
Compressible flows – Sod’s shock tube

• Let us run this case. Go to the directory:

$PTOFC/sod_shock_tube

• $PTOFC is pointing to the directory where you extracted the training material.

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and type the 

commands in the terminal. In this way, you will get used with the command line interface and OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional comments.



Sod’s shock tube
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Physical and numerical side of the problem:

• The governing equation of this test case are the Euler equations.

• This case has an analytical solution and plenty of experimental data.

• This is an extreme test case used to test solvers. Every single commercial and open-source 

solver use this case for validation of the numerical schemes.

Shock tube. The driver section, including vacuum pumps, controls, and helium driver gas. 

Photo credit: Stanford University. http://hanson.stanford.edu/index.php?loc=facilities_nasa 

Copyright on the images is held by the contributors. Apart from Fair Use, permission must be 

sought for any other purpose.

After breaking the diaphragm, a complex system of shock 

waves is created inside the tube (an expansion wave, a 

contact discontinuity, and a normal shock wave).



What are we going to do?
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• We will use this case to learn how to setup supersonic flow cases.

• We will compare the numerical solution with the analytical solution.

• We will run the case with a robust numerics, but you are invited to try different setups and 

compare the different outcomes.

• To find the numerical solution we will use the solver rhoPimpleFoam and with zero viscosity 

(Euler equations).  

• rhoPimpleFoam is a transient solver for turbulent flow of compressible fluids, with optional 

mesh motion and mesh topology changes. 

• We will run with a 1D mesh, but you are encouraged to test with 2D and 3D mesh and study the 

dependency of cell type, cell number, and cell alignment on the numerical solution.

• After finding the numerical solution we will do some sampling.

• Then we will do some plotting (using gnuplot or Python) and scientific visualization.
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Boundary and initial conditions

• The boundary and initial conditions are defined as follows.

Note: the ratio of specific heats is equal to 1.4 and the 

working fluid is air.

All walls are slip



Compressible flows – Sod’s shock tube

1  thermoType

2  {

3  type            hePsiThermo;

4  mixture         pureMixture;

5  transport       const;

6  thermo          hConst;

7  equationOfState perfectGas;

8   specie          specie;

9   energy          sensibleEnthalpy;

10  }

11  

12  mixture

13  {

14  specie

15  {

16  nMoles      1;

17  molWeight   28.9;

18  }

19  thermodynamics

20  {

21  Cp          1005;

22  Hf          0;

23  }

24  transport

25  {

26  mu          0.0;

27  Pr          0.7;

28  }

29  }

• The thermophysical properties are set in the dictionary

thermophysicalProperties.

• This dictionary file is located in the directory constant.

• In the sub-dictionary thermoType (lines 1-10), we define 

the thermophysical models. Many of these options are 

hardwired with the solver used.

• The transport keyword (line 5) concerns evaluating 

dynamic viscosity. In this case the viscosity is constant. 

• The thermodynamic models (thermo keyword) are 

concerned with evaluating the specific heat Cp (line 6). In 

this case Cp is constant.

• The equationOfState keyword (line 7) concerns to the 

equation of state of the working fluid. In this case, we are 

using the ideal gas equation model.

Selecting thermophysical properties
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Selecting thermophysical properties

• The form of the energy equation to be used is specified 

in line 9 (energy). 

• In this case we are using enthalpy formulation 

(sensibleEnthalpy). In this formulation, the following 

equation is solved,

• In the sub-dictionary mixture (lines 12-29), we define the 

thermophysical properties of the working fluid (air in this 

case).

• In line 17, we define the molecular weight.

• In line 21, we define the specific heat Cp. The heat of 

formation Hf is defined in line 22 (not used in this case).

• As we are using the transport model const (line 5), we 

need to define the dynamic viscosity mu and Prandtl 

number Pr (lines 26 and 27).

• As we want to solve the Euler equations, we set the 

viscosity to zero (line 26). We also define the Prandtl 

number in line 27 but is not used in this case as we are 

solving the Euler equations.
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Selecting turbulence model

• As we are solving the Euler equations (no viscosity), there is no turbulence involved.

• Nevertheless, we need to set the turbulence model to laminar in the dictionary 
turbulenceProperties.

• This dictionary is located in the directory constant.

simulationType    laminar;

• At this point we are done with the physical properties. 

• Let us define the discretization schemes and solution method.
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Selecting the discretization schemes

1 ddtSchemes

2 {

3 default Euler;

4 }

5 

6 gradSchemes

7 { 

8 default leastSquares;

9 grad(U) cellLimited leastSquares 1.0;

10 }

11 

12 divSchemes

13 {

14 default none;

15 div(phi,U)      Gauss MinmodV;

16 div(phi,K)      Gauss limitedLinear 1;

17 div(phi,h)      Gauss limitedLinear 1;

18 div(phid,p)     Gauss limitedLinear 1;

19 div((nuEff*dev2(T(grad(U))))) Gauss linear;

20 }

21 

22 laplacianSchemes

23 {

24 default Gauss linear limited 1;

25 }

26 

27 interpolationSchemes

28 {

29 default         linear;

30 }

31 

32 snGradSchemes

33 {

34 default  limited 1;

35 }

• The discretization schemes are set in the dictionary

fvSchemes located in the directory system.

• When dealing with compressible flows and strong 

discontinuities (such as shock waves), it is of paramount 

importance to set a robust and accurate numerics, as the 

one used in this case.

• In line 3, we define the time discretization scheme.  In 

this case we are using the Euler method.

• In lines 6-10 we define the gradient discretization 

schemes.  

• In line 8, we define the discretization scheme to be used 

with all variables (the default keyword), in this case, 

grad(U), grad(p), and grad(h).

• When dealing with shock waves, it is recommended to 

use an aggressive limiter for grad(U) (line 9).  

• Be careful not to add very aggressive limiters to grad(p) 

and grad(h) (line 8), as they may add a lot of numerical 

diffusion. 
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Selecting the discretization schemes

1 ddtSchemes

2 {

3 default Euler;

4 }

5 

6 gradSchemes

7 { 

8 default leastSquares;

9 grad(U) cellLimited leastSquares 1.0;

10 }

11 

12 divSchemes

13 {

14 default none;

15 div(phi,U)      Gauss MinmodV;

16 div(phi,K)      Gauss limitedLinear 1;

17 div(phi,h)      Gauss limitedLinear 1;

18 div(phid,p)     Gauss limitedLinear 1;

19 div((nuEff*dev2(T(grad(U))))) Gauss linear;

20 }

21 

22 laplacianSchemes

23 {

24 default Gauss linear limited 1;

25 }

26 

27 interpolationSchemes

28 {

29 default         linear;

30 }

31 

32 snGradSchemes

33 {

34 default  limited 1;

35 }

• In lines 12-20 we define the discretization scheme of the 

convective terms.  

• Notice that for velocity (line 15) we are using a TVD 

scheme. 

• TVD schemes are highly recommended when you are 

dealing with strong discontinuities (such as shock 

waves).

• In lines 16-18 we define the discretization schemes for 

the variables related to the energy equation. In general, 

the setup used is accurate and stable.

div(phi,K) div(phi,h) 

• Line 18 is related to the transonic correction used. this 
correction is set in the dictionary fvSolution.

• Line 19 is related to the Reynolds stresses (not relevant 

as we are solving the Euler equations).
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Selecting the solution method and linear solvers

1 solver

2 {

3 “(p|U|e|h).*”

4 {

5 solver          PBiCGStab;

6 preconditioner  DILU;

7 tolerance       1e-06;

8 relTol          0.001;

9 minIter  2;

10        }

11

12 "rho.*"

13 {

14 solver          diagonal;

15        }

16

17 }

18

19    PIMPLE

20    {

21        transonic yes;

22        consistent yes;

23        nOuterCorrectors 3;

24        nCorrectors 1;

25        nNonOrthogonalCorrectors 1;

26   }

27

28 relaxationFactors

29 {

30 fields

31 {

32 “.*” 1;

33 }

34 fields

35 {

36 “.*” 1;

37 }

38 }

39

• The solution method, corrections and linear solvers are 
set in the dictionary fvSolution located in the 

directory system.

• In this case, we are using the linear solver PBiCGStab

for all variables except rho (lines 3-10).

• In compressible solvers, rho is computed from the 

thermodynamical variables, therefore, we use a diagonal 

solver, in other words, back substitution (line 14).

• In line 21, we enable the transonic correction (for high 

speed compressible flows).  

• In line 22, we enable the SIMPLEC method used in the 

PIMPLE loop.

• In lines 23-25 we define the number of corrector steps to 

perform in the PIMPLE loop.

• Finally, in lines 28-38, we define the under-relaxation 

factors (URF).

• In this case, we define all the URF to one (this will help in 

increasing the diagonal dominance of the matrix of 

coefficients). 

• To improve stability, you can use smaller URF values, but 

you might loose temporal accuracy.
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Selecting the solution method and linear solvers

• The rationale of the PIMPLE loop in 

OpenFOAM® is shown in this workflow.

• The traditional PISO loop will compute the 

momentum corrector (velocity field) from the 

pressure corrector (pressure-Poisson equation).

• However, these two corrector steps depend on 

the information coming from the predictor step 

(momentum predictor).

• In the PIMPLE loop, we have the option to use 

the solution of the corrector steps to compute 

better approximations of the predictor steps.

• This increases the accuracy and stability of the 

solution, but at the cost of increasing the 

computing time (in a way almost proportional to 

the number of corrections).

• In this case, it is necessary to use better 

predictor estimates for the corrector steps. 

• That is reason why we are looping 3 times in the 

SIMPLE loop (nOuterCorrectors).

• If you use one or two nOuterCorrectors, you 

will notice that the solution is less accurate.

• Most of the times is not necessary to use more 

than two or three nOuterCorrector steps.
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Comparison of the numerical solution against the exact solution

• The solutions are compared at a physical time of 0.1 seconds and in a line along the horizontal axis.

Pressure field Density field

Velocity magnitude field Temperature field
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Visualizing the solution in Paraview

• At this point, you can visualize the solution using Paraview.

www.wolfdynamics.com/wiki/shocktube/aniT.gif www.wolfdynamics.com/wiki/shocktube/aniU.gif

www.wolfdynamics.com/wiki/shocktube/anip.gifwww.wolfdynamics.com/wiki/shocktube/anigt.gif

Temperature field Velocity field

Pressure fieldTemperature gradient

http://www.wolfdynamics.com/wiki/shocktube/aniT.gif
http://www.wolfdynamics.com/wiki/shocktube/aniU.gif
http://www.wolfdynamics.com/wiki/shocktube/anip.gif
http://www.wolfdynamics.com/wiki/shocktube/anigt.gif


Running the case
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• Let us first generate the mesh using the meshing utility blockMesh.

• In the terminal window type:              

1. $> foamCleanTutorials 

2. $> rm -rf 0 > /dev/null 2>&1

3. $> cp -r 0_org 0 > /dev/null 2>&1

4. $> blockMesh

5. $> checkMesh

• The dictionary blockMeshDict has been already parametrized.

• In this case we are using a 1D mesh with 5000 cells.

• If you want to try a different cell count, feel free to modify the dictionary blockMeshDict.
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• Let us initialize the fields using the utility setFields.

• In the terminal window type:              

1. $> setFields 

• The utility setFields will initialize the solution according to the figure below.
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Running the case

1. $> rhoPimpleFoam | tee log.solver

2. $> postProcess -func 'mag(U)' 

3. $> postProcess -func 'components(U)' 

4. $> postProcess -func sampleDict

• You will find this tutorial in the directory $PTOFC/sod_shock_tube

• In the terminal window type:

• In this case we are running a fully transient simulation.

• For good accuracy, it is recommended to run this case with a CFL in the order of 0.5.

• Also, it is not recommended to use adaptive time stepping as this method might introduce

instabilities in the solution.



Compressible flows – Sod’s shock tube

Running the case

1. $> python python/sodshocktube.py

• To compare the numerical solution with the exact solution, type in the terminal,

• To run the python script, you must use Python 3.

• At this point, you will find in the case directory 

five figures with the comparison of the results.

• The solutions are compared at a physical time 

of 0.1 seconds and in a line along the horizontal 

axis.

Exact solution


