
Compressible flows – Sod’s shock tube

• Let us run this case. Go to the directory:

$PTOFC/sod_shock_tube

• $PTOFC is pointing to the directory where you extracted the training material.

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh,

run_sampling.sh, run_solver.sh, and so on.

• These scripts can be used to run the case automatically by typing in the terminal, for example,

• $> sh run_solver

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and type the

commands in the terminal. In this way, you will get used with the command line interface and OpenFOAM commands.

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts.

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional comments.

Sod’s shock tube

Compressible flows – Sod’s shock tube

Physical and numerical side of the problem:

• The governing equation of this test case are the Euler equations.

• This case has an analytical solution and plenty of experimental data.

• This is an extreme test case used to test solvers. Every single commercial and open-source

solver use this case for validation of the numerical schemes.

Shock tube. The driver section, including vacuum pumps, controls, and helium driver gas.

Photo credit: Stanford University. http://hanson.stanford.edu/index.php?loc=facilities_nasa

Copyright on the images is held by the contributors. Apart from Fair Use, permission must be

sought for any other purpose.

After breaking the diaphragm, a complex system of shock

waves is created inside the tube (an expansion wave, a

contact discontinuity, and a normal shock wave).

What are we going to do?

Compressible flows – Sod’s shock tube

• We will use this case to learn how to setup supersonic flow cases.

• We will compare the numerical solution with the analytical solution.

• We will run the case with a robust numerics, but you are invited to try different setups and

compare the different outcomes.

• To find the numerical solution we will use the solver rhoPimpleFoam and with zero viscosity

(Euler equations).

• rhoPimpleFoam is a transient solver for turbulent flow of compressible fluids, with optional

mesh motion and mesh topology changes.

• We will run with a 1D mesh, but you are encouraged to test with 2D and 3D mesh and study the

dependency of cell type, cell number, and cell alignment on the numerical solution.

• After finding the numerical solution we will do some sampling.

• Then we will do some plotting (using gnuplot or Python) and scientific visualization.

Compressible flows – Sod’s shock tube

Boundary and initial conditions

• The boundary and initial conditions are defined as follows.

Note: the ratio of specific heats is equal to 1.4 and the

working fluid is air.

All walls are slip

Compressible flows – Sod’s shock tube

1 thermoType

2 {

3 type hePsiThermo;

4 mixture pureMixture;

5 transport const;

6 thermo hConst;

7 equationOfState perfectGas;

8 specie specie;

9 energy sensibleEnthalpy;

10 }

11

12 mixture

13 {

14 specie

15 {

16 nMoles 1;

17 molWeight 28.9;

18 }

19 thermodynamics

20 {

21 Cp 1005;

22 Hf 0;

23 }

24 transport

25 {

26 mu 0.0;

27 Pr 0.7;

28 }

29 }

• The thermophysical properties are set in the dictionary

thermophysicalProperties.

• This dictionary file is located in the directory constant.

• In the sub-dictionary thermoType (lines 1-10), we define

the thermophysical models. Many of these options are

hardwired with the solver used.

• The transport keyword (line 5) concerns evaluating

dynamic viscosity. In this case the viscosity is constant.

• The thermodynamic models (thermo keyword) are

concerned with evaluating the specific heat Cp (line 6). In

this case Cp is constant.

• The equationOfState keyword (line 7) concerns to the

equation of state of the working fluid. In this case, we are

using the ideal gas equation model.

Selecting thermophysical properties

Compressible flows – Sod’s shock tube

1 thermoType

2 {

3 type hePsiThermo;

4 mixture pureMixture;

5 transport const;

6 thermo hConst;

7 equationOfState perfectGas;

8 specie specie;

9 energy sensibleEnthalpy;

10 }

11

12 mixture

13 {

14 specie

15 {

16 nMoles 1;

17 molWeight 28.9;

18 }

19 thermodynamics

20 {

21 Cp 1005;

22 Hf 0;

23 }

24 transport

25 {

26 mu 0.0;

27 Pr 0.7;

28 }

29 }

Selecting thermophysical properties

• The form of the energy equation to be used is specified

in line 9 (energy).

• In this case we are using enthalpy formulation

(sensibleEnthalpy). In this formulation, the following

equation is solved,

• In the sub-dictionary mixture (lines 12-29), we define the

thermophysical properties of the working fluid (air in this

case).

• In line 17, we define the molecular weight.

• In line 21, we define the specific heat Cp. The heat of

formation Hf is defined in line 22 (not used in this case).

• As we are using the transport model const (line 5), we

need to define the dynamic viscosity mu and Prandtl

number Pr (lines 26 and 27).

• As we want to solve the Euler equations, we set the

viscosity to zero (line 26). We also define the Prandtl

number in line 27 but is not used in this case as we are

solving the Euler equations.

Compressible flows – Sod’s shock tube

Selecting turbulence model

• As we are solving the Euler equations (no viscosity), there is no turbulence involved.

• Nevertheless, we need to set the turbulence model to laminar in the dictionary
turbulenceProperties.

• This dictionary is located in the directory constant.

simulationType laminar;

• At this point we are done with the physical properties.

• Let us define the discretization schemes and solution method.

Compressible flows – Sod’s shock tube

Selecting the discretization schemes

1 ddtSchemes

2 {

3 default Euler;

4 }

5

6 gradSchemes

7 {

8 default leastSquares;

9 grad(U) cellLimited leastSquares 1.0;

10 }

11

12 divSchemes

13 {

14 default none;

15 div(phi,U) Gauss MinmodV;

16 div(phi,K) Gauss limitedLinear 1;

17 div(phi,h) Gauss limitedLinear 1;

18 div(phid,p) Gauss limitedLinear 1;

19 div((nuEff*dev2(T(grad(U))))) Gauss linear;

20 }

21

22 laplacianSchemes

23 {

24 default Gauss linear limited 1;

25 }

26

27 interpolationSchemes

28 {

29 default linear;

30 }

31

32 snGradSchemes

33 {

34 default limited 1;

35 }

• The discretization schemes are set in the dictionary

fvSchemes located in the directory system.

• When dealing with compressible flows and strong

discontinuities (such as shock waves), it is of paramount

importance to set a robust and accurate numerics, as the

one used in this case.

• In line 3, we define the time discretization scheme. In

this case we are using the Euler method.

• In lines 6-10 we define the gradient discretization

schemes.

• In line 8, we define the discretization scheme to be used

with all variables (the default keyword), in this case,

grad(U), grad(p), and grad(h).

• When dealing with shock waves, it is recommended to

use an aggressive limiter for grad(U) (line 9).

• Be careful not to add very aggressive limiters to grad(p)

and grad(h) (line 8), as they may add a lot of numerical

diffusion.

Compressible flows – Sod’s shock tube

Selecting the discretization schemes

1 ddtSchemes

2 {

3 default Euler;

4 }

5

6 gradSchemes

7 {

8 default leastSquares;

9 grad(U) cellLimited leastSquares 1.0;

10 }

11

12 divSchemes

13 {

14 default none;

15 div(phi,U) Gauss MinmodV;

16 div(phi,K) Gauss limitedLinear 1;

17 div(phi,h) Gauss limitedLinear 1;

18 div(phid,p) Gauss limitedLinear 1;

19 div((nuEff*dev2(T(grad(U))))) Gauss linear;

20 }

21

22 laplacianSchemes

23 {

24 default Gauss linear limited 1;

25 }

26

27 interpolationSchemes

28 {

29 default linear;

30 }

31

32 snGradSchemes

33 {

34 default limited 1;

35 }

• In lines 12-20 we define the discretization scheme of the

convective terms.

• Notice that for velocity (line 15) we are using a TVD

scheme.

• TVD schemes are highly recommended when you are

dealing with strong discontinuities (such as shock

waves).

• In lines 16-18 we define the discretization schemes for

the variables related to the energy equation. In general,

the setup used is accurate and stable.

div(phi,K) div(phi,h)

• Line 18 is related to the transonic correction used. this
correction is set in the dictionary fvSolution.

• Line 19 is related to the Reynolds stresses (not relevant

as we are solving the Euler equations).

Compressible flows – Sod’s shock tube

Selecting the solution method and linear solvers

1 solver

2 {

3 “(p|U|e|h).*”

4 {

5 solver PBiCGStab;

6 preconditioner DILU;

7 tolerance 1e-06;

8 relTol 0.001;

9 minIter 2;

10 }

11

12 "rho.*"

13 {

14 solver diagonal;

15 }

16

17 }

18

19 PIMPLE

20 {

21 transonic yes;

22 consistent yes;

23 nOuterCorrectors 3;

24 nCorrectors 1;

25 nNonOrthogonalCorrectors 1;

26 }

27

28 relaxationFactors

29 {

30 fields

31 {

32 “.*” 1;

33 }

34 fields

35 {

36 “.*” 1;

37 }

38 }

39

• The solution method, corrections and linear solvers are
set in the dictionary fvSolution located in the

directory system.

• In this case, we are using the linear solver PBiCGStab

for all variables except rho (lines 3-10).

• In compressible solvers, rho is computed from the

thermodynamical variables, therefore, we use a diagonal

solver, in other words, back substitution (line 14).

• In line 21, we enable the transonic correction (for high

speed compressible flows).

• In line 22, we enable the SIMPLEC method used in the

PIMPLE loop.

• In lines 23-25 we define the number of corrector steps to

perform in the PIMPLE loop.

• Finally, in lines 28-38, we define the under-relaxation

factors (URF).

• In this case, we define all the URF to one (this will help in

increasing the diagonal dominance of the matrix of

coefficients).

• To improve stability, you can use smaller URF values, but

you might loose temporal accuracy.

Compressible flows – Sod’s shock tube

Selecting the solution method and linear solvers

• The rationale of the PIMPLE loop in

OpenFOAM® is shown in this workflow.

• The traditional PISO loop will compute the

momentum corrector (velocity field) from the

pressure corrector (pressure-Poisson equation).

• However, these two corrector steps depend on

the information coming from the predictor step

(momentum predictor).

• In the PIMPLE loop, we have the option to use

the solution of the corrector steps to compute

better approximations of the predictor steps.

• This increases the accuracy and stability of the

solution, but at the cost of increasing the

computing time (in a way almost proportional to

the number of corrections).

• In this case, it is necessary to use better

predictor estimates for the corrector steps.

• That is reason why we are looping 3 times in the

SIMPLE loop (nOuterCorrectors).

• If you use one or two nOuterCorrectors, you

will notice that the solution is less accurate.

• Most of the times is not necessary to use more

than two or three nOuterCorrector steps.

Compressible flows – Sod’s shock tube

Comparison of the numerical solution against the exact solution

• The solutions are compared at a physical time of 0.1 seconds and in a line along the horizontal axis.

Pressure field Density field

Velocity magnitude field Temperature field

Compressible flows – Sod’s shock tube

Visualizing the solution in Paraview

• At this point, you can visualize the solution using Paraview.

www.wolfdynamics.com/wiki/shocktube/aniT.gif www.wolfdynamics.com/wiki/shocktube/aniU.gif

www.wolfdynamics.com/wiki/shocktube/anip.gifwww.wolfdynamics.com/wiki/shocktube/anigt.gif

Temperature field Velocity field

Pressure fieldTemperature gradient

http://www.wolfdynamics.com/wiki/shocktube/aniT.gif
http://www.wolfdynamics.com/wiki/shocktube/aniU.gif
http://www.wolfdynamics.com/wiki/shocktube/anip.gif
http://www.wolfdynamics.com/wiki/shocktube/anigt.gif

Running the case

Compressible flows – Sod’s shock tube

• Let us first generate the mesh using the meshing utility blockMesh.

• In the terminal window type:

1. $> foamCleanTutorials

2. $> rm -rf 0 > /dev/null 2>&1

3. $> cp -r 0_org 0 > /dev/null 2>&1

4. $> blockMesh

5. $> checkMesh

• The dictionary blockMeshDict has been already parametrized.

• In this case we are using a 1D mesh with 5000 cells.

• If you want to try a different cell count, feel free to modify the dictionary blockMeshDict.

Running the case

Compressible flows – Sod’s shock tube

• Let us initialize the fields using the utility setFields.

• In the terminal window type:

1. $> setFields

• The utility setFields will initialize the solution according to the figure below.

Compressible flows – Sod’s shock tube

Running the case

1. $> rhoPimpleFoam | tee log.solver

2. $> postProcess -func 'mag(U)'

3. $> postProcess -func 'components(U)'

4. $> postProcess -func sampleDict

• You will find this tutorial in the directory $PTOFC/sod_shock_tube

• In the terminal window type:

• In this case we are running a fully transient simulation.

• For good accuracy, it is recommended to run this case with a CFL in the order of 0.5.

• Also, it is not recommended to use adaptive time stepping as this method might introduce

instabilities in the solution.

Compressible flows – Sod’s shock tube

Running the case

1. $> python python/sodshocktube.py

• To compare the numerical solution with the exact solution, type in the terminal,

• To run the python script, you must use Python 3.

• At this point, you will find in the case directory

five figures with the comparison of the results.

• The solutions are compared at a physical time

of 0.1 seconds and in a line along the horizontal

axis.

Exact solution

