this a brief introduction to the FVM.

• Let us use the general transport equation as the starting point to explain the FVM,

• We want to solve the general transport equation for the transported quantity        in a 

given domain, with given boundary conditions BC and initial conditions IC.  

• This is a second order equation.  For good accuracy, it is necessary that the order of 

the discretization is equal or higher than the order of the equation that is being 

discretized.  

• By the way, starting from this equation we can write down the Navier-Stokes 

equations (NSE). So everything we are going to address also applies to the NSE.



• Let us use the general transport equation as the starting point to explain the FVM,
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Profile assumptions using Taylor expansions around point P (in space) and point t (in time)

• Hereafter we are going to assume that the discretization practice is at least second 

order accurate in space and time.

• As consequence of the previous requirement, all dependent variables are assumed 

to vary linearly around a point P in space and instant t in time,



 

 

 

 

 

  

 

 

  

 

 
 

  

 

 

 

• Let us divide the solution domain into a finite number of arbitrary control volumes or 

cells, such as the one illustrated below.

• Inside each control volume the solution is sought.

• The control volumes can be of any shape (e.g., tetrahedrons, hexes, prisms, 

pyramids, dodecahedrons, and so on). 

• The only requirement is that the elements need to be convex and the faces that made 

up the control volume need to be planar.

• We also know which control volumes are internal and which control volumes lie on 

the boundaries.
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• In the FVM, a lot of overhead goes into the data book-keeping of the domain information.

• We know the following information of every control volume        in the domain:

• The control volume        has a volume V and is constructed around point P, which is the 

centroid of the control volume.  Therefore the notation       . 

• The vector from the centroid P of        to the centroid N of        is named d.

• We also know all neighbors       of the control volume      . 

• The control volume faces are labeled f, which also denotes the face center. 

• The location where the vector d intersects a face is     .

• The face area vector        point outwards from the control volume, is located at the face 

centroid, is normal to the face and has a magnitude equal to the area of the face.

• The vector from the centroid P to the face center f  is named Pf.

 

 

 

 

 

  

 

  

 

 
 

  

 
 



• In the control volume illustrated, the centroid  P is given by,
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• In the same way, the centroid of face  f is given by

• Finally, we assume that the values of all variables are computed and stored in the 

centroid of the control volume       and that they are represented by a piecewise 

constant profile (the mean value), 

• This is known as the collocated arrangement.

• All the previous approximations are at least second order accurate.

 

 

 

 

  

 



where           is a closed surface bounding the control volume        and           

represents an infinitesimal surface element with associated normal       pointing 

outwards of the surface           , and

• Let us recall the Gauss or Divergence theorem,
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• The Gauss or Divergence theorem simply states 

that the outward flux of a vector field through a 

closed surface is equal to the volume integral of 

the divergence over the region inside the surface.

• This theorem is fundamental in the FVM, it is 

used to convert the volume integrals appearing in 

the governing equations into surface integrals.  

 

 

 

  

 

   



• Let us use the Gauss theorem to convert the volume integrals into surface integrals,
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• At this point the problem reduces to interpolating somehow the cell centered values 

(known quantities) to the face centers.



• Integrating in space each term of the general transport equation and by using Gauss 

theorem,  yields to the following discrete equations for each term
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Convective term:

where we have approximated the integrant 

by means of the mid point rule, which is 

second order accurate

By using Gauss theorem we convert 

volume integrals into surface integrals

Gauss theorem:

 

 

 

 

  

 

   



• Integrating in space each term of the general transport equation and by using Gauss 

theorem,  yields to the following discrete equations for each term
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Diffusive term:

where we have approximated the integrant 

by means of the mid point rule, which is 

second order accurate

By using Gauss theorem we convert 

volume integrals into surface integrals

Gauss theorem:

 

 

 

 

  

 

   



• Integrating in space each term of the general transport equation and by using Gauss 

theorem,  yields to the following discrete equations for each term
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Gradient term:

where we have approximated the centroid gradients by using the Gauss theorem.

This method is second order accurate

Gauss theorem:

 

 

 

 

  

 

   



• Integrating in space each term of the general transport equation and by using Gauss 

theorem,  yields to the following discrete equations for each term
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Source term:

This approximation is exact if        is either constant or varies linearly within the control 

volume; otherwise is second order accurate. 

Sc is the constant part of the source term and Sp is the non-linear part

Gauss theorem:

 

 

 

 

  

 

   



• And recall that all variables are computed and stored at the centroid of the control 

volumes.  

• The face values appearing in the convective and diffusive fluxes have to be 

computed by some form of interpolation from the centroid values of the control 

volumes at both sides of face f.

• Using the previous equations to evaluate the general transport equation over all the 

control volumes, we obtain the following semi-discrete equation

where is the convective flux and              is the 

diffusive flux. 
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Interpolation of the convective fluxes
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• This type of interpolation scheme is known as linear interpolation or central 

differencing and it is second order accurate.  

• However, it may generate oscillatory solutions (unbounded solutions).

 

  

  

  

   

• By looking the figure below, the face values appearing in the convective flux can be 

computed as follows,



• By looking the figure below, the face values appearing in the convective flux can be 

computed as follows,
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• This type of interpolation scheme is known as upwind differencing and it is first order 

accurate.  

• This scheme is bounded (non-oscillatory) and diffusive.

  

  

  

  

   

  

  
  

   

  

  

Interpolation of the convective fluxes



• By looking the figure below, the face values appearing in the convective flux can be 

computed as follows,
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• This type of interpolation scheme is known as second order upwind differencing 

(SOU), linear upwind differencing (LUD) or Beam-Warming (BW), and it is second 

order accurate.  

• For highly convective flows or in the presence of strong gradients, this scheme is 

oscillatory (unbounded).

      

   

      

   

  

  

  

     

 

    

 

  

  

  

   

 

    

 

Interpolation of the convective fluxes



Interpolation of the convective fluxes
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• To prevent oscillations in the SOU, we add a gradient or slope limiter function          . 

• When the limiter detects strong gradients or changes in slope, it switches locally to 

low resolution (upwind).

• The concept of the limiter function           is based on monitoring the ratio of 

successive gradients, e.g., 

• By adding a well designed limiter function          , we get a high resolution (second 

order accurate), and bounded scheme.  This is a TVD scheme.



• A TVD scheme, is a second order accurate scheme that does not create new local undershoots and/or 

overshoots in the solution or amplify existing extremes (high resolution). 

• The choice of the limiter function           dictates the order of the scheme and its boundedness.  High resolution 

schemes falls in the blue area and low resolution schemes falls in the grey area.

• The drawback of the limiters is that they reduce the accuracy of the scheme locally to first order, when             

(sharp gradient, opposite slopes).  However, this is justify when it serves to suppress oscillations.

• The various limiters have different switching characteristics and are selected according to the particular 

problem and solution scheme. No particular limiter has been found to work well for all problems, and a 

particular choice is usually made on a trial and error basis.

• The Sweby diagram (Sweby, 1984), gives the necessary and sufficient conditions for a scheme to be TVD. 

Finite Volume Method: A Crash introduction

Interpolation of the convective fluxes – TVD schemes

UD = upwind

SOU = second order upwind

CD = central differencing

D = downwind

 
                       

        

              

             

    

 

 

 

 

                            

                           

        

      

       



• Let us see how the superbee, minmod and vanleer TVD schemes behave in a 

numerical schemes killer test case:

• The oblique double step profile in a uniform vector field (pure convection).

• By the way, this problem has an exact solution.
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Interpolation of the convective fluxes – TVD schemes



• Let us see how the superbee, minmod and vanleer TVD schemes behave in a 

numerical schemes killer test case. 

• The oblique double step profile in a uniform vector field (pure convection).
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SuperBee - Compressive Minmod - Diffusive vanLeer - Smooth

Interpolation of the convective fluxes – Linear and non-linear limiter functions



• Comparison of linear upwind method (2nd order) and upwind method (1st order). 

• The upwind method is extremely stable and non-oscillatory. However is highly 

diffusive.

• On the other side, the linear upwind method is accurate but oscillatory in the 

presence of strong gradients.
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Upwind – 1st order Linear Upwind  – 2nd order

Interpolation of the convective fluxes – Linear and non-linear limiter functions

SuperBee – TVD



• Let us see how the linear and non-linear limiter functions compare. 
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Interpolation of the convective fluxes – Linear and non-linear limiter functions



• All higher-order schemes we have seen so far assume line structure (figure A).

• That is, the cell centers PP, P, and N are all aligned.

• In unstructured meshes, it is not straightforward to use the previous schemes, as the cell center 

PP is not aligned with the vector connecting cells P and N (figure B).

• Higher-order schemes for unstructured meshes are an area of active research and new ideas 

continue to emerge.
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Interpolation of the convective fluxes – Unstructured meshes

  

  

 

      

 

 

 

 

 

 

 

 



• A simple way around this problem is to redefine       

higher-order schemes in terms of gradients at the 

control volume P.

• For example, using the gradient of the cells, we can 

compute the face values as follows,
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Interpolation of the convective fluxes – Unstructured meshes

 pwind  → 

 entral difference  → 

 econd order upwind differencing  → 

• Notice that in this new formulation the cell PP does not appear any more.

• The problem now turns in the accurate evaluation of the gradients at the cell and face centers. 

This can be done using Gauss method as previously explained.

  

  

      

 

 

 

  

 

 

 



• By looking the figures below, the face values appearing in the diffusive flux in an 

orthogonal mesh can be computed as follows,
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• This is a central difference approximation of the first order derivative. This type of 

approximation is second order accurate.

Interpolation of diffusive fluxes in a orthogonal mesh



• By looking the figures below, the face values appearing in the diffusive flux in a non-

orthogonal mesh (       ) can be computed as follows,
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• This type of approximation is second order accurate but involves a larger truncation 

error.  It also uses a larger numerical stencil, which make it less stable.

Interpolation of diffusive fluxes in a non-orthogonal mesh



• By looking the figures below, the face values appearing in the diffusive flux in a non-

orthogonal mesh (       ) can be computed as follows.

• Using the over-relaxed approach, the diffusive fluxes can be corrected as follow,
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Over-relaxed approach

Correction of diffusive fluxes in a non-orthogonal mesh



• In order to maintain second order accuracy, and to avoid unboundedness, we need to correct 

non-orthogonality and skewness errors.

• The ideal case is to have an orthogonal and non skew mesh, but this is the exception rather 

than the rule.
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Orthogonal and non skew mesh Non-orthogonal and non skew mesh

Orthogonal and skew mesh Non-orthogonal and skew mesh

Mesh induced errors



• Using the previous equations to evaluate the general transport equation over all the 

control volumes, we obtain the following semi-discrete equation,
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• After spatial discretization, we can proceed with the temporal discretization.  By 

proceeding in this way we are using the Method of Lines (MOL).

• The main advantage of the MOL method, is that it allows us to select numerical 

approximations of different accuracy for the spatial and temporal terms.  Each 

term can be treated differently to yield to different accuracies.

Temporal discretization

where is the convective flux and             is the 

diffusive flux. 



• Now, we evaluate in time the semi-discrete general transport equation
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• At this stage, we can use any time discretization scheme, e.g., Crank-Nicolson, euler

implicit, forward euler, backward differencing, adams-bashforth, adams-moulton.

• It should be noted that the order of the temporal discretization of the transient term 

does not need to be the same as the order of the discretization of the spatial terms.  

Each term can be treated differently to yield different accuracies.  As long as the 

individual terms are at least second order accurate, the overall accuracy will also be 

second order.

Temporal discretization
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in every control volume         of the domain, a system of linear algebraic equations for 

the transported quantity       is assembled,

• After spatial and temporal discretization and by using equation

• This system can be solved by using any iterative or direct method.

Linear system solution



So, what does OpenFOAM® do?
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• It simply discretize in space and time the governing equations in arbitrary polyhedral control volumes 

over the whole domain.  Assembling in this way a large set of linear discrete algebraic equations (DAE), 

and then it solves this system of DAE to find the solution of the transported quantities. 

• Therefore, we need to give to OpenFOAM® the following information:

• Discretization of the solution domain or the mesh. This information is contained in the directory 
constant/polyMesh

• Boundary conditions and initials conditions. This information is contained in the directory 0

• Physical properties such as density, gravity, diffusion coefficient, viscosity, etc. This information is 
contained in the directory constant

• Physics involve, such as turbulence modeling, mass transfer, source terms, etc. This information is 
contained in the directories constant and/or system

• How to discretize in space each term of the governing equations (diffusive, convective, gradient 
and source terms).  This information is set in the system/fvSchemes dictionary.

• How to discretize in time the obtained semi-discrete governing equations. This information is set in 
the system/fvSchemes dictionary.

• How to solve the linear system of discrete algebraic equations (crunch numbers). This information 
is set in the system/fvSolution dictionary.

• Set runtime parameters and general instructions on how to run the case (such as time step and 
maximum CFL number). This information is set in the system/controlDict dictionary.

• Additionally, we may set sampling and functionObjects for post-processing.  This information is 
contained in the specific dictionaries contained in the directory system/
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ddtSchemes

{

default backward;

}

gradSchemes

{

default Gauss linear;

grad(p)         Gauss linear;

}

divSchemes

{

default none;

div(phi,U)      Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

Where do we set all the discretization schemes in OpenFOAM®?

• The fvSchemes dictionary contains the information related to 

the discretization schemes for the different terms appearing in 

the governing equations.

• The discretization schemes can be chosen in a term-by-term 

basis.

• The keyword ddtSchemes refers to the time discretization.

• The keyword gradSchemes refers to the gradient term 

discretization.

• The keyword divSchemes refers to the convective terms

discretization.

• The keyword laplacianSchemes refers to the Laplacian terms  

discretization.

• The keyword interpolationSchemes refers to the method used 

to interpolate values from cell centers to face centers. It is 

unlikely that you will need to use something different from 

linear.

• The keyword snGradSchemes refers to the discretization of 

the surface normal gradients evaluated at the faces.

• Remember, if you want to know the options available for each 

keyword you can use the banana method.
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Time discretization schemes

• There are many time discretization schemes available in OpenFOAM®. 

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/ddtSchemes

• These are the time discretization schemes that you will use most of the times:

• steadyState: for steady state simulations (implicit/explicit).

• Euler: time dependent first order (implicit/explicit), bounded.

• backward: time dependent second order (implicit), bounded/unbounded.

• CrankNicolson: time dependent second order (implicit), bounded/unbounded.

• First order methods are bounded and stable, but diffusive. 

• Second order methods are accurate, but they might become oscillatory.

• At the end of the day, we always want a second order accurate solution.

• If you keep the CFL less than one when using the Euler method, numerical diffusion is not that 

much (however, we advise you to do your own benchmarking).
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Convective terms discretization schemes

• There are many convective terms discretization schemes available in OpenFOAM® (more than 

50 last time we checked). 

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/interpolation/surfaceInterpolation

• These are the convective discretization schemes that you will use most of the times:

• upwind: first order accurate.

• linearUpwind: second order accurate, bounded.

• linear: second order accurate, unbounded. 

• vanLeer: TVD, second order accurate, bounded.

• limitedLinear: second order accurate, unbounded, but more stable than pure linear. 

Recommended for LES simulations (kind of similar to the Fromm method).

• First order methods are bounded and stable but diffusive.

• Second order methods are accurate, but they might become oscillatory.

• At the end of the day, we always want a second order accurate solution.
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Convective terms discretization schemes

• When you use linearUpwind for div(phi,U), you need to tell OpenFOAM® how to compute the 

velocity gradient or grad(U):

gradSchemes

{

grad(U) cellMDLimited Gauss linear 1.0;

}

divSchemes

{

div(phi,U) Gauss linearUpwind grad(U);

}

• Same applies for scalars (e.g. k, epsilon, omega, T)



Finite Volume Method: A Crash introduction

Gradient terms discretization schemes

• There are many gradient discretization schemes available in OpenFOAM®.

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/gradSchemes

• These are the gradient discretization schemes that you will use most of the times:

• Gauss

• leastSquares

• To avoid overshoots or undershoots when computing the gradients, you can use gradient 

limiters. 

• Gradient limiters increase the stability of the method but add diffusion due to clipping. 

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/gradSchemes/limitedGradSchemes

• These are the gradient limiter schemes available in OpenFOAM®:

• cellLimited, cellMDLimited, faceLimited, faceMDLimited

• All of the gradient discretization schemes are at least second order accurate.
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Gradient terms discretization schemes

• These are the gradient limiter schemes available in OpenFOAM®:

cellMDLimited

cellLimited

faceMDLimited

faceLimited

Less diffusive

More diffusive

• Cell limiters will limit cell-to-cell values.

• Face limiters will limit face-to-cell values.

• The multi-directional (dimensional) limiters (cellMDLimited and faceMDLimited), will apply the 

limiter in each face direction separately.

• The standard limiters (cellLimited and faceLimited), will apply the limiter to all components of 

the gradient.

• The default method is the Minmod.
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Gradient terms discretization schemes

• The gradient limiter implementation in OpenFOAM®, uses a blending factor      . 

gradSchemes

{

default        cellMDLimited Gauss linear        ;

}

• Setting       to 0 is equivalent to turning off the gradient limiter. You gain accuracy but the solution 

might become unbounded.

• By setting the blending factor equal to 1 the limiter is always on. You gain stability but you give 

up accuracy (due to gradient clipping).

• If you set the blending factor to 0.5, you get the best of both worlds.

• You can use limiters with all gradient discretization schemes.

It can be any method

Gradient limiter scheme
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Laplacian terms discretization schemes

• There are many Laplacian terms discretization schemes available in OpenFOAM®.

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/snGradSchemes

• These are the Laplacian terms discretization schemes that you will use most of the times:

• orthogonal: mainly limited for hexahedral meshes with no grading (a perfect mesh). 

Second order accurate, bounded on perfect meshes, without non-orthogonal 

corrections.

• corrected: for meshes with grading and non-orthogonality. Second order accurate, 

bounded depending on the quality of the mesh, with non-orthogonal corrections.

• limited: for meshes with grading and non-orthogonality. Second order accurate, 

bounded depending on the quality of the mesh, with non-orthogonal corrections.

• uncorrected: usually used on bad quality meshes with grading and non-orthogonality. 

Second order accurate, without non-orthogonal corrections. Stable but more diffusive 

than the limited and corrected methods.
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Laplacian terms discretization schemes

• The limited method uses a blending factor      . 

laplacianSchemes

{

default        Gauss linear limited          ;

}

• Setting       to 1 is equivalent to using the corrected method. You gain accuracy, but the solution 

might become unbounded.

• By setting the blending factor equal to 0 is equivalent to using the uncorrected method. You 

give up accuracy but gain stability.

• If you set the blending factor to 0.5, you get the best of both worlds. In this case, the non-

orthogonal contribution does not exceed the orthogonal part. You give up accuracy but gain 

stability.

Interpolation method of the diffusion coefficient

Only option

Surface normal gradients discretization 
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Laplacian terms discretization schemes

• For meshes with non-orthogonality less than 75, you can set the blending factor to 1.

• For meshes with non-orthogonality between 75 and 85, you can set the blending factor to 0.5

• For meshes with non-orthogonality more than 85, it is better to get a better mesh.  But if you 

definitely want to use that mesh, you can set the blending factor to 0.333, and increase the 

number of non-orthogonal corrections.

• If you are doing LES or DES simulations, use a blending factor of 1 (this means that you need 

good meshes).

laplacianSchemes

{

default        Gauss linear limited          ;

}

Interpolation method of the diffusion coefficient

Only option

Surface normal gradients discretization 

• The limited method uses a blending factor      . 
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Laplacian terms discretization schemes

• The surface normal gradients terms usually use the same method as the one chosen for the 

Laplacian terms.

• For instance, if you are using the limited 1 method for the Laplacian terms, you can use the 

same method for snGradSchemes:

laplacianSchemes

{

default        Gauss linear limited 1;

}

snGradSchemes

{

default        limited 1;

}
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What method should I use?

ddtSchemes

{

default CrankNicolson 0;

}

gradSchemes

{

default cellLimited Gauss linear 1;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U)      Gauss linearUpwindV grad(U);

div(phi,omega) Gauss linearUpwind default;

div(phi,k) Gauss linearUpwind default;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1;

}

• This setup is recommended for most of            

the cases.

• It is equivalent to the default method you will find in 

commercial solvers.

• In overall, this setup is second order accurate and 

fully bounded.

• According to the quality of your mesh, you will need 

to change the blending factor of the 

laplacianSchemes and snGradSchemes

keywords.

• To keep temporal diffusion to a minimum, use a CFL 

number less than 2.

• If during the simulation the turbulence quantities 

become unbounded, you can safely change the 

discretization scheme to upwind.  After all, 

turbulence is diffusion.
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A very accurate but oscillatory numerics

ddtSchemes

{

default backward;

}

gradSchemes

{

default Gauss leastSquares;

}

divSchemes

{

default none;

div(phi,U)      Gauss linear;

div(phi,omega) Gauss linear;

div(phi,k) Gauss linear;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1;

}

• If you are looking for more accuracy, you can use 

this method.

• In overall, this setup is second order accurate but 

oscillatory.

• Use this setup with LES simulations or laminar 

flows with no complex physics, and meshes with 

overall good quality.

• Use this method with good quality meshes.
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A very stable but too diffusive numerics

ddtSchemes

{

default Euler;

}

gradSchemes

{

default cellLimited Gauss linear 1;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U)      Gauss upwind;

div(phi,omega) Gauss upwind;

div(phi,k) Gauss upwind;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 0.5;

}

• If you are looking for extra stability, you can use this 

method.

• This setup is very stable but too diffusive.

• This setup is first order in space and time.

• You can use this setup to start the solution in the 

presence of bad quality meshes or strong 

discontinuities.

• Remember, you can start using a first order method 

and then switch to a second order method.

• Start robustly, end with accuracy.



On the CFL number

application     pimpleFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 10;

deltaT 0.0001;

writeControl runTime;

writeInterval 0.1;

purgeWrite 0;

writeFormat ascii;

writePrecision 8;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

adjustTimeStep yes;

maxCo 2.0;

maxDeltaT 0.001;

• You can control the CFL number by changing the mesh cell 

size or changing the time-step size. 

• The easiest way is by changing the time-step size.

• If you refine the mesh, and you would like to have the same 

CFL number as the base mesh, you will need to decrease the 

time-step size.

• On the other side, if you coarse the mesh and you would like 

to have the same CFL number as the base mesh, you will 

need to increase the time-step size.

• The keyword deltaT controls the time-step size of the 

simulation (0.0001 seconds in this generic case).

• If you use a solver that supports adjustable time-step 

(adjustTimeStep), you can set the maximum CFL number 

and maximum allowable time-step using the keywords 

maxCo and maxDeltaT, respectively. 

How to control the CFL number



On the CFL number

• The option adjustTimeStep will automatically adjust the time 

step to achieve the maximum desired courant number 

(maxCo) or time-step size (maxDeltaT). 

• When any of these conditions is reached, the solver will stop 

scaling the time-step size.

• To use these features, you need to turn-on the option 

adjustTimeStep.

• Remember, the first time step of the simulation is done using 

the value defined with the keyword deltaT and then it is 

automatically scaled (up or down), to achieve the desired 

maximum values (maxCo and maxDeltaT). 

• It is recommended to start the simulation with a low time-step 

in order to let the solver scale-up the time-step size.

• If you want to change the values on-the-fly, you need to turn-

on the option runTimeModifiable.

• The feature adjustTimeStep is only present in the PIMPLE

family solvers, but it can be added to any solver by modifying 

the source code.

How to control the CFL number

application     pimpleFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 10;

deltaT 0.0001;

writeControl runTime;

writeInterval 0.1;

purgeWrite 0;

writeFormat ascii;

writePrecision 8;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

adjustTimeStep yes;

maxCo 2.0;

maxDeltaT 0.001;



On the CFL number

The output screen

Courant Number mean: 0.10863988 max: 0.73950028

deltaT = 0.001

Time = 30.000289542261612

PIMPLE: iteration 1

DILUPBiCG:  Solving for Ux, Initial residual = 0.003190933, Final residual = 1.0207483e-09, No Iterations 5

DILUPBiCG:  Solving for Uy, Initial residual = 0.0049140114, Final residual = 8.5790109e-10, No Iterations 5

DILUPBiCG:  Solving for Uz, Initial residual = 0.010705877, Final residual = 3.5464756e-09, No Iterations 4

GAMG:  Solving for p, Initial residual = 0.024334674, Final residual = 0.0005180308, No Iterations 3

GAMG:  Solving for p, Initial residual = 0.00051825089, Final residual = 1.6415538e-05, No Iterations 5

time step continuity errors : sum local = 8.768064e-10, global = 9.8389717e-11, cumulative = -2.6474162e-07

GAMG:  Solving for p, Initial residual = 0.00087813032, Final residual = 1.6222017e-05, No Iterations 3

GAMG:  Solving for p, Initial residual = 1.6217958e-05, Final residual = 6.4475277e-06, No Iterations 1

time step continuity errors : sum local = 3.4456296e-10, global = 2.6009599e-12, cumulative = -2.6473902e-07

ExecutionTime = 33091.06 s  ClockTime = 33214 s

fieldMinMax domainminandmax output:

min(p) = -0.59404715 at location (-0.019 0.02082288 0.072) on processor 1

max(p) = 0.18373302 at location (-0.02083962 -0.003 -0.136) on processor 1

min(U) = (0.29583255 -0.4833922 -0.0048229716) at location (-0.02259661 -0.02082288 -0.072) on processor 0

max(U) = (0.59710937 0.32913292 0.020043679) at location (0.11338793 -0.03267608 0.12) on processor 3

min(nut) = 1.6594481e-10 at location (0.009 -0.02 0.024) on processor 0

max(nut) = 0.00014588174 at location (-0.02083962 0.019 0.072) on processor 1

yPlus yplus output:

patch square y+ : min = 0.44603573, max = 6.3894913, average = 2.6323389

writing field yPlus

Courant number (mean and maximum values)

Current time-step

Simulation time

CPU time and wall clock

• This is the output screen of a solver supporting the option adjustTimeStep.

• In this case maxCo is equal 2 and maxDeltaT is equal to 0.001.  

• Notice that the solver reached the maximum allowable maxDeltaT.

One PIMPLE iteration (outer loop), this is equivalent to PISO



in every control volume         of the domain, a system of linear algebraic equations for 

the transported quantity       is assembled

Linear solvers in OpenFOAM®

• After spatial and temporal discretization and by using equation

• This system can be solved by using any iterative or direct method.



Linear solvers in OpenFOAM®

• The equation solvers, tolerances, and algorithms are controlled 
from the sub-dictionary solvers located in the fvSolution

dictionary file. 

• In the dictionary file fvSolution, and depending on the 

solver you are using you will find the additional sub-

dictionaries PISO, PIMPLE, and SIMPLE, which will be 

described later.

• In this dictionary is where we are telling OpenFOAM® how to 

crunch numbers.

• The solvers sub-dictionary specifies each linear-solver that is 

used for each equation being solved. 

• If you forget to define a linear-solver, OpenFOAM® will let you 

know what are you missing.

• The syntax for each entry within the solvers sub-dictionary 

uses a keyword that is the word relating to the variable being 

solved in the particular equation and the options related to the 

linear-solver.

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          PBiCGStab;

preconditioner      DILU;

tolerance       1e-08;

relTol          0;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

Linear solvers



Linear solvers in OpenFOAM®

• In this generic case, to solve the pressure (p) we are using the 

PCG method with the DIC preconditioner, an absolute tolerance

equal to 1e-06 and a relative tolerance relTol equal to 0. 

• The entry pFinal refers to the final pressure correction (notice 

that we are using macro syntax), and we are using a relative 

tolerance relTol equal to 0.  

• To solve the velocity field (U) we are using the PBiCGStab

method with the DILU preconditoner, an absolute tolerance

equal to  1e-08 and a relative tolerance relTol equal to 0. 

• The linear solvers will iterative until reaching any of the 

tolerance values set by the user or reaching a maximum value 

of iterations (optional entry). 

• FYI, solving for the velocity is relative inexpensive, whereas 

solving for the pressure is expensive.

• The pressure equation is particularly important as it governs 

mass conservation.

• If you do not solve the equations accurately enough (tolerance), 

the physics might be wrong. 

• Selection of the tolerance is of paramount importance.

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          PBiCGStab;

preconditioner      DILU;

tolerance       1e-08;

relTol          0;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

Linear solvers



Linear solvers in OpenFOAM®

• The linear solvers distinguish between symmetric matrices and 

asymmetric matrices. 

• The symmetry of the matrix depends on the structure of the 

equation being solved. 

• Pressure is a symmetric matrix and velocity is an asymmetric 

matrix.

• If you use the wrong linear solver, OpenFOAM® will complain 

and will let you know what options are valid.

• In the following error screen, we are using a symmetric solver 

for an asymmetric matrix,

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          PCG;

preconditioner      DILU;

tolerance       1e-08;

relTol          0;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

Linear solvers

–> FOAM FATAL IO ERROR :

Unknown asymmetric matrix solver PCG

Valid asymmetric matrix solvers are :

4 

( 

BICCG 

GAMG 

P

smoothSolver 

) 



Linear solvers in OpenFOAM®

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          PBiCGStab;

preconditioner      DILU;

tolerance       1e-08;

relTol          0;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

Linear solvers
• The linear solvers are iterative, i.e., they are based on reducing 

the equation residual over a succession of solutions. 

• The residual is a measure of the error in the solution so that the 

smaller it is, the more accurate the solution. 

• More precisely, the residual is evaluated by substituting the 

current solution into the equation and taking the magnitude of 

the difference between the left and right hand sides (L2-norm).

• It is also normalized to make it independent of the scale of the 

problem being analyzed. 



Linear solvers in OpenFOAM®

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          PBiCG;

preconditioner      DILU;

tolerance       1e-08;

relTol          0;

minIter 3;

maxIter 100;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

Linear solvers
• Before solving an equation for a particular field, the initial 

residual is evaluated based on the current values of the field.

• After each solver iteration the residual is re-evaluated. The 

solver stops if either of the following conditions are reached: 

• The residual falls below the solver tolerance, tolerance. 

• The ratio of current to initial residuals falls below the 

solver relative tolerance, relTol.

• The number of iterations exceeds a maximum number of 

iterations, maxIter. 

• The solver tolerance should represent the level at which the 

residual is small enough that the solution can be deemed 

sufficiently accurate. 

• The keyword maxIter is optional and the default value is 1000.

• The user can also define the minimum number of iterations 

using the keyword minIter. This keyword is optional and the 

default value is 0.
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Linear solvers
• These are the linear solvers available in OpenFOAM®:

• GAMG  

• PBiCG

• PBiCGStab

• PCG 

• smoothSolver

• diagonalSolver

→   Multigrid solver

→   Newton-Krylov solver

→   Newton-Krylov solver

→   Newton-Krylov solver

→    mooth solver

• You will find the source code of the linear solvers in the following directory:

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/lduMatrix/solvers
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Linear solvers

• DIC

• DILU

• FDIC

• GAMG

• diagonal

• noPreconditioner

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/lduMatrix/preconditioners

• When using Newton-Krylov solvers, you need to define preconditoners.

• These are the preconditioners available in OpenFOAM®:

• The smoothSolver solver requires the specification of a smoother.

• These are the smoothers available in OpenFOAM®:

• DIC

• DICGaussSeidel

• DILU

• DILUGaussSeidel

• FDIC

• GaussSeidel

• nonBlockingGaussSeidel

• symGaussSeidel

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/lduMatrix/smoothers



Linear solvers in OpenFOAM®

Linear solvers

• As you can see, when it comes to linear solvers there are many options and 

combinations available in OpenFOAM®.

• When it comes to choosing the linear solver, there is no written theory.  

• It is problem and hardware dependent (type of the mesh, physics involved, 

processor cache memory, network connectivity, partitioning method, and so 

on).

• Most of the times using the GAMG method (geometric-algebraic multi-grid), 

is the best choice for symmetric matrices (e.g., pressure).

• The GAMG method should converge fast  less than    iterations . If it’s 

taking more iterations, try to change the smoother.

• And if it is taking too long or it is unstable, use the PCG solver.

• When running with many cores (more than 1000), using the PCG might be a 

better choice.
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Linear solvers

• For asymmetric matrices, the PBiCGStab method with DILU preconditioner is a good 

choice.

• The smoothSolver solver with smoother GaussSeidel, also performs very well.

• If the PBiCGStab method with DILU preconditioner mysteriously crashed with an 

error related to the preconditioner, use the smoothSolver or change the 

preconditioner.

• But in general the PBiCGStab solver should be faster than the smoothSolver

solver.

• Remember, asymmetric matrices are assembled from the velocity (U), and the 

transported quantities (k, omega, epsilon, T, and so on).

• Usually, computing the velocity and the transported quantities is inexpensive and fast, 

so it is a good idea to use a tight tolerance (1e-8) for these fields.

• The diagonal solver is used for back-substitution, for instance, when computing 

density using the equation of state (we know p and T).



Linear solvers in OpenFOAM®

Linear solvers

• A few comments on the linear solvers residuals (we will talk about monitoring the 

residuals later on).

• Residuals are not a direct indication that you are converging to the right solution.

• The first time-steps the solution might not converge, this is acceptable.

• Also, you might need to use a smaller time-step during the first iterations to 

maintain solver stability.

• If the solution is not converging, try to reduce the time-step size.

Time = 50

Courant Number mean: 0.044365026 max: 0.16800273

smoothSolver:  Solving for Ux, Initial residual = 1.0907508e-09, Final residual = 1.0907508e-09, No Iterations 0

smoothSolver:  Solving for Uy, Initial residual = 1.4677462e-09, Final residual = 1.4677462e-09, No Iterations 0

DICPCG:  Solving for p, Initial residual = 1.0020944e-06, Final residual = 1.0746895e-07, No Iterations 1

time step continuity errors : sum local = 4.0107145e-11, global = -5.0601748e-20, cumulative = 2.637831e-18

ExecutionTime = 4.47 s  ClockTime = 5 s

fieldMinMax minmaxdomain output:

min(p) = -0.37208345 at location (0.025 0.975 0.5)

max(p) = 0.77640927 at location (0.975 0.975 0.5)

min(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

max(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5) Residuals
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Linear solvers

• So how do we set the tolerances?

• The pressure equation is particularly important, so we should resolve it accurately. 

Solving the pressure equation is the expensive part of the whole iterative process.

• For the pressure equation you can start the simulation with a tolerance equal to 1e-6 

and relTol equal to 0.01.  After a while you change these values to 1e-6 and 0.0, 

respectively.

• If the solver is too slow, you can change the convergence criterion to 1e-4 and relTol

equal to 0.05.  You usually will do this during the first iterations.

p

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.01;

}

p

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.0;

}

Loose tolerance Tight tolerance
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Linear solvers

• For the velocity field (U) and the transported quantities (asymmetric matrices), you 

can use the following criterion.

• Solving for these variables is relative inexpensive, so you can start right away with a 

tight tolerance

U

{

solver           PBiCGStab;

preconditioner DILU;

tolerance        1e-8;

relTol          0.01;

}

Loose tolerance

U

{

solver           PBiCGStab;

preconditioner DILU;

tolerance        1e-8;

relTol          0.0;

}

Tight tolerance
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Linear solvers

• It is also a good idea to set the minimum number of iterations (minIter) to 3.

• If your solver is doing too many iterations, you can set the maximum number of 

iterations (maxIter).  

• But be careful, if the solver reach the maximum number of iterations it will stop, we 

are talking about unconverged iterations.

• Setting the maximum number of iterations is specially useful during the first time-

steps where the linear solver takes longer to converge.

• You can set minIter and maxIter in all symmetric and asymmetric linear solvers.

p

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.01;

minIter 3;

maxIter 100;

}



Linear solvers in OpenFOAM®

Linear solvers

• When you use the PISO or PIMPLE method, you also have the option to set the 

tolerance for the final pressure corrector step (pFinal).  

• By proceeding in this way, you can put all the computational effort only in the last 

corrector step (pFinal). 

• For all the intermediate corrector steps, you can use a more relaxed convergence 

criterion.

• For example, you can use the following solver and tolerance criterion for all the 

intermediate corrector steps (p), then in the final corrector step (pFinal) you tight the 

solver tolerance.

p

{

solver           PCG;

preconditioner DIC;

tolerance        1e-4;

relTol          0.05;

}

pFinal

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.0;

}

Loose tolerance for p Tight tolerance for pFinal
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Linear solvers

Courant Number mean: 0.10556573 max: 0.65793603

deltaT = 0.00097959184

Time = 10

PIMPLE: iteration 1

DILUPBiCG:  Solving for Ux, Initial residual = 0.0024649332, Final residual = 2.3403547e-09, No Iterations 4

DILUPBiCG:  Solving for Uy, Initial residual = 0.0044355904, Final residual = 1.8966277e-09, No Iterations 4

DILUPBiCG:  Solving for Uz, Initial residual = 0.010100894, Final residual = 1.4724403e-09, No Iterations 4

GAMG:  Solving for p, Initial residual = 0.018497918, Final residual = 0.00058090899, No Iterations 3

GAMG:  Solving for p, Initial residual = 0.00058090857, Final residual = 2.5748489e-05, No Iterations 5

time step continuity errors : sum local = 1.2367812e-09, global = 2.8865505e-11, cumulative = 1.057806e-08

GAMG:  Solving for p, Initial residual = 0.00076032002, Final residual = 2.3965621e-05, No Iterations 3

GAMG:  Solving for p, Initial residual = 2.3961044e-05, Final residual = 6.3151172e-06, No Iterations 2

time step continuity errors : sum local = 3.0345314e-10, global = -3.0075104e-12, cumulative = 1.0575052e-08

DILUPBiCG:  Solving for omega, Initial residual = 0.00073937735, Final residual = 1.2839908e-10, No Iterations 4

DILUPBiCG:  Solving for k, Initial residual = 0.0018291502, Final residual = 8.5494234e-09, No Iterations 3

ExecutionTime = 29544.18 s  ClockTime = 29600 s

pFinal

p

p

• When you use the PISO or PIMPLE method, you also have the option to set the 

tolerance for the final pressure corrector step (pFinal).  

• By proceeding in this way, you can put all the computational effort only in the last 

corrector step (pFinal in this case). 

• For all the intermediate corrector steps (p), you can use a more relaxed convergence 

criterion.

• If you proceed in this way, it is recommended to do at least 2 corrector steps 

(nCorrectors).

1

2

nCorrectors
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Linear solvers

• As we are solving a sparse matrix, the more diagonal the matrix is, the best the 

convergence rate will be. 

• So it is highly advisable to use the utility renumberMesh before running the 

simulation.

• $> renumberMesh -overwrite

• The utility renumberMesh can dramatically increase the speed of the linear solvers, 

specially during the firsts iterations.

• You will find the source code and the master dictionary in the following directory:

• $WM_PROJECT_DIR/applications/utilities/mesh/manipulation/renumberMesh
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Linear solvers

Matrix structure plot before reordering Matrix structure plot after reordering

Note:

This is the actual pressure matrix from an OpenFOAM® model case

• The idea behind reordering is to make the matrix more diagonally dominant, 

therefore, speeding up the iterative solver.
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On the multigrid solvers

• The development of multigrid solvers (GAMG in OpenFOAM®), together with the 

development of high resolution TVD schemes and parallel computing, are among the 

most remarkable achievements of the history of CFD.

• Most of the time using the GAMG linear solver is fine.  However, if you see that the 

linear solver is taking too long to converge or is converging in more than 100 

iterations, it is better to use the PCG linear solver.

• Particularly, we have found that the GAMG linear solver in OpenFOAM® does not 

perform very well when you scale your computations to more than 500 processors.

• Also, we have found that for some multiphase cases the PCG method outperforms 

the GAMG. 

• But again, this is problem and hardware dependent. 

• As you can see, you need to always monitor your simulations (stick to the screen for 

a while). Otherwise, you might end-up using a solver that is performing poorly.  And 

this translate in increased computational time and costs.
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On the multigrid solvers tolerances

• If you go for the GAMG linear solver for symmetric matrices (e.g., pressure), the 

following tolerances are acceptable for most of the cases.

p

{

solver           GAMG;

tolerance        1e-6;

relTol          0.01;

smoother         GaussSeidel;

nPreSweeps       0;

nPostSweeps     2;

cacheAgglomeration on;

agglomerator     faceAreaPair;

nCellsInCoarsestLevel 100;

mergeLevels      1;

minIter 3;

}

pFinal

{

solver           GAMG;

tolerance        1e-6;

relTol          0;

smoother         GaussSeidel;

nPreSweeps       0;

nPostSweeps     2;

cacheAgglomeration on;

agglomerator     faceAreaPair;

nCellsInCoarsestLevel 100;

mergeLevels      1;

minIter 3;

}

Loose tolerance for p Tight tolerance for pFinal

NOTE:

The GAMG parameters are not optimized, that is up to you. 

Most of the times is safe to use the default parameters.
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Linear solvers tolerances – Steady simulations

• The previous tolerances are fine for unsteady solver.

• For extremely coupled problems you might need to have tighter tolerances.

• You can use the same tolerances for steady solvers. However, it is acceptable to use 

a looser criterion.

• You can also set the convergence controls based on residuals of fields. The controls 

are specified in the residualControls sub-dictionary of the dictionary file 
fvSolution. 

SIMPLE

{

nNonOrthogonalCorrectors 2;

residualControl

{

p    1e-4;

U    1e-4;

}

}

Residual control for every 

field variable you are solving
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• Choose any tutorial or a case of your own and do a benchmarking of the linear solvers. 

• Using your benchmarking case, find the optimal parameters for the GAMG solver.

• Use different linear solvers for p and pFinal (symmetric matrices). Do you see any advantage?

• Do a benchmarking of the different reordering methods available

(Hint: look for the dictionary renumberMeshDict)

• Compare the performance of the asymmetric solvers PBiCG, PBiCGStab, and smoothSolver. Do you see 

any significant difference between both solvers?

• Is it possible to switch between segregated and coupled linear solvers on-the-fly?

• In what files are located the controls of the SIMPLE, PISO, and PIMPLE methods?

(Hint: for example, using grep look for the keyword nCorrectors in the directory src/finiteVolume)

Exercises



Pressure-Velocity coupling in OpenFOAM®

• To solve the Navier-Stokes equations we need to use a solution 

approach able to deal with the nonlinearities of the governing 

equations and with the coupled set of equations.

Additional equations deriving from models, such as, volume fraction, 

chemical reactions, turbulence modeling, combustion, multi-species, etc.
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• Many numerical methods exist to solve the Navier-Stokes equations, just to name a few:

• Pressure-correction methods (Predictor-Corrector type).

• SIMPLE, SIMPLEC, SIMPLER, PISO.

• Projection methods.

• Fractional step (operator splitting), MAC, SOLA.

• Density-based methods and preconditioned solvers.

• Riemann solvers, ROE, HLLC, AUSM+, ENO, WENO.

• Artificial compressibility methods.

• Artificial viscosity methods.

• The most widely used approaches for solving the NSE are:

• Pressure-based approach (predictor-corrector).

• Density-based approach.

• Historically speaking, the pressure-based approach was developed for low-speed 

incompressible flows, while the density-based approach was mainly developed for high-speed 

compressible flows.

• However, both methods have been extended and reformulated to solve and operate for a wide 

range of flow conditions beyond their original intent.
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• Pressure-based methods are the default option in most of CFD solvers (OpenFOAM® 

included).

• Pressure-based methods are intrinsically implicit.

• Two pressure-based solution methods are generally available, namely:

• Segregated method.

• Coupled method.

• In the pressure-based approach the velocity field is obtained from the momentum equations 

(there is some mathematical manipulation involved).

• In the segregated algorithm, the individual governing equations for the primitive variables are 

solved one after another.

• The coupled approach solves the continuity, momentum, and energy equation simultaneously, 

that is, coupled together. 

• The segregated algorithm is memory-efficient, since the discretized equations need only be 

stored in the memory one at a time.

• However, the solution convergence is relatively slow (in comparison to coupled solvers) as the 

equations are solved one at a time.

• In OpenFOAM®, you will find segregated pressure-based solvers.

• But coupled pressure-based solvers are under active development.
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• In OpenFOAM®, you will find segregated pressure-based solvers.

• The following methods are available: 

• SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)

• SIMPLEC (SIMPLE Corrected/Consistent)

• PISO (Pressure Implicit with Splitting Operators)

• Additionally, you will find something called PIMPLE, which is an hybrid 

between SIMPLE and PISO.  This method is formulated for very large time-

steps and pseudo-transient simulations.

• You will find the solvers in the following directory:

• $WM_PROJECT_DIR/applications/solvers
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• In OpenFOAM®, the PISO and PIMPLE methods are formulated for 

unsteady simulations.

• Whereas, the SIMPLE and SIMPLEC methods are formulated for steady 

simulations.

• If conserving time is not a priority, you can use the PIMPLE method for 

pseudo transient simulations. 

• The pseudo transient PIMPLE method is more stable than the SIMPLE

method, but it has a higher computational cost.

• Depending on the method and solver you are using, you will need to define 
a specific sub-dictionary in the dictionary file fvSolution.

• For instance, if you are using the PISO method, you will need to specify the 

PISO sub-dictionary.

• And depending on the method, each sub-dictionary will have different 

entries.



Pressure-Velocity coupling in OpenFOAM®

• SIMPLE

• S. V. Patankar and  . B.  palding, “A calculation procedure for heat, mass and 

momentum transfer in three-dimensional parabolic flows”, Int. J. Heat Mass Transfer, 

15, 1787-1806 (1972).

• SIMPLE-C

• J. P. Van Doormaal and G. D. Raithby, “Enhancements of the  IMPLE method for 

predicting incompressible fluid flows”, Numer. Heat Transfer, 7, 147-163 (1984).

• PISO

• R. I. Issa, “ olution of the implicitly discretized fluid flow equations by operator-

splitting”, J. Comput. Phys., 62, 40-65 (1985).

• PIMPLE

• Unknown origins.

• Useful reference:

• I. E. Barton, “ omparison of  IMPLE and PI  -type algorithms for transient flows, Int. 

J. Numerical methods in fluids, 26,459-483 (1998).

On the origins of the methods
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Pressure-velocity coupling using 

the SIMPLE method

Check convergence STOP

Solve additional transport equations

Correct pressure and velocities 
p = p* + p'  
u = u* + u' 
v = v* + v' 

w = w* + w'

Initial guess p*, u*, v*, w*

YesNo

Solve Poisson equation for the 
pressure correction p'

Compute intermediate velocities 
(divergent free)  

u*, v*, w*

p* = p 
u* = u 
v* = v 
w* = w

Check convergence STOP

Solve additional transport equations

Correct pressure and velocities 
p** = p* + p'  
u** = u* + u' 
v** = v* + v' 

w** = w* + w'

Initial guess p*, u*, v*, w*

YesNo

Solve Poisson equation for the 
pressure correction p'

Compute intermediate velocities 
(divergent free)  

u*, v*, w*

p* = p 
u* = u 
v* = v 
w* = w

Solve second pressure correction 
equation p''

Correct pressure and velocities 
p*** = p** + p''  
u*** = u** + u'' 
v*** = v** + v'' 

w*** = w** + w''

p = p*** 
u = u*** 
v = v*** 
w = w***

Pressure-velocity coupling using 

the PISO method



Pressure-Velocity coupling in OpenFOAM®

The SIMPLE sub-dictionary

SIMPLE

{

nNonOrthogonalCorrectors    1;

}

• This sub-dictionary is located in the dictionary file fvSolution.

• It controls the options related to the SIMPLE pressure-velocity coupling method.

• The SIMPLE method only makes 1 correction. 

• An additional correction to account for mesh non-orthogonality is available when using the 

SIMPLE method. The number of non-orthogonal correctors is specified by the 

nNonOrthogonalCorrectors keyword. 

• The number of non-orthogonal correctors is chosen according to the mesh quality. For orthogonal 

meshes you can use 0, whereas, for non-orthogonal meshes it is recommended to do at least 1 

correction. 

• However, it is strongly recommended to do are least 1 non-orthogonal correction.



Pressure-Velocity coupling in OpenFOAM®

The SIMPLE sub-dictionary

• You can use the optional keyword consistent to enable or disable the SIMPLEC method. 

• This option is disable by default.

• In the SIMPLEC method, the cost per iteration is marginally higher but the convergence rate is 

better so the number of iterations can be reduce.

• The SIMPLEC method relaxes the pressure in a consistent manner and additional relaxation of 

the pressure is not generally necessary. 

• In addition, convergence of the p-U system is better and still is reliable with less aggressive 

relaxation of the momentum equation.

SIMPLE

{

consistent yes;

nNonOrthogonalCorrectors    1;

}



Pressure-Velocity coupling in OpenFOAM®

The SIMPLE sub-dictionary

• Typical under-relaxation factors for the SIMPLE and SIMPLEC methods.  

• Remember the under-relaxation factors are problem dependent.

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U    0.7;

k 0.7; 

omega 0.7;

}

}

relaxationFactors

{

equations

{

U    0.9;

k 0.9; 

omega 0.9;

}

}

SIMPLE SIMPLEC



Pressure-Velocity coupling in OpenFOAM®

The SIMPLE sub-dictionary

• If you are planning to use the SIMPLEC

method, we recommend you to use 

under-relaxation factors are little bit more 

loose that the commonly recommended 

values.

• If during the simulation you still have 

some stability problems, try to reduce all 

the values to 0.5.

• Remember the under-relaxation factors 

are problem dependent.

• It is also recommended to start the 

simulation with low values (about 0.3), 

and then increase the values slowly up to 

0.7.

relaxationFactors

{

fields

{

p 0.7;

}

equations

{

p 0.7;

U    0.7;

k 0.7; 

omega 0.7;

}

}

SIMPLEC
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The SIMPLE loop in OpenFOAM®

fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

U = HbyA – rAU*fvc::grad(p);



Pressure-Velocity coupling in OpenFOAM®

The PISO sub-dictionary

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

• This sub-dictionary is located in the dictionary file fvSolution.

• It controls the options related to the PISO pressure-velocity coupling method.

• The PISO method requires at least one correction (nCorrectors).  To improve accuracy and 

stability you can increase the number of corrections. 

• For good accuracy and stability, it is recommended to use 2 nCorrectors. 

• An additional correction to account for mesh non-orthogonality is available when using the PISO 

method. The number of non-orthogonal correctors is specified by the 

nNonOrthogonalCorrectors keyword. 

• The number of non-orthogonal correctors is chosen according to the mesh quality. For orthogonal 

meshes you can use 0, whereas, for non-orthogonal meshes it is recommended to do at least 1 

correction. 
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The PISO sub-dictionary

PISO

{

momentumPredictor yes;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

• You can use the optional keyword momentumPredictor to enable or disable the momentum 

predictor step. 

• The momentum predictor helps in stabilizing the solution as we are computing better 

approximations for the velocity. 

• It is clear that this will add an extra computational cost, which is negligible. 

• In most of the solvers, this option is enabled by default.

• It is recommended to use this option for highly convective flows (high Reynolds number). If you 

are working with low Reynolds flow or creeping flows it is recommended to turn it off.

• Remember, when you enable the option momentumPredictor, you will need to define the linear 

solvers for the variables .*Final (we are using regex notation).
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The PISO loop in OpenFOAM®

fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

U = HbyA – rAU*fvc::grad(p);



Pressure-Velocity coupling in OpenFOAM®

The PIMPLE sub-dictionary

PIMPLE

{

momentumPredictor yes;

nOuterCorrectors 1;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

• This sub-dictionary is located in the dictionary file fvSolution.

• It controls the options related to the PIMPLE pressure-velocity coupling method.

• The PIMPLE method works very similar to the PISO method. In fact, setting the keyword 

nOuterCorrectors to 1 is equivalent to running using the PISO method. 

• The keyword nOuterCorrectors controls a loop outside the PISO loop.

• To gain more stability, especially when using large time-steps, you can use more outer correctors 

(nOuterCorrectors). Have in mind that this will highly increase the computational cost.

• Also, if you use under-relaxation factors, your solution is not anymore time accurate.  You are 

working in pseudo-transient simulations mode.



• A few examples of unsteady applications:

Multiphase flow
www.wolfdynamics.com/wiki/FVM_uns/ani3.gif

Unsteady and steady simulations

Vortex shedding
www.wolfdynamics.com/wiki/FVM_uns/ani1.gif

Buoyant flow
www.wolfdynamics.com/wiki/FVM_uns/ani2.gif

http://www.wolfdynamics.com/wiki/FVM_uns/ani3.gif
http://www.wolfdynamics.com/wiki/FVM_uns/ani1.gif
http://www.wolfdynamics.com/wiki/FVM_uns/ani2.gif


• A few examples of unsteady applications:

Unsteady and steady simulations

Turbulent flows - SRS
www.wolfdynamics.com/wiki/FVM_uns/ani4.gif

Sliding grids – Continuous stirred tank 

reactor
www.wolfdynamics.com/wiki/FVM_uns/ani5.gif

Marine applications - Sea keeping
www.wolfdynamics.com/wiki/FVM_uns/ani6.gif

http://www.wolfdynamics.com/wiki/FVM_uns/ani1.gif
http://www.wolfdynamics.com/wiki/FVM_uns/ani1.gif
http://www.wolfdynamics.com/wiki/FVM_uns/ani6.gif


Unsteady and steady simulations

• Nearly all flows in nature and industrial applications are unsteady (also 

known as transient or time-dependent).

• Unsteadiness is due to:

• Instabilities.

• Non-equilibrium initial conditions.

• Time-dependent boundary conditions.

• Source terms.

• Chemical reactions.

• Moving or deforming bodies.

• Turbulence.

• Buoyancy.

• Convection.

• Multiple phases



How to run unsteady simulations in OpenFOAM®?

Unsteady and steady simulations

• Select the time step. The time-step must be chosen in such a way that it resolves the time-dependent features 

and maintains solver stability.

• Select the temporal discretization scheme.

• Set the tolerance (absolute and/or relative) of the linear solvers.

• Monitor the CFL number. 

• Monitor the stability and boundedness of the solution.

• Monitor a quantity of interest.

• And of course, you need to save the solution with a given frequency.

• Have in mind that unsteady simulations generate a lot of data.

• End time of the simulation?, it is up to you.  

• In the controlDict dictionary you need to set runtime parameters and general instructions on how to run the 

case (such as time step and maximum CFL number).   You also set the saving frequency.

• In the fvSchemes dictionary you need to set the temporal discretization scheme.

• In the fvSolution dictionary you need to set the linear solvers.

• Also, you will need to set the number of corrections of the velocity-pressure coupling method used (e.g. PISO
or PIMPLE), this is done in the fvSolution dictionary.

• Additionally, you may set functionObjects in the controlDict dictionary.  The functionObjects are used to 

do sampling, probing and co-processing while the simulation is running.



How to run unsteady simulations in OpenFOAM®?

Unsteady and steady simulations

• The controlDict dictionary contains runtime simulation 

controls, such as, start time, end time, time step, saving 

frequency and so on. Most of the entries are self-explanatory.

• This generic case starts from time 0 (startTime), and it will run 

up to 10 seconds (endTime). 

• It will write the solution every 0.1 seconds (writeInterval) of 

simulation time (runTime). 

• The time step of the simulation is 0.0001 seconds (deltaT). 

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat) with a 

precision of 8 digits (writePrecision). 

• And as the option runTimeModifiable is on (yes), we can 

modify all these entries while we are running the simulation.

startFrom       latestTime;

startTime       0;

stopAt          endTime; 

endTime         10;

deltaT          0.0001;

writeControl    runTime;

writeInterval   0.1; 

purgeWrite      0;

writeFormat     ascii;

writePrecision  8;

writeCompression off; 

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

adjustTimeStep  yes;

maxCo           2.0;

maxDeltaT       0.001;



How to run unsteady simulations in OpenFOAM®?

Unsteady and steady simulations

startFrom       latestTime;

startTime       0;

stopAt          endTime; 

endTime         10;

deltaT          0.0001;

writeControl    runTime;

writeInterval   0.1; 

purgeWrite      0;

writeFormat     ascii;

writePrecision  8;

writeCompression off; 

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

adjustTimeStep  yes;

maxCo           2.0;

maxDeltaT       0.001;

• In this generic case, the solver supports adjustable time-step 

(adjustTimeStep).

• The option adjustTimeStep will automatically adjust the time 

step to achieve the maximum desired courant number (maxCo) 

or time-step size (maxDeltaT). 

• When any of these conditions is reached, the solver will stop 

scaling the time-step size.

• Remember, the first time step of the simulation is done using the 

value defined with the keyword deltaT and then it is 

automatically scaled (up or down), to achieve the desired 

maximum values (maxCo and maxDeltaT). 

• It is recommended to start the simulation with a low time-step in 

order to let the solver scale-up the time-step size.

• The feature adjustTimeStep is only present in the PIMPLE

family solvers, but it can be added to any solver by modifying 

the source code.

• If you are planning to use large time steps (CFL much higher 

than 1), it is recommended to do at least 3 correctors steps 

(nCorrectors) in PISO/PIMPLE loop.



How to run unsteady simulations in OpenFOAM®?

Unsteady and steady simulations

startFrom       latestTime;

startTime       0;

stopAt          endTime; 

endTime         10;

deltaT          0.0001;

writeControl adjustableRunTime;

writeInterval   0.1; 

purgeWrite     0;

writeFormat     ascii;

writePrecision  8;

writeCompression off; 

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

adjustTimeStep  yes;

maxCo           2.0;

maxDeltaT       0.001;

• A word of caution about adjustable time-step (adjustTimeStep).

• This option will automatically adjust the time step to achieve the 

maximum desired courant number (maxCo) or time-step size 

(maxDeltaT). 

• If the maxDeltaT condition is not reached, the solver will adapt 

the time-step to achieve the target maxCo, and as the time-step 

is not fixed this might introduce spurious oscillations in the 

solution.

• It is recommended to use this option at the beginning of the 

simulation and as soon as the solution stabilizes try fixed the 

time-step.

• Also, try to avoid using adjustable time step together with the 

option adjustableRunTime.

• The option adjustableRunTime will adjust the time-step to save 

the solution at the precise write intervals, and this might 

introduce numerical oscillations due to the fact that the time-step 

is changing.

• Also, the fact that you are using an adaptive time-step can have 

a negative effect when doing signal analysis.
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Unsteady and steady simulations

ddtSchemes

{

default backward;

}

gradSchemes

{

default Gauss linear;

grad(p)         Gauss linear;

}

divSchemes

{

default none;

div(phi,U)      Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

• The fvSchemes dictionary contains the information related to 

time discretization and spatial discretization schemes.

• In this generic case we are using the backward method for time 

discretization (ddtSchemes). 

• This scheme is second order accurate but oscillatory. 

• The parameters can be changed on-the-fly.
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Unsteady and steady simulations

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

“ .*”

{

solver          smoothSolver;

smoother        symGaussSeidel;

tolerance       1e-08;

relTol          0;

}

}  

PIMPLE

{

nOuterCorrectors 1;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

• The fvSolution dictionary contains the instructions of how to 

solve each discretized linear equation system.

• As for the controlDict and fvSchemes dictionaries, the 

parameters can be changed on-the-fly.

• In this generic case, to solve the pressure (p) we are using the 

PCG method with the DIC precondtioner, an absolute tolerance

equal to 1e-06 and a relative tolerance relTol equal to 0. 

• The entry pFinal refers to the final pressure correction (notice 

that we are using macro syntax), and we are using a relative 

tolerance relTol equal to 0.  

• To solve U and UFinal (U.* using regex), we are using the 

smoothSolver method with an absolute tolerance equal to 1e-

08 and a relative tolerance relTol equal to 0. 

• The solvers will iterative until reaching any of the tolerance 

values set by the user or reaching a maximum value of 

iterations (optional entry). 

• FYI, solving for the velocity is relative inexpensive, whereas 

solving for the pressure is expensive.
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Unsteady and steady simulations

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

“ .*”

{

solver          smoothSolver;

smoother        symGaussSeidel;

tolerance       1e-08;

relTol          0;

}

}  

PIMPLE

{

nOuterCorrectors 1;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

• The fvSolution dictionary also contains the PIMPLE and 

PISO sub-dictionaries.

• The PIMPLE sub-dictionary contains entries related to the 

pressure-velocity coupling method (the PIMPLE method).

• Setting the keyword nOuterCorrectors to 1 is equivalent to 

running using the PISO method.

• Remember, you need to do at least one PISO loop 

(nCorrectors).

• To gain more stability, especially when using large time-steps, 

you can use more outer correctors (nOuterCorrectors).

• Adding corrections increase the computational cost 

(nOuterCorrectors and nCorrectors). 

• In this generic case, we are using 1 outer correctors 

(nOuterCorrectors), 2 inner correctors or PISO correctors 

(nCorrectors), and 1 correction due to non-orthogonality 

(nNonOrthogonalCorrectors). 

• If you are using large time steps (CFL much higher than 1), it is 

recommended to do at least 3 correctors steps (nCorrectors) in 

PISO/PIMPLE loop.
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Unsteady and steady simulations

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          smoothSolver;

smoother        symGaussSeidel;

tolerance       1e-08;

relTol          0;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

• If you use the PISO method for pressure-velocity coupling, you 

will need to define the PISO sub-dictionary.

• In this generic case we are doing two PISO corrections and one 

orthogonal correction.

• You need to do at least one PISO loop (nCorrectors).

• If you are using large time steps (CFL much higher than 1), it is 

recommended to do at least 3 correctors steps (nCorrectors) in 

PISO/PIMPLE loop.



• Remember, when running unsteady simulations the time-step must be chosen in such a way 

that it resolves the time-dependent features and maintains solver stability.

When you use large time steps you do 

not resolve well the physics

By using a smaller time step you 

resolve better the physics and you gain 

stability

Unsteady and steady simulations

How to choose the time-step in unsteady simulations and monitor the solution



• When running unsteady simulations, it is highly advisable to monitor a quantity of interest.

• The quantity of interest can fluctuate in time, this is an indication of unsteadiness.

Unsteady and steady simulations

Monitoring unsteady simulations



Unsteady and steady simulations

Sampling unsteady simulations

• Remember to choose wisely where to do the sampling.



• When you run unsteady simulations, flow variables can stop changing with time.  When this 

happens, we say we have arrived to a steady state.

• Remember this is the exception rather than the rule.

• If you use a steady solver, you will arrive to the same solution (maybe not), in much less 

iterations.

Unsteady and steady simulations

I am running an unsteady simulations and the QOI does not change



What about steady simulations?

Unsteady and steady simulations

• First of all, steady simulations are a big simplification of reality. 

• Steady simulations is a trick used by CFDers to get fast outcomes with results that might be 

even more questionable. 

• As mentioned before, most of the flows you will encounter are unsteady.

• In steady simulations we made two assumptions:

• We ignore unsteady fluctuations.  That is, we neglect the temporal derivative in the 

governing equations.

• We perform time averaging when dealing with stationary turbulence (RANS modeling)

• The advantage of steady simulations is that they require low computational resources, give fast 

outputs, and are easier to post-process and analyze.

• In OpenFOAM® is possible to run steady simulation.

• To do so, you need to use the appropriate solver and use the right discretization scheme.

• As you are not solving the temporal derivative, you do not need to set the time step.  However, 

you need to tell OpenFOAM®  how many iterations you would like to run.

• You can also set the residual controls (residualControl), in the fvSolution dictionary file. 

You set the residualControl in the SIMPLE sub-dictionary.

• If you do not set the residual controls, OpenFOAM® will run until reaching the maximum 

number of iterations (endTime).



• You also need to set the under-relaxation factors.  

• The under-relaxation factors control the change of the variable     .

• If                we are using under-relaxation. 

• Under-relaxation is a feature typical of steady solvers using the SIMPLE method.

• If you do not set the under-relaxation factors, OpenFOAM® will use the default hard-wired 

values (1.0 for all field variables or no under-relaxation). 

• These are the under-relaxation factors commonly used with SIMPLE (industry standard),

What about steady simulations?

Unsteady and steady simulations

• According to the physics involved you will need to add more under-relaxation factors.

• Finding the right under-relaxation factors involved experience and a lot of trial and error.

p           0.3;

U           0.7;

k           0.7;

omega       0.7;

epsilon       0.7;



What about steady simulations?

0 1

relaxationFactors

Velocity

• Selecting the under-relaxation factors it is kind of equivalent to selecting the 

right time step.

Unsteady and steady simulations

• The under-relaxation factors are bounded between 0 and 1.

Stability



How to run steady simulations in OpenFOAM®?

Unsteady and steady simulations

• In the controlDict dictionary you need to set runtime parameters and 

general instructions on how to run the case (such as the number of iterations 

to run). You also set the saving frequency.

• In the fvSchemes dictionary you need to set the temporal discretization 

scheme, for steady simulations it must be steadyState.

• In the fvSolution dictionary you need to set the linear solvers, under-

relaxation factors and residual controls.

• Also, you will need to set the number of corrections of the velocity-pressure 
coupling method used (e.g. SIMPLE), this is done in the fvSolution

dictionary.

• Additionally, you may set functionObjects in the controlDict dictionary.  

The functionObjects are used to do sampling, probing and co-processing 

while the simulation is running.



How to run steady simulations in OpenFOAM®?

Unsteady and steady simulations

startFrom       latestTime;

startTime       0;

stopAt          endTime; 

endTime         10000;

deltaT          1;

writeControl    runTime;

writeInterval   100; 

purgeWrite      10;

writeFormat     ascii;

writePrecision  8;

writeCompression off; 

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

• The controlDict dictionary contains runtime simulation 

controls, such as, start time, end time, time step, saving 

frequency and so on. Most of the entries are self-explanatory.

• As we are doing a steady simulation, let us talk about iterations 

instead of time (seconds).

• This generic case starts from iteration 0 (startTime), and it will 

run up to 10000 iterations (endTime). 

• It will write the solution every 100 iterations (writeInterval) of 

simulation time (runTime). 

• It will advance the solution one iteration at a time (deltaT). 

• It will keep the last 10 saved solutions (purgeWrite).

• It will save the solution in ascii format (writeFormat) with a 

precision of 8 digits (writePrecision). 

• And as the option runTimeModifiable is on (true), we can 

modify all these entries while we are running the simulation.
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Unsteady and steady simulations

ddtSchemes

{

default steadyState;

}

gradSchemes

{

default Gauss linear;

grad(p)         Gauss linear;

}

divSchemes

{

default none;

div(phi,U)     bounded Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

• The fvSchemes dictionary contains the information related to 

time discretization and spatial discretization schemes.

• In this generic case and as we are interested in using a steady 

solver, we are using the steadyState method for time 

discretization (ddtSchemes). 

• It is not a good idea to switch between steady and unsteady 

schemes on-the-fly.

• For steady state cases, the bounded form can be applied to the 

divSchemes, in this case, div(phi,U) bounded Gauss linear.

• This adds a linearized, implicit source contribution to the 

transport equation of the form,

• This term removes a component proportional to the continuity 

error. This acts as a convergence aid to tend towards a bounded 

solution as the calculation proceeds. 

• At convergence, this term becomes zero and does not 

contribute to the final solution.
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Unsteady and steady simulations

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

U

{

solver          smoothSolver;

smoother        symGaussSeidel;

tolerance       1e-08;

relTol          0;

}

}  

SIMPLE

{

nNonOrthogonalCorrectors    2;

residualControl

{

p    1e-4;

U    1e-4;

}

}

• The fvSolution dictionary contains the instructions of how to 

solve each discretized linear equation system.

• As for the controlDict and fvSchemes dictionaries, the 

parameters can be changed on-the-fly.

• In this generic case, to solve the pressure (p) we are using the 

PCG method with the DIC preconditioner, an absolute tolerance

equal to 1e-06 and a relative tolerance relTol equal to 0. 

• To solve U we are using the smoothSolver method with an 

absolute tolerance equal to 1e-08 and a relative tolerance 

relTol equal to 0. 

• The solvers will iterative until reaching any of the tolerance 

values set by the user or reaching a maximum value of 

iterations (optional entry). 



How to run steady simulations in OpenFOAM®?

Unsteady and steady simulations

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

U

{

solver          smoothSolver;

smoother        symGaussSeidel;

tolerance       1e-08;

relTol          0;

}

}  

SIMPLE

{

nNonOrthogonalCorrectors    2;

residualControl

{

p    1e-4;

U    1e-4;

}

}

• The fvSolution dictionary also contains the SIMPLE sub-

dictionary .

• The SIMPLE sub-dictionary contains entries related to the 

pressure-velocity coupling method (the SIMPLE method).

• Increasing the number of nNonOrthogonalCorrectors 

corrections will add more stability but at a higher computational 

cost.

• Remember, nNonOrthogonalCorrectors is used to improve 

the gradient computation due to mesh quality.

• In this generic case, we are doing 2 corrections due to non-

orthogonality (nNonOrthogonalCorrectors). 

• The SIMPLE sub-dictionary also contains convergence controls 

based on residuals of fields. The controls are specified in the 

residualControls sub-dictionary. 

• The user needs to specify a tolerance for one or more solved 

fields and when the residual for every field falls below the 

corresponding residual, the simulation terminates. 

• If you do not set the residualControls, the solver will iterate 

until reaching the maximum number of iterations set in the 
controlDict dictionary.
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Unsteady and steady simulations

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U    0.7;

}

}

• The fvSolution dictionary also contains the 

relaxationFactors sub-dictionary. 

• The relaxationFactors sub-dictionary which controls under-

relaxation, is a technique used for improving stability when using 

steady solvers.

• Under-relaxation works by limiting the amount which a variable 

changes from one iteration to the next, either by modifying the 

solution matrix and source (equations keyword) prior to solving 

for a field or by modifying the field directly (fields keyword).

• An optimum choice of under-relaxation factors is one that is 

small enough to ensure stable computation but large enough to 

move the iterative process forward quickly.

• These are the under-relaxation factors commonly used 

(SIMPLE),

fields

{

p 0.3;

}

equations

{

U           0.7;

k           0.7;

omega       0.7;

}



• Steady simulations require less computational power than unsteady simulations.

• They are also much faster than unsteady simulations.

• But sometimes they do not converge to the right solution.

• They are easier to post-process and analyze (you just need to take a look at the last saved 

solution).

• You can use the solution of an unconverged steady simulation as initial conditions for an 

unsteady simulation.

• Remember, steady simulations are not time accurate, therefore we can not use them to 

compute temporal statistics or compute the shedding frequency

Unsteady and steady simulations

Steady simulations vs. Unsteady simulations


