
Supplement
More on sampling

1

Sampling on point clouds, lines

and surfaces

2

Supplement – More on sampling

• OpenFOAM® provides the postProcess utility to sample field data for plotting.

• The sampling locations are specified in the dictionary sampleDict located in the case

system directory.

• You can give any name to the input dictionary, hereafter we are going to name it sampleDict.

• During the sampling, inside the case directory, a new directory named postProcessing will

be created. In this directory, the sampled values are stored.

• This utility can sample points, lines, and surfaces.

• Data can be written in many formats, including well-known plotting packages such as:

grace/xmgr, gnuplot and jPlot.

• The sampling can be executed by running the utility postProcess in the case directory and

according to the application syntax.

• A final word, this utility does not do the sampling while the solver is running. It does the

sampling after you finish the simulation.

3

Supplement – More on sampling

• Let us do some sampling.

• For this we will use the 3D pipe case, which you will

find in the directory:

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of

how to run the case. In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh,

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on. These files can be used to run the case

automatically by typing in the terminal, for example, sh run_solver.

• We highly recommend to open the README.FIRST file and type the commands in the terminal, in this way

you will get used with the command line interface and OpenFOAM® commands.

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases.

$PTOFC/advanced_postprocessing/pipe/

4

Mesh and domain

Laminar flow in a straight pipe – Re = 600

Supplement – More on sampling

5

Velocity magnitude at the outlet Pressure contours at the wall

Laminar flow in a straight pipe – Re = 600

Supplement – More on sampling

6

Point and lines where we want to sample

Laminar flow in a straight pipe – Re = 600

Supplement – More on sampling

7

Surface type and location Coarse and fine surfaces

Laminar flow in a straight pipe – Re = 600

Supplement – More on sampling

8

We can also sample in arbitrary surface

Laminar flow in a straight pipe – Re = 600

Supplement – More on sampling

9

What are we going to do?

Supplement – More on sampling

• We will simulate a laminar flow in a straight pipe (Re = 600).

• We will use this case to introduce the sampling utility postProcess.

• We will introduce the utility topoSet used to do topological modifications on the mesh.

• We will use this utility to run functionObjects a-posteriori.

• We will compare the numerical solution with the analytical solution.

• To find the numerical solution we will use the solver pisoFoam.

• After finding the numerical solution we will do some sampling.

• At the end, we will do some plotting (using gnuplot or Python) and scientific visualization.

10

1. $> foamCleanTutorials

2. $> blockMesh

3. $> checkMesh

4. $> topoSet

5. $> pisoFoam | tee log.solver

6. $> postProcess -func sampleDict1 -latestTime

7. $> postProcess -func sampleDict2 -latestTime

8. $> gnuplot gnuplot/gnuplot_script

9. $> paraFoam

Running the case

Supplement – More on sampling

• Let us run the simulation and do some sampling. In the terminal type:

• Do not erase the solution, we are going to use it in the next sections.

11

• In step 4 we use the utility topoSet to do mesh topological manipulation. This utility will read

the dictionary topoSetDict located in the system directory. Later on, we will talk about what

are we doing in this step.

• In step 5 we run the simulation and save the log file.

• In step 6 we use the postProcess utility. By using the option –func we specify to do the

sampling according to the dictionary system/sampleDict1. We sample the latest saved

solution.

• In step 7 we use the postProcess utility. By using the option –func we specify to do the

sampling according to the read dictionary system/sampleDict2. We sample the latest saved

solution.

• In step 8 we use the gnuplot script gnuplot/gnuplot_script to plot the sampled fields.

Feel free to take a look at the script and to reuse it.

• Finally, in step 9 we visualize the solution.

Running the case

Supplement – More on sampling

12

• Let us visit the sampleDict dictionaries.

• This dictionary is located in the directory system.

• The sampleDict file contains several entries to be set according to the user needs.

• You can set the following entries,

• The choice of the interpolationScheme.

• The format of the line data output.

• The format of the surface data output.

• The fields to be sample.

• The sub-dictionaries that controls each sampling operation.

• In these sub-dictionaries you can set the name, type and geometrical information of

the sampling operation.

• In this case, in the dictionary sampleDict1 we are sampling points and lines, and in the

dictionary sampleDict2 we are sampling surfaces.

The sampleDict dictionary

Supplement – More on sampling

13

The sampleDict1 dictionary

17 type sets;

19 setFormat raw;

21 interpolationScheme cellPointFace;

24 fields

25 (

26 U

27 p

28);

30 sets

31 (

33 s1

34 {

35 type lineCellFace;

40 axis z;

41 start (0 0 0);

42 end (0 0 0.22);

43 }

44

45 s2

46 {

47 type lineCellFace;

49 axis x;

50 start (-0.002 -0.002 0.2);

51 end (0.002 0.002 0.2);

52 }

53

Format of the output file, raw format is a generic format that can be

read by many applications. The file is human readable (ascii
format).

Interpolation method at the solution level (location of the
interpolation points).

Fields to sample.

Name of the output file

Location of the sample line. We define start and end point, and the
axis of the sampling.

Sample method from the solution to the line.

Note:

Use the banana method to know all the options

available.

Name of the output file

Location of the sample line. We define start and end point, and the
axis of the sampling.

Sample method from the solution to the line.

Supplement – More on sampling

Sample sets (points and lines).

14

54

55 somePoints

56 {

57 type points;

58 ordered true;

59 axis xyz;

61 points

62 (

63 (0 0 0.05)

64 (0 0 0.1)

65 (0 0 0.15)

66 (0 0 0.2)

67);

68 }

71);

Location of the sample points.

Name of the output file

Sample a cloud of points

The sampled information is always saved in the directory

postProcessing/sampleDict1

As we are sampling the latest solution (0.1), the sampled data

will be located in the directory:

postProcessing/sampleDict1/0.1

The files s1_p.xy, s2_p.xy, s1_U.xy, s2_U.xy,

somePoints_p.xy, and somePoints_U.xy located in the

directory postProcessing/sampleDict1/0.1 contain the

sampled data. Feel free to open the output files using your

favorite text editor.

The sampleDict1 dictionary

Supplement – More on sampling

15

The sampleDict2 dictionary

17 type surfaces;

19 surfaceFormat raw;

21 interpolationScheme cell;

22

26 fields

27 (

28 U

29 p

30);

31

32 surfaces

33 (

34 surf1

35 {

36 type plane;

37 planeType pointAndNormal;

38 pointAndNormalDict

39 {

40 basePoint (0 0 0.1);

41 normalVector (0 0 1);

42 }

43 }

44

45 surf2

46 {

47 type cuttingPlane;

48 planeType pointAndNormal;

49 pointAndNormalDict

50 {

51 basePoint (0 0 0.1);

52 normalVector (0 0 1);

53 }

54

55 interpolate true;

56 }

Format of the output file, raw format is a generic format that

can be read by many applications. The file is human readable
(ascii format).

Interpolation method at the solution level (location of the
interpolation points).

Fields to sample.

Name of the object and output file

Name of the object and output file

Surface sampling method. In this case we are using an
infinite plane.

Surface sampling method. In this case we are using a cutting

plane. The interpolate option means that we interpolate the
cell centered values to the surface triangulation.

Supplement – More on sampling

Sample surfaces.

16

The sampleDict2 dictionary

57

58 surf3

59 {

60 type triSurfaceMesh;

61 surface surface2.stl;

62 source cells;

63

64 interpolate true;

65 }

66

67 surf4

68 {

69 type triSurfaceMesh;

70 surface surface3.stl;

71 source insideCells;

72

73 interpolate false;

74 }

75);

Name of the object and output file

Name of the object and output file

Surface sampling method. In this case we are using a STL

file, the file is always located in the directory
constant/triSurface.

Surface sampling method. In this case we are using a STL

file, the file is always located in the directory
constant/triSurface.

The sampled information is always saved in the directory

postProcessing/sampleDict2

As we are sampling the latest solution (0.1), the sampled data

will be located in the directory:

postProcessing/sampleDict2/0.1

The files p_surf1.raw, p_surf2.raw, p_surf3.raw,

p_surf4.raw, U_surf1.raw, U_surf2.raw,

U_surf3.raw, and U_surf4.raw, located in the directory

postProcessing/sampleDict2/0.1 contain the sampled

data. Feel free to open the output files using your favorite text

editor.

Supplement – More on sampling

17

The output files

• The output format of the point sampling (cloud) is as follows:

#POINT_COORDINATES (X Y Z) SCALAR_VALUE

0 0 0.05 13.310995

0 0 0.1 19.293817

…

Scalars

#POINT_COORDINATES (X Y Z) VECTOR_COMPONENTS (X Y Z)

0 0 0.05 0 0 2.807395

0 0 0.1 0 0 2.826176

…

Vectors

Supplement – More on sampling

18

The output files

• The output format of the line sampling is as follows:

#AXIS_COORDINATE SCALAR_VALUE

0 18.594038

0.0015 18.249091

…

Scalars

#AXIS_COORDINATE VECTOR_COMPONENTS (X Y Z)

0 0 0 1.6152966

0.0015 0 0 1.8067536

…

Vectors

Supplement – More on sampling

19

The output files

• The output format of the surface sampling is as follows:

#POINT_COORDINATES (X Y Z) SCALAR_VALUE

0 0 0.05 13.310995

0 0 0.1 19.293817

…

Scalars

#POINT_COORDINATES (X Y Z) VECTOR_COMPONENTS (X Y Z)

0 0 0.05 0 0 2.807395

0 0 0.1 0 0 2.826176

…

Vectors

Supplement – More on sampling

20

• To plot the sampled data using gnuplot we can proceed as follows:

1. gnuplot> set title 'Radial velocity at z=0.2 - Time 0.1 s'

2. gnuplot> set xlabel 'Diameter'

3. gnuplot> set ylabel 'U_z'

4. gnuplot> set grid

5. gnuplot> plot [][] 'postProcessing/sampleDict1/0.1/s2_U.xy' u 1:4 w p pt 7 title "Numerical

solution", 2.8265544*(1-x**2/(0.0010606602)**2) title "Analytical solution"

Supplement – More on sampling

21

• To plot the sampled data using gnuplot we can proceed as follows:

1. gnuplot> set title 'Velocity profile at plane located at z = 0.1 - Time 0.1 s'

2. gnuplot> set xlabel 'X'

3. gnuplot> set ylabel 'Y'

4. gnuplot> set zlabel 'U_z'

5. gnuplot> set grid

6. gnuplot> splot [][][] 'postProcessing/sampleDict/0.1/U_surf1.raw' u 1:2:6 pt 7 ps 0.5

Supplement – More on sampling

22

Creating faceSet and zoneSet

• To create sets and zones we use the utility topoSet.

• This utility reads the dictionary topoSetDict located in the system directory.

• faceSet/cellSet and faceZone/cellZone can be used to do modifications to the mesh or to

apply source terms.

• We can only do sampling operations on zoneSets made of a set of faces and/or cells,

therefore, if we have a faceSet/cellSet we need to convert it to a faceZone/cellZone.

• Creating an internal faceZone is particularly important if we are interested in computing the

mass flow in an internal surface, as sampledSurface does not work with surfaceScalarFields;

therefore, we need to use a faceZone.

• Alternatively, we can compute the mass flow in paraFoam/paraView or we can use the

areaNormaIntegrate operation on the sampleSurface.

• Let us create an internal faceZone and a cellZone and let us compute the mass flow and do

some sampling on these sets.

Supplement – More on sampling

23

The topoSetDict dictionary

17 actions

18 (

19

20 {

21 action new;

22 name internalfaces;

23 type faceSet;

24

25 source boxToFace;

26 sourceInfo

27 {

28 box (-1 -1 0.098) (1 1 0.1);

29 }

30 }

31

32 {

33 action new;

34 name internalfacepatch;

35 type faceZoneSet;

36

37 source setToFaceZone;

38 sourceInfo

39 {

40 faceSet internalfaces;

41 }

42 }

43

Note:

Use the banana method to know all the options

available.

• In this step we are creating a new faceSet from a boxToFace

source.

• The name of the new faceSet is internalFaces.

• The box source encloses the faces we want to tag.

• We can visualize this set in paraFoam.

• Remember, we can not sample on a faceSet, we need to
convert it to a faceZone.

• In this step we convert the faceSet internalFaces, to a

faceZone.

• The name of new faceZone is internalfacepatch.

• At this point, we can use this faceZone to do sampling.

• We can visualize this zone in paraFoam.

Supplement – More on sampling

24

The topoSetDict dictionary

44 {

45 action new;

46 name internalcells;

47 type cellSet;

48

49 source boxToCell;

50 sourceInfo

51 {

52 box (-1 -1 0.096) (1 1 0.1);

53 }

54 }

55

56 {

57 action new;

58 name internalcells;

59 type cellZoneSet;

60

61 source setToCellZone;

62 sourceInfo

63 {

64 set internalcells;

65 }

66 }

67

68);

Note:

Use the banana method to know all the options

available.

• In this step we are creating a new cellSet from a boxToCell

source.

• The name of the new cellSet is internalCells.

• The box source encloses the cells we want to tag.

• We can visualize this set in paraFoam.

• Remember, we can not sample on a cellSet, we need to
convert it to a cellZone.

• In this step we convert the cellSet internalcells, to a cellZone.

• The name of new cellZone is internalcells.

• At this point, we can use this cellZone to do sampling.

• We can visualize this set in paraFoam.

Supplement – More on sampling

25

1. $> topoSet

2. $> pisoFoam -postProcess -dict system/functionobject3 –latestTime

3. $> pisoFoam -postProcess -dict system/functionobject4 -latestTime

• Let us create an internal faceZone and a cellZone and let us compute the mass flow and do

some sampling on these sets.

• In step 1 we use the utility topoSet to create the new faceZone and cellZone.

• In step 2 we run a functionObject a-posteriori. In this functionObject we compute:

• Mass flow in a sampledSurface.

• Mass flow in a faceZone.

• In step 3 we run a functionObject a-posteriori. In this functionObject we compute:

• Volume integral in a cellZone.

Supplement – More on sampling

26

Visualizing the newly created sets and zones

Check the option Include Sets

to visualize the sets

Check the option Include Zones

to visualize the zones

Select the sets you want to visualize
(faceSet, faceZone, cellSet or cellZone)

cellZone - In white

faceZone - In red

Supplement – More on sampling

27

The functionobject3 dictionary

17 functions

18 {

19

21 surface1_massflow

22 {

23 type surfaceRegion;

24 functionObjectLibs ("libfieldFunctionObjects.so");

25 enabled true;

26

27 writeControl timeStep;

28 writeInterval 1;

29

30 log true;

31 writeFields false;

32

33 regionType sampledSurface;

34 Name dummy;

35

36 sampledSurfaceDict

37 {

38 type sampledTriSurfaceMesh;

39 surface surface1.stl;

40 source cells;

41 interpolate false;

42 }

43

54 operation areaNormalIntegrate;

55 fields

56 (

57 U

58);

59

60 }

• Compute mass flow using areaNormalIntegrate

operation with the field U.

• Using the operation sum with the field phi, will not

work because phi is a surfaceScalarField.

Supplement – More on sampling

28

64 surface2_massflow

65 {

66 type surfaceRegion;

67 functionObjectLibs ("libfieldFunctionObjects.so");

68 enabled true;

69

70 writeControl timeStep;

71 writeInterval 1;

72

73 log true;

74 writeFields false;

75

76 regionType faceZone;

77 name internalfacepatch;

78

79 operation sum;

80 fields

81 (

82 phi

83);

84

85 }

The functionobject3 dictionary

• Compute mass flow using sum operation with the

field phi.

• In this case it works because we are sampling on

a faceZone.

• The faceZone are internal faces of the mesh.

Supplement – More on sampling

29

90 surface3_massflow

91 {

92 type surfaceRegion;

93 functionObjectLibs ("libfieldFunctionObjects.so");

94 enabled true;

95

96 writeControl timeStep;

97 writeInterval 1;

98

99 log true;

100 writeFields false;

101

102 regionType sampledSurface;

103 name dummy;

104

105 sampledSurfaceDict

106 {

107 type sampledTriSurfaceMesh;

108 surface surface2.stl;

109 source cells;

110 interpolate true;

111 }

112

113 operation areaNormalIntegrate;

114 fields

115 (

116 U

117);

118

119 }

The functionobject3 dictionary

Compute mass flow using areaNormalIntegrate

operation with the field U.

In this case we are using a finer surface therefore we

enable the option interpolate.

Supplement – More on sampling

30

123 surface4_massflow

124 {

125 type surfaceRegion;

126 functionObjectLibs ("libfieldFunctionObjects.so");

127 enabled true;

128

129 writeControl timeStep;

130 writeInterval 1;

131

132 log true;

133 writeFields false;

134

135 regionType sampledSurface;

136 name dummy;

137

138 sampledSurfaceDict

139 {

140 type sampledTriSurfaceMesh;

141 surface surface3.stl;

142 source insideCells;

143 interpolate true;

144 }

145

146 operation areaNormalIntegrate;

147 fields

148 (

149 U

150);

151

152 }

The functionobject3 dictionary

Compute mass flow using areaNormalIntegrate

operation with the field U.

Supplement – More on sampling

31

156 plane1_massflow

157 {

158 type surfaceRegion;

159 functionObjectLibs ("libfieldFunctionObjects.so");

160 enabled true;

161

163 writeControl timeStep;

164 writeInterval 1;

165

166 log true;

167 writeFields false;

168

169 regionType sampledSurface;

170 name dummy;

171

172 sampledSurfaceDict

173 {

174 type plane;

175 planeType pointAndNormal;

176 pointAndNormalDict

177 {

178 basePoint (0 0 0.1);

179 normalVector (0 0 1);

180 }

181 }

182

184 operation areaNormalIntegrate;

185 fields

186 (

187 //phi

188 U

189);

190 }

191

193 }

The functionobject3 dictionary

Compute mass flow using areaNormalIntegrate

operation with the field U.

We sample in a plane.

Supplement – More on sampling

32

17 functions

18 {

19

22 cells_fo1

23 {

24 type volRegion;

25 functionObjectLibs ("libfieldFunctionObjects.so");

26 enabled true;

27

28 writeControl timeStep;

29 writeInterval 1;

30

31 log true;

32

33 writeFields false;

34

35 regionType cellZone;

36 name internalcells;

37

38 operation volIntegrate;

39

40 fields

41 (

42 U

43);

44

45 }

97

98 }

99

The functionobject4 dictionary

Compute volIntegrate of the field U.

Remember, we can do cellSource and faceSource

sampling only on cellZone/faceZone.

Supplement – More on sampling

33

Supplement – More on sampling

• Where is located the source code of the utility postProcess?

• Try to do the sampling in parallel? Does it run? What about the output file? Is it the same?

• How many options are there available to do sampling in a line?

• How many options are there available to do sampling in a surface?

• Compute the mass flow at the inlet and outlet patches using the operation sum and areaNormalIntegrate. Do

you get the same output?

• Compute the mass flow at the inlet and outlet patches using paraFoam/ParaView and compare with the output
of the postProcess utility. Do you get the same results?

• Do point, line, and surface sampling using paraFoam/ParaView and compare with the output of the
postProcess utility. Do you get the same results?

Exercises

34

Sampling on points (probing)

35

Supplement – More on sampling

• OpenFOAM® provides the postProcess utility to probe field data for plotting.

• The probing locations are specified in the dictionary probesDict located in the case system

directory.

• You can give any name to the input dictionary, hereafter we are going to name it probesDict.

• During the probing, inside the case directory a new directory named postProcessing, will be

created. In this directory, the sampled values are stored.

• This utility can sample only points.

• Data can be written in many formats, including well-known plotting packages such as:

grace/xmgr, gnuplot and jPlot.

• The probing can be executed by running the utility postProcess in the case directory and

according to the application syntax.

• A final word, this utility does not do the sampling while the solver is running. It does the

sampling after you finish the simulation.

36

Probes location

Laminar flow in a straight pipe – Re = 600

Supplement – More on sampling

37

1. $> postProcess -func probesDict

• We hope you did not erase the previous solution because we will use it to play around with the
probeLocations. In the terminal type:

• This will probe all the saved solutions at the specified locations. It will save time vs. quantity of

interest.

• The sampled information is always saved in the directory (same name as the input file),

• postProcessing/probesDict

• As we started to sample from time 0, the sample data is saved in the directory

• postProcessing/probesDict/0

• The files p, and U, located in the directory postProcessing/probesDict/0 contain the

sampled data. Feel free to open them using your favorite text editor.

Supplement – More on sampling

38

The probesDict dictionary

17 type probes;

18

20 fields

21 (

22 p

23 U

24);

25

27 probeLocations

28 (

29 (0 0 0.025)

30 (0 0 0.050)

31 (0 0 0.075)

32 (0 0 0.10)

33 (0 0 0.125)

34 (0 0 0.150)

35 (0 0 0.175)

36 (0 0 0.20)

37);

Fields to sample. The output files will have the name of the fields.

Probe locations.

Supplement – More on sampling

39

The output files

• The output format of the probing is as follows:

Probe 0 (0 0 0.025)

Probe 1 (0 0 0.05)

Probe 2 (0 0 0.075)

Probe 3 (0 0 0.1)

Probe 0 1 2 3

Time

0 0 0 0 0

0.005 19.1928 16.9497 14.2011 11.7580

0.01 16.6152 14.5294 12.1733 10.0789

…

…

…

Scalars

Supplement – More on sampling

40

The output files

• The output format of the probing is as follows:

Probe 0 (0 0 0.025)

Probe 1 (0 0 0.05)

Probe 2 (0 0 0.075)

Probe 3 (0 0 0.1)

Probe 0 1 2 3

Time

0 (0 0 0) (0 0 0) (0 0 0) (0 0 0)

0.005 (0 0 2.1927) (0 0 2.1927) (0 0 2.1927) (0 0 2.1927)

0.01 (0 0 2.5334) (0 0 2.5334) (0 0 2.5334) (0 0 2.5334)

…

…

…

Vectors

Supplement – More on sampling

41

Supplement – More on sampling

• Try to do the sampling in parallel? Does it run? What about the output file? Is it the same?

• Do the same sampling using paraFoam/paraview and compare with the output of the postProcess utility. Do

you get the same results?

• Compute the descriptive statistics of each column of the output files using gnuplot. Be careful with the

parentheses of the vector files.

(Hint: you can use sed within gnuplot)

Exercises

42

On-the-fly postprocessing

functionObjects and the

postProcess utility

43

Supplement – More on sampling

• It is possible to perform data extraction/manipulation operations while the simulation is running

by using the functionObjects.

• functionObjects are small pieces of code executed at a regular interval without explicitly being

linked to the application.

• When using functionObjects, files of sampled data can be written for plotting and post

processing.

• functionObjects are specified in the controlDict dictionary and executed every time step or

pre-defined intervals.

• All functionObjects are runtime modifiable.

• All the information related to the functionObject is saved in the directory postProcessing or in

the solution directory.

• It is also possible to execute functionObject after simulation is over, we will call this running

functionObject a-posteriori.

44

Supplement – More on sampling

• Let us do some on-the-fly postprocessing.

• Let us revisit the pipe case. Go to the directory:

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of

how to run the case. In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh,

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on. These files can be used to run the case

automatically by typing in the terminal, for example, sh run_solver.

• We highly recommend to open the README.FIRST file and type the commands in the terminal, in this way

you will get used with the command line interface and OpenFOAM® commands.

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases.

$PTOFC/advanced_postprocessing/pipe

45

Mesh and domain

Supplement – More on sampling

46

What are we going to do?

Supplement – More on sampling

• We will use this case to introduce functionObjects.

• We will use the utility postprocess to run functionObjects a-posteriori.

• We will also use the utility postprocess to compute some quantities in patches.

• We will compare the numerical solution with the analytical solution.

• We will do data cleaning and data analytics using shell scripting.

• To find the numerical solution we will use the solver pisoFoam.

• After finding the numerical solution we will do some sampling.

• At the end, we will do some plotting (using gnuplot or Python) and scientific visualization.

47

1. $> foamCleanTutorials

2. $> blockMesh

3. $> checkMesh

4. $> topoSet

5. $> pisoFoam | tee log.solver

7. $> paraFoam

Running the case

Supplement – More on sampling

• Let us run the simulation. In the terminal type:

48

• In step 4 we use the utility topoSet to do mesh topological manipulation. This utility will read

the dictionary topoSetDict located in the system directory. Later on, we will talk about what

are we doing in this step.

• In step 5 we run the simulation and save the log file. In step 6 we use
pyFoamPlotWatcher.py to plot the residuals on-the-fly. As the job is running in background,

we can launch this utility in the same terminal tab.

• Finally, in step 7 we visualize the solution.

• Let us explore the case directory.

• You will notice that we now have a new directory named postProcessing.

• Inside this directory, you will find many subdirectories pointing to the functionObject used.

• By the way, we are saving a large amount of information.

• This is typical of unsteady simulations, and sometimes it can be too daunting to post-process

and analyze the data.

• To ease the pain of doing data analytics and post-processing, you can use shell scripting or

Python scripting.

• Hereafter, we are going to address how to use shell scripting.

Supplement – More on sampling

49

• Inside the directory postProcessing, you will find the following sub-directories:

Supplement – More on sampling

• cells_fo1

• cells_fo2

• field_fo4

• field_fo4.region1

• field_fo4.region2

• forces_object

• inlet_average

• inlet_massflow

• inlet_massflow_posteriori

• innerpatch_massflow

• minmaxdomain

• outlet_areaNormalIntegrate

• outlet_massflow

• outlet_massflow_posteriori

• outlet_max

• plane1_massflow

• pressureDrop

• pressureDrop.region1

• pressureDrop.region2

• probesDict

• probes_fo1

• probes_online

• sampleDict1

• sampleDict2

• sets_fo2

• sets_online

• surface1_massflow

• surface2_massflow

• surface3_massflow

• surface4_massflow

• surfaces_fo3

50

• Inside each sub-directory you will find the time directory 0, this is the time directory from which

we started to sample using functionObject. Inside this directory you will find the sampled

data.

• If you start to sample from time 50, you will find the time directory 50.

• If you stop the simulation and restart it, let us say from time 10, you will find the time directories
0 and 10.

• For line and surface sampling, you will find all the time directories corresponding to the saving

frequency. Inside each directory you will find the sampled data.

• Let us take a look at the general organization of a functionObject.

• The functionObject entry in the controlDict dictionary, contains at least

the following information:

function_object_name

type function_object_to_use;

functionObjectLibs ("function_object_library.so");

enabled true;

writeControl outputTime;

timeStart 0;

timeEnd 20;

//...

//functionObject //

//keywords and sub-dictionaries //

//...

log true;

Name of functionObject

Library to use

functionObject to use

Output frequency

Turn on/off functionObject

Show on screen the output

of the functionObject

Keywords and sub-

dictionaries specific to the

functionObject

Supplement – More on sampling

51

• There are many functionObjects implemented in OpenFOAM®, and sometimes is not very

straightforward how to use a specific functionObject.

• Also, functionObjects can have many options and some limitations.

• Our best advice is to read the doxygen documentation or the source code to learn how to use

functionObjects.

• The source code of the functionObjects is located in the directory:

$WM_PROJECT_DIR/src/postProcessing/functionObjects

• Here after we are going to study a few commonly used functionObjects.

Supplement – More on sampling

52

51 functions

52 {

name_of_the_functionObject_dictionary

{

Dictionary with the functionObject entries

}

113 #include "functionObject0"

114

115 }

• Let us take a look at the bottom of the controlDict

dictionary file.

• Here we define the functionObjects, which are functions

that will do a computation while the simulation is running.

• In this case, we define the functionObjects in the sub-

dictionary functions (lines 51-115).

• Each functionObject we define, has its own name and its

compulsory keywords and entries.

• Notice that in line 113 we use the directive include to call an

external dictionary with the functionObjects definition.

• If you use the include directive, you will need to update the
controlDict dictionary in order to read any modification

done in the included dictionary files.

• By the way, you can give any name to the input files defined

in line 113.

The controlDict dictionary

Supplement – More on sampling

53

56 minmaxdomain

57 {

58 type fieldMinMax;

59

60 functionObjectLibs ("libfieldFunctionObjects.so");

61

62 enabled true;

63

64 mode component;

65

66 writeControl timeStep;

67 writeInterval 1;

68

69 log true;

70

71 fields (p U);

72 }

The controlDict dictionary

• fieldMinMax functionObject

• This functionObject is used to compute the

minimum and maximum values of the field

variables.

• The output of this functionObject is saved in
ascii format in the file fieldMinMax.dat located

in the directory

postProcessing/minmaxdomain/0

• Remember, the name of the directory where the output

data is saved is the same as the name of the

functionObject (line 56).

Supplement – More on sampling

Note:

Use the banana method to know all the options available

for each entry.

54

78 field_averages

79 {

80 type fieldAverage;

81 functionObjectLibs ("libfieldFunctionObjects.so");

82 enabled true;

83

84 writeControl outputTime;

85 //writeControl timeStep;

86 //writeInterval 100;

87

88 //cleanRestart true;

89

90 timeStart 0.05;

91 timeEnd 0.1;

92

93 fields

94 (

95 U

96 {

97 mean on;

98 prime2Mean on;

99 base time;

100 }

101

102 p

103 {

104 mean on;

105 prime2Mean on;

106 base time;

107 }

108);

109 }

The controlDict dictionary

• fieldAverage functionObject

• This functionObject is used to compute the

average values of the field variables.

• The output of this functionObject is saved in the
time solution directories.

Supplement – More on sampling

Note:

Use the banana method to know all the options available

for each entry.

55

The functionObject0 dictionary

19 inlet_massflow

20 {

21

22 type surfaceRegion;

23 functionObjectLibs ("libfieldFunctionObjects.so");

24 enabled true;

25

26 //writeControl outputTime;

27 writeControl timeStep;

28 writesInterval 1;

29

30 log true;

31

32 writeFields false;

33

34 regionType patch;

35 name inlet;

36

37 operation sum;

38 fields

39 (

40 phi

41);

42 }

• faceSource functionObject

• This functionObject is used to compute the

mass flow in a boundary patch.

• In this case, we are sampling the patch inlet.

• We are using the operation sum with the field phi.

This is equivalent to compute the mass flow.

• The output of this functionObject is saved in
ascii format in the file faceSource.dat located

in the directory

postProcessing/inlet_massflow/0

• Remember, the name of the directory where the output

data is saved is the same as the name of the
functionObject (line 19).

Supplement – More on sampling

Note:

Use the banana method to know all the options available

for each entry.

56

The functionObject0 dictionary

48 outlet_massflow

49 {

50 type surfaceRegion;

51 functionObjectLibs ("libfieldFunctionObjects.so");

52 enabled true;

53

54 //writeControl outputTime;

55 writeControl timeStep;

56 writeInterval 1;

57

58 log true;

59

60 writeFields false;

61

62 regionTyp patch;

63 Name outlet;

64

65 operation sum;

66 fields

67 (

68 phi

69);

70 }

• faceSource functionObject

• This functionObject is used to compute the

mass flow in a boundary patch.

• In this case, we are sampling the patch outlet.

• We are using the operation sum with the field phi.

This is equivalent to compute the mass flow.

• The output of this functionObject is saved in
ascii format in the file faceSource.dat located

in the directory

postProcessing/outlet_massflow/0

• Remember, the name of the directory where the output

data is saved is the same as the name of the

functionObject (line 48).

Supplement – More on sampling

Note:

Use the banana method to know all the options available

for each entry.

57

The functionObject0 dictionary

76 probes_online

77 {

78 type probes;

79 functionObjectLibs ("libfieldFunctionObjects.so");

80 enabled true;

81 writeControl outputTime;

82

83 probeLocations

84 (

85 (0 0 0)

86 (0 0 0.1)

87 (0 0 0.2)

88);

89

90 fields

91 (

92 U

93 p

94);

95

96 }

• probes functionObject

• This functionObject is used to probe field data at

the given locations.

• The output of this functionObject is saved in
ascii format in the files p and U located in the

directory

postProcessing/probes_online/0

• Remember, the name of the directory where the output

data is saved is the same as the name of the
functionObject (line 76).

Supplement – More on sampling

Note:

Use the banana method to know all the options available

for each entry.

58

The functionObject0 dictionary

131 pressureDrop

132 {

133 type fieldValueDelta;

134 functionObjectLibs ("libfieldFunctionObjects.so");

135 enabled true;

136

137 region1

138 {

139 writeFields off;

140 type surfaceRegion;

141 regionType patch;

142 name inlet;

143

144 operation sum;

145

146 fields

147 (

148 phi

149);

150 }

151

152 region2

153 {

154 writeFields off;

155 type surfaceRegion;

156 regionType patch;

157 name outlet;

158

159 operation sum;

160

161 fields

162 (

163 phi

164);

165 }

166

167 operation subtract;

168 }

• fieldValueDelta functionObject

• This functionObject is used to compute the

difference/average/min/max of two field values.

• We are using the operation sum with the field phi.

This is equivalent to compute the mass flow.

• We are using the operation subtract between the

two field values.

• The output of this functionObject is saved in
ascii format in the file fieldValueDelta.dat

located in the directory

postProcessing/pressureDrop/0

• Remember, the name of the directory where the output

data is saved is the same as the name of the

functionObject (line 131).

Note:

Use the banana method to know all the options available

for each entry.

Supplement – More on sampling

59

The functionObject0 dictionary

174 innerpatch_massflow

175 {

176 type surfaceRegion;

177 functionObjectLibs ("libfieldFunctionObjects.so");

178 enabled true;

179

180 writeControl timeStep;

181 writeInterval 1;

182

183 log true;

184 writeFields false;

185

186 regionType faceZone;

187 Name internalfacepatch;

188

189 operation sum;

190 fields

191 (

192 phi

193);

194

195 }

• faceSource functionObject

• This functionObject is used to compute the

mass flow in an inner patch.

• In this case, we are sampling the faceZone

internalfacepatch.

• We are using the operation sum with the field phi.

• The output of this functionObject is saved in
ascii format in the file faceSource.dat located

in the directory

postProcessing/innerpatch_massflow/0

• Remember, the name of the directory where the output

data is saved is the same as the name of the

functionObject (line 174).

Supplement – More on sampling

Note:

Use the banana method to know all the options available

for each entry.

60

The functionObject0 dictionary

201 sets_online

202 {

203 type sets;

204 functionObjectLibs ("libfieldFunctionObjects.so");

205 enabled true;

206 writeControl outputTime;

207

208 interpolationScheme cellPointFace;

209 setFormat raw;

210

211 sets

212 (

213

214 set1

215 {

216 type lineCellFace;

217

218 axis x;

219 start (-0.002 -0.002 0.2);

220 end (0.002 0.002 0.2);

221 }

222

223);

224

225 fields

226 (

227 U

228 p

229);

230

231 }

• sets functionObject

• This functionObject is used to sample field data

in a line.

• The output of this functionObject is saved in
ascii format in the files set1_p.xy and

set1_U.xy located in the time directories inside

the folder

postProcessing/sets_online

• Remember, the name of the directory where the output

data is saved is the same as the name of the

functionObject (line 201).

Supplement – More on sampling

Note:

Use the banana method to know all the options available

for each entry.

61

The functionObject0 dictionary

237 forces_object

238 {

239 type forces;

240 functionObjectLibs ("libforces.so");

241 Enabled true;

242

243 //writeControl outputTime;

244 writeControl timeStep;

245 writeInterval 1;

246

247 //// Patches to sample

248 patches ("walls");

249

250 //// Name of fields

251 pName p;

252 Uname U;

253

254 //// Density

255 rho rhoInf;

256 rhoInf 1.;

257

258 //// Centre of rotation

259 CofR (0 0 0);

260 }

• forces functionObject

• This functionObject is used to compute the

forces on a patch.

• In this case, we are sampling the patch walls.

• The output of this functionObject is saved in
ascii format in the file forces.dat located in

the time directories inside the folder

postProcessing/forces_object/0

• Remember, the name of the directory where the output

data is saved is the same as the name of the

functionObject (line 237).

Supplement – More on sampling

Note:

Use the banana method to know all the options available

for each entry.

62

• Sometimes, it can happen that you forget to use a functionObject or you want to execute a

functionObject a-posteriori (when the simulation is over).

• The solution to this problem is to use the solver with the option -postProcess.

• This will only compute the functionObject, it will not rerun the simulation.

• For instance, let us say that you forgot to use a given functionObject.

• Open the dictionary controlDict, add the new functionObject, and type in the terminal,

• $> name_of_the_solver -postProcess –dict dictionary_location

• By proceeding in this way you do not need to rerun the simulation, you just compute the new

functionObject.

Running functionObjects a-posteriori

Supplement – More on sampling

63

• In the directory system, you will find the following functionObjects dictionaries:

functionObject1 , functionObject2 , functionObject3 , functionObject4,

functionObject5 , functionObject6.

• Try to figure out what we are doing in every functionObject dictionary.

• At this point, let us run each the functionObject a-posteriori. In the terminal type:

Supplement – More on sampling

1. $> pisoFoam -postProcess -dict system/functionObject1 | tee log_fo1

2. $> pisoFoam -postProcess -dict system/functionObject2

3. $> pisoFoam -postProcess -dict system/functionObject3 –time 0.05:0.1

4. $> pisoFoam -postProcess -dict system/functionObject4 –noZero

5. $> pisoFoam -postProcess -dict system/functionObject5 –latestTime

6. $> pisoFoam -postProcess -dict system/functionObject6 –latestTime

64

• In this step 1, we are reading the dictionary functionObject1 located in the directory

system (the dictionary file can be located anywhere), and we are doing the computation for all

the saved solutions. Notice that we are redirecting the output to a log file (| tee log_fo1).

• In this step 2, we are reading the dictionary functionObject2 and we are doing the

computation for all saved solutions.

• In this step 3, we are reading the dictionary functionObject3 and we are doing the

computation for the time range 0.05 to 0.1 (–time 0.05:0.1).

• In this step 4, we are reading the dictionary functionObject4 and we are doing the

computation for all the saved solutions, except time zero (–noZero).

• In this step 5, we are reading the dictionary functionObject5 and we are doing the

computation only for he latest save solution (–latestTime).

• In this step 6, we are reading the dictionary functionObject6 and we are doing the

computation only for he latest save solution (–latestTime).

Supplement – More on sampling

65

Some shell and awk scripting

• Let us do some shell and awk scripting on the sampled data.

• Let us go to the directory postprocesssing/minmaxdomain/0

• To erase the parentheses in the file fieldMinMax.dat and save the output in the file

out.txt, type in the terminal:

• $> cat fieldMinMax.dat | tr -d "()" > out.txt

• To extract the velocity from the file out.txt, and save the output in the file vel_minmax.txt,

type in the terminal:

• $> awk '0 == NR % 2' out.txt > vel_minmax.txt

• To extract the pressure from the file out.txt, and save the output in the file

pre_minmax.txt, type in the terminal:

• $> awk '1 == NR % 2' out.txt > pre_minmax.txt

Supplement – More on sampling

66

Some shell and awk scripting

• To erase the header of the file pre_minmax.txt, type in the terminal:

• $> awk '{if (NR!=1) {print}}' pre_minmax.txt > tmp

• $> mv tmp pre_minmax.txt

• To erase the header of the file vel_minmax.txt, type in the terminal:

• $> awk '{if (NR!=1) {print}}' vel_minmax.txt > tmp

• $> mv tmp vel_minmax.txt

• To compute the mean value of the seventh column of the file pre_minmax.txt (maximum

pressure in this case), type in the terminal:

• $> awk 'NR>=50 && NR { total += $7; count++} END { print

“Mean_value ” total/count}' pre_minmax.txt

We are computing the mean value of column 7 starting from row 50

• To compute the mean value of the seventh column of the file vel_minmax.txt (minimum Z

velocity component in this case), type in the terminal:

• $> awk 'NR>=50 && NR { total += $5; count++} END { print

“Mean_value ” total/count}' vel_minmax.txt

We are computing the mean value of column 7 starting from row 50

Supplement – More on sampling

67

• In the directory scripts (located in the top level case directory) you will find the following

scripts that will do some data processing automatically,

• script_cleanfile

• script_cleanforce

• script_extractfields

• script_force_coe

• script_forces

• script_meanvalues

• script_minmax

• script_probes

• To run the scripts you need to be inside the scripts directory. In the terminal type,

• cd scripts

• sh script_name

• Feel free to reuse them and adapt these scripts according to your needs.

Some shell and awk scripting

Supplement – More on sampling

68

• The script script_force_coe will compute the mean value and standard deviation of the lift

and drag coefficients (in this case they are not computed).

• The script script_forces will extract the force components and saved in a clean file.

• The script script_minmax will extract the minimum and maximum values of the field

variables.

• The script script_probes will extract the information of the probes.

We just showed how to compute the average and standard deviation and do some manipulation of

the information saved in the output files, but you can do many things in an automatic way.

The power of scripting!!!

Some shell and awk scripting

Supplement – More on sampling

69

Plotting in gnuplot

• Let us do some plotting using gnuplot. Type in the terminal (you must be inside the scripts

directory):

1. $> sh script_minmax

2. $> gnuplot

3. gnuplot> plot [][] 'vel_minmax.txt' u 1:5 w l title "min v_z",

'' u 1:11 w l title "max v_z"

Supplement – More on sampling

70

Plotting in gnuplot

• Let us do some plotting using gnuplot. Type in the terminal (you must be inside the scripts

directory):

1. gnuplot> plot [][] '< sed "s/[()]/ /g"

../postProcessing/forces_object/0/forces.dat' u 1:7 w l

• In this step we are using sed inside gnuplot to clean the parentheses. If you do not erase the

parentheses in the input file, gnuplot will complain.

Supplement – More on sampling

71

Supplement – More on sampling

• Where is located the source code of the functionObjects?

• Try to run in parallel? Do all functionObjects work properly?

• Try to run functionObjects a-posteriori in parallel? Does it work? Do all functionObjects work properly?

• Compute the Courant number using functionObjects.

• Compute the total pressure and velocity gradient using functionObjects (on-the-fly and a-posteriori).

• Sample data (points, lines and surfaces) using functionObjects (a-posteriori).

• Is it possible to do system calls using functionObjects? If so what functionObjects will you use and how do

you use it? Setup a sample case.

• Is it possible to update dictionaries using functionObjects? If so what functionObjects will you use and how

do you use it? Setup a sample case.

• What are the compulsory entries of the functionObjects.

Exercises

72

