- In this module, we will deal with advanced modeling capabilities.
- Advanced modeling capabilities rely a lot in physical models, such as, turbulence, multiphase flows, porous media, combustion, radiation, heat transfer, phase change, acoustics, cavitation, and so on.
- Therefore, it is extremely important to get familiar with the theory behind the models.

"Essentially, all models are wrong, but some are useful"

G. E. P. Box

George Edward Pelham Box

18 October 1919 – 28 March 2013. Statistician, who worked in the areas of quality control, time-series analysis, design of experiments, and Bayesian inference. He has been called *"one of the great statistical minds of the 20th century"*.

What are compressible flows?

- In few words, compressible flows are flows where the density change.
- The changes in density can be due to velocity, pressure, or temperature variations.
- Compressible flows can happen at low speed (subsonic) or high speed (transonic, supersonic, hypersonic and so on).
- Buoyancy-driven flows are also considered compressible flows. After all, the buoyancy is due to temperature gradients.
- In compressible flows, the viscosity also change with temperature.
- In compressible flows, the thermodynamical variables are related via an equation of state (e.g., ideal gas law).
- In principle, all flows are compressible.
- Usually compressibility effects start to become significant when the Mach number is higher than 0.3.

A few compressible flows applications

- The following applications fall within the compressible flows classification:
 - External and internal aerodynamics (high speed).
 - Heat transfer and conjugate heat transfer
 - Fire dynamics.
 - Buoyancy driven flows
 - Heating, ventilation, and air conditioning (HVAC).
 - Thermal comfort.
 - Turbomachinery.
 - Combustion.
 - Chemical reactions.
 - Condensation, evaporation, and melting.
 - And many more.
- As you can see, the range of applicability is very wide.

Large Natural Convection Plume, as effect of combustion of excess non-useable gases behind oilfield.

https://en.wikipedia.org/wiki/Plume_(fluid_dynamics)#/media/File:Naturalc onvectionplume.JPG

Rayleigh-Bénard convection cells https://en.wikipedia.org/wiki/File:B%C3%A9nard_cells_convection.ogv

Iron melting https://commons.wikimedia.org/wiki/File:Iron_-melting.JPG

Airplane thermal image http://www.blackroc.com/wp-content/uploads/2016/03/thermal-image.jpg

Copyright on the images is held by the contributors. Apart from Fair Use, permission must be sought for any other purpose

Compressible flows – Starting equations

Γ

NSE
$$\begin{cases} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0, \\ \frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla p + \nabla \cdot \tau, \\ \frac{\partial (\rho e_t)}{\partial t} + \nabla \cdot (\rho e_t \mathbf{u}) = \nabla \cdot q - \nabla \cdot (p \mathbf{u}) + \tau \mathbf{i} \nabla \mathbf{u}, \end{cases}$$

Additional closure equations for: turbulence models, multiphase models, combustion, particles, source terms, equation of state, and so on

Compressible flows – Boundary layer

Thermal boundary layer vs. Viscous boundary layer Forced convection

Thermal boundary layer in function of Prandtl number (Pr)

Momentum and thermal boundary layer

- Just as there is a viscous boundary layer in the velocity distribution (or momentum), there is also a thermal boundary layer.
- Thermal boundary layer thickness is different from the thickness of the viscous sublayer (momentum), and is fluid dependent.
- The thickness of the thermal sublayer for a high Prandtl number fluid (e.g. water) is much less than the momentum sublayer thickness.
- For fluids of low Prandtl numbers (*e.g.*, air), it is much larger than the momentum sublayer thickness.
- For Prandtl number equal 1, the thermal boundary layer is equal to the momentum boundary layer.

Compressible flows – Boundary layer

Horizontal heated plate immersed in a quiescent fluid. Natural convection

Vertical heated plate immersed in a quiescent fluid. Natural convection.

Natural convection in a heated plate

- As the fluid is warmed by the plate, its density decreases and a buoyant force arises which induces flow motion in the vertical or horizontal direction.
- The force is proportional to $(
 hoho_\infty) imes g$, therefore gravity must be considered.

- Dealing with compressible flows in OpenFOAM® is not so different from what we have done so far.
- The new steps are:
 - Define the thermophysical variables.
 - Define the boundary conditions and initial conditions for temperature.
 - If you are dealing with turbulence, you will need to define the boundary conditions and initial conditions for the turbulent thermal diffusivity.
 - Define discretization schemes and linear solvers for the new variables and equations.
- Remember to choose the near-wall treatment.
- FYI, we have found that it is tricky to achieve convergence using a low-RE approach with compressible flows (high speed) and steady solvers.

- Additionally, the numerics of compressible solvers is a little bit more delicate.
 - Temperature is a bounded quantity, so we need to use accurate and stable methods (preferably TVD).
 - If you are in the presence of shock waves, you need to use TVD methods and gradient limiters.
 - The solvers are very sensitive to overshoots and undershoots in the gradients, so you need to use very aggressive limiters.
 - If you are dealing with chemicals reactions or combustion, you need to use accurate and stable methods (preferably TVD).
 - TVD methods requires good meshes and CFL number below 1 for good accuracy and stability.
 - Using steady solvers requires tuning of the under-relaxation factors. Usually, the default values do not work well.
 - The use local time stepping to reach steady state can improve the convergence rate.

- OpenFOAM® comes with many solvers and models that can address a wide physics.
- Compressibility can be introduced in all the modeling capabilities we have seen so far (turbulence modeling and multiphase flows).
- It is also possible to add source terms, deal with moving bodies or use adaptive mesh refinement.
- You will find the source code of all the compressible solvers in the directories:
 - OpenFOAM-6/applications/solvers/compressible
 - OpenFOAM-6/applications/solvers/combustion
 - OpenFOAM-6/applications/solvers/heatTransfer
 - OpenFOAM-6/applications/solvers/lagrangian
 - OpenFOAM-6/applications/solvers/multiphases
- You will find the source code of the thermophysical models in the directory:
 - OpenFOAM-6/src/thermophysicalModels

- These are the compressible solvers that you will use most of the time in OpenFOAM®.
- HVAC and low speed aerodynamics:
 - rhoSimpleFoam, rhoPimpleFoam
- High speed aerodynamics:
 - sonicFoam, rhoSimpleFoam, rhoPimpleFoam
- Buoyancy driven flows (including Boussinesq approximation):
 - buoyantBoussinesqPimpleFoam buoyantBoussinesqSimpleFoam, buoyantSimpleFoam, buoyantPimpleFoam
- Conjugate heat transfer
 - chtMultiRegionFoam

```
1
       thermoType
2
       £
3
                              hePsiThermo;
           type
4
           mixture
                              pureMixture;
5
           transport
                              const;
6
           thermo
                              hConst;
7
           equationOfState perfectGas;
8
           specie
                              specie;
9
                              sensibleEnthalpy;
           energy
10
       }
11
12
       mixture
13
       {
14
           specie
15
           {
16
                nMoles
                              1;
17
                molWeight
                              28.9;
18
           }
19
           thermodynamics
20
           {
21
                Cp
                              1005;
22
                Hf
                              0;
23
24
           transport
25
           {
26
                              1.84e-05;
                mu
                              0.713;
27
                Pr
28
           }
29
       }
```

- The thermophysical properties are set in the dictionary thermophysical Properties.
- This dictionary file is located in the directory constant.
- Thermophysical models are concerned with energy, heat and physical properties.
- In the sub-dictionary **thermoType** (lines 1-10), we define the thermophysical models.
- The entries in lines 3-4, are determined by the choice of the solver (they are hardwired to the solver).
- The **transport** keyword (line 5). concerns evaluating dynamic viscosity. In this case the viscosity is constant.
- The thermodynamic models (**thermo** keyword) are concerned with evaluating the specific heat Cp (line 6). In this case Cp is constant.
- The **equationOfState** keyword (line 7) concerns to the equation of state of the working fluid. In this case,

$$o = \frac{p}{RT}$$

• Line 8 is a fixed option (hardwired to the solver).

```
1
       thermoType
2
       {
3
                              hePsiThermo;
           type
4
           mixture
                              pureMixture;
5
           transport
                              const;
6
           thermo
                              hConst;
7
           equationOfState perfectGas;
8
           specie
                              specie;
9
                              sensibleEnthalpy;
           energy
10
       }
11
12
       mixture
13
       {
14
           specie
15
           ł
16
                nMoles
                              1;
17
                molWeight
                              28.9;
18
           }
19
           thermodynamics
20
           {
21
                Cp
                              1005;
22
                Hf
                              0;
23
           }
24
           transport
25
           ſ
26
                              1.84e-05;
                mu
27
                              0.713;
                Pr
28
           }
29
       }
```

- The form of the energy equation to be used is specified in line 9 (**energy**).
- In this case we are using enthalpy formulation (sensibleEnthalpy).
- In this formulation, the following equation is solved,

$$\frac{\partial \rho h}{\partial t} + \nabla \cdot (\rho \mathbf{u} h) + \frac{\partial \rho K}{\partial t} + \nabla \cdot (\rho \mathbf{u} K) - \frac{\partial p}{\partial t} = \nabla \cdot (\alpha_{eff} \nabla e) + \rho \mathbf{g} \cdot \mathbf{u} + S$$

 Alternatively, we can use the sensibleInternalEnergy formulation, where the following equation is solved for the internal energy,

$$\frac{\partial \rho e}{\partial t} + \nabla \cdot (\rho \mathbf{u} e) + \frac{\partial \rho K}{\partial t} + \nabla \cdot (\rho \mathbf{u} K) + \nabla \cdot (\mathbf{u} p) = \nabla \cdot (\alpha_{eff} \nabla e) + \rho \mathbf{g} \cdot \mathbf{u} + S$$

 In the previous equations, the effective thermal diffusivity is equal to,

$$\alpha_{eff} = \alpha_{turbulent} + \alpha_{laminar} = \frac{\rho\nu_t}{Pr_t} + \frac{\mu}{Pr} = \frac{\rho\nu_t}{Pr_t} + \frac{k}{c_p}$$

• And $K \equiv |\mathbf{u}|^2/2$ is the kinetic energy per unit mass.

1	thermoType	
2	{	
3	type	hePsiThermo;
4	mixture	pureMixture;
5	transport	const;
6	thermo	hConst;
7	equationOfState	<pre>perfectGas;</pre>
8	specie	specie;
9	energy	<pre>sensibleEnthalpy;</pre>
10	}	
11		
12	mixture	
13	{	
14	specie	
15	{	
16	nMoles	1;
17	molWeight	28.9;
18	}	
19	thermodynamics	
20	{	
21	Cp	1005;
22	Hf	0;
23	}	
24	transport	
25	{	
26	mu	1.84e-05;
27	Pr	0.713;
28	}	
29	}	
		-

- When we use the sensible formulation (sensibleEnthalpy or sensibleInternalEnergy), the heat of formation is not included in the energy equation.
- In the sub-dictionary **mixture** (lines 12-29), we define the thermophysical properties of the working fluid.
- In line 17, we define the molecular weight.
- In line 21, we define the specific heat.
- The heat of formation is defined is line 22 (not used in the sensible formulation).
- In this case, we are defining the properties for air at 20° Celsius and at a sea level.
- As we are using the transport model const (line 5), we need to define the dynamic viscosity and Prandtl number (lines 26 and 27).
- If you set the viscosity to zero, you solve the Euler equations.
- Remember, transport modeling (line 5), concerns evaluating dynamic viscosity, thermal conductivity and thermal diffusivity.

	+ h			
1	thermoType			
2 3	{	+	he Deimheume	
3 4		type mixture	hePsiThermo;	
			<pre>pureMixture;</pre>	
5		transport	sutherland;	
6 7		thermo	hConst;	
		equationOfState	-	
8		specie	specie;	
9		energy	<pre>sensibleEnthalpy;</pre>	
10	}			
11			٦	
12	mixt	ure		
13	{	_		
14		specie		
15		{		
16		nMoles	1;	
17		molWeight	28.9;	
18		}		
19		thermodynamics		
20		{		
21		Ср	1005;	
22		Hf	0;	
23		}		
24		transport		
25		{		
26		As	1.4792e-06;	
27		Ts	116;	
28		}		
29	}			
			L	

- When we use the sensible formulation (sensibleEnthalpy or sensibleInternalEnergy), the heat of formation is not included in the energy equation.
- If you want to include the heat of formation, you must use the **absoluteEnthalpy** formulation (line 6).
- If you use the transport model sutherland (line 5), you will need to define the coefficients of the Sutherland model.
- The Sutherland model is defined as follows (OpenFOAM® uses the 2 coefficients formulation):

$$\mu = \frac{A_s \sqrt{T}}{1 + T_s/T}$$

- The Sutherland coefficients are defined in lines 26-27.
- Remember, you can use the banana method to know all the options available.

Adjusting the numerical method

• If you choose the **sensibleEnthalpy** formulation, you need to define the convective discretization schemes and linear solvers of the energy equation (enthalpy formulation).

- Remember, temperature is a bounded quantity so you need to use non-oscillatory methods.
- For low speed flows, the kinetic energy K and the enthalpy h can be discretized using the linear method. For high speed flows, is better to use bounded methods.
- Remember to use gradient limiters.
- If you are using a steady solver, remember to set the under-relaxation factors for **h** and **rho**.

Adjusting the numerical method

• If you choose the **sensibleInternalEnergy** formulation, you need to define the convective discretization schemes and linear solvers of the energy equation (internal energy formulation).

- Remember, temperature is a bounded quantity so you need to use non-oscillatory methods.
- For low speed flows, the kinetic energy **K** and the internal energy **e** can be discretized using the linear method. For high speed flows, is better to use bounded methods.
- Remember to use gradient limiters.
- If you are using a steady solver, remember to set the under-relaxation factors for **e** and **rho**.

Transport properties – Boussinesq solvers

- If you use the family of solvers that uses the Boussinesq approximation, you do not need to define the thermodynamical properties.
- Instead, you need to define the transport properties (as for incompressible flows) and a reference temperature.
- You will need to define the following fluid properties: laminar viscosity, thermal expansion coefficient, laminar Prandtl number, and turbulent Prandtl number.
- The following solvers use the Boussinesq approximation:
 - buoyantBoussinesqPimpleFoam
 - buoyantBoussinesqSimpleFoam.
- Remember, the Boussinesq approximation is a way to solve natural convection problems, without having to solve the compressible NSE.
- It assumes that variations in density have no effect on the flow field, except when they give rise to buoyancy forces.
- This approximation is accurate when density variations are small.

Final remarks

• When solving the enthalpy formulation of the energy equation,

$$\frac{\partial \rho h}{\partial t} + \nabla \cdot (\rho \mathbf{u}h) + \frac{\partial \rho K}{\partial t} + \nabla \cdot (\rho \mathbf{u}K) - \frac{\partial p}{\partial t} = \nabla \cdot (\alpha_{eff} \nabla e) + \rho \mathbf{g} \cdot \mathbf{u} + S$$

the pressure work term $\,\partial p/\partial t\,$ can be excluded from the solution.

- This has a stabilizing effect on the solution, specially if you are using steady solvers.
- To turn off the pressure work term $\partial p/\partial t$, set the option dpdt to no (dpdt no;) in the thermophysicalProperties dictionary.

• Finally, when you work with compressible solvers you use absolute pressure and the working units are in Pascals.

