
OpenFOAM® Introductory Training

Online session – 2020 Edition



This work is licensed under a Creative Commons         

Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)  

To view a copy of this license, visit 

http://creativecommons.org/licenses/by-sa/4.0/

• A help is needed, and much appreciated. 

• If you find errors, have suggestions for better wording, figures, or new material, let us know.

• Also, if you find a tutorial that does not work, please let us know.

• Follow-up problems, questions, and suggestions at guerrero@wolfdynamics.com

http://creativecommons.org/licenses/by-sa/4.0/
mailto:guerrero@wolfdynamics.com


This offering is not approved or endorsed by OpenCFD Limited, the 

producer of the OpenFOAM software and owner of the OPENFOAM® and 

OpenCFD® trademarks.

Wolf Dynamics makes no warranty, express or implied, about the 

completeness, accuracy, reliability, suitability, or usefulness of the 

information disclosed in this training material.  This training material is 

intended to provide general information only. Any reliance the final user 

place on this training material is therefore strictly at his/her own risk.  Under 

no circumstances and under no legal theory shall Wolf Dynamics be liable 

for any loss, damage or injury, arising directly or indirectly from the use or 

misuse of the information contained in this training material.

Revision 1-2020

JG

Disclaimer



Acknowledgements

This training material and tutorials are based upon personal experience, OpenFOAM® source 

code, OpenFOAM® user guide, OpenFOAM® programmer’s guide, and presentations from 

previous OpenFOAM® training sessions and OpenFOAM® workshops. 

We gratefully acknowledge the following OpenFOAM® users for sharing online their material or for 

giving us their consent to use their material:

• Henry Weller and Chris Greenshields. The OpenFOAM Foundation.

• Hrvoje Jasak and Henrik Rusche. Wikki Ltd.

• Eugene de Villiers, Paolo Geremia, and Dan Combest. Engys.

• Hakan Nilsson. Chalmers University of Technology.

• Eric Paterson. Pennsylvania State University.

• Gavin Tabor. University of Exeter.

• Fumiya Nozaki. Yokohama, Japan.

• Marwan Darwish. American University of Beirut.

• Kevin Maki. University of Michigan.

• Tobias Holzmann. HolzmannCFD.



Acknowledgements

The following people have contributed directly to the development of this training material:

• Edoardo Alinovi.

• Matteo Bargiacchi.

• Mattia Cavaiola.

• Peyman Davvalo Khongar.

• Sehrish Naqvi.

• Damiano Natali.

• Stefano Olivieri.

• Biniyam Sishah.

• Giuseppe Zampogna.



The following typographical conventions are used in this 

training material

On the training material

• Text in Courier new font indicates Linux commands that should be typed literally by the user 

in the terminal.

• Text in Courier new bold font indicates directories.

• Text in Courier new italic font indicates human readable files or ascii files.

• Text in Arial bold font indicates program elements such as variables, function names, classes, 

statements and so on.  It also indicate environment variables, and keywords. They also 

highlight important information.

• Text in Arial underline in blue font indicates URLs and email addresses.

• This icon          indicates a warning or a caution.

• This icon          indicates a tip, suggestion, or a general note.

• This icon          indicates a folder or directory.

• This icon          indicates a human readable file (ascii file).

• This icon          indicates that the figure is an animation (animated gif).

• These characters $> indicate that a Linux command should be typed literally by the user in the 

terminal.



• Large code listing, ascii files listing, and screen outputs can be written in 

a square box, as follows:

1 #include <iostream>

2 using namespace std;

3

4 // main() is where program execution begins.  It is the main function.

5 // Every program in c++ must have this main function declared

6

7 int main ()

8 {

9 cout << "Hello world";   //prints Hello world

10 return 0; //returns nothing

11 }

• To improve readability, the text might be colored.

• The font can be Courier new or Arial bold.

• And when required, the line number will be shown.

On the training material

The following typographical conventions are used in this 

training material



• In the USB key you will find all the training material (tutorials, slides, quick reference guides, OpenFOAM® 

user guide, OpenFOAM® programmers manual, and lectures notes).

• You can extract the training material wherever you want. However, we highly recommend to extract all the 

training material in your OpenFOAM® user directory. 

• From now on, we will refer to the directory where you extracted the training material as,

• $PTOFC 
(abbreviation of Path To OpenFOAM® Course)

• To uncompress the tutorials go to the directory where you copied the training material and then type in the 

terminal,

• $> tar –zxvf file_name.tar.gz

• In every single tutorial, you will find the file README.FIRST. In this file you will find the general instructions of 

how to run the case.  You will also find some additional comments.

• In some cases, you will also find additional files with the extension .sh.  These files can be used to run the 
case automatically, but we highly recommend to open the README.FIRST file and type the commands in the 

terminal, in this way you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

• You will find the automatic scripts in the cases explained in the lectures notes and some random cases.

• A word of caution, use the tutorials included in the training material just for recreational, instructional,              

or learning purposes and not for validation, benchmarking or as standard  practices.

Training material

On the training material



• At the end of each section, you will find an exercise section.

• The exercise section is optional, self-paced, and do it at anytime.

• The proposed exercises are designed to test your knowledge and to 

reinforce the concepts addressed during the lectures.

• All the concepts to be addressed in the exercise sections have been treated 

in the lecture notes, so the reader should not have problems answering the 

questions.

• If you have doubts, do not hesitate in asking.

• To help you answering the exercises, we might give you a few tips.

• And if it is necessary, the solution will be given. 

Exercises

On the training material



Housekeeping issues

• What OpenFOAM® version are we going to use?

• During this training we are going to use OpenFOAM® version 8. 

• The one developed by OpenCFD Ltd (http://www.openfoam.org/).

• What Linux flavor should I use? 

• We use OpenSUSE 15.1 or 15.2, but you are free to use any Linux flavor.

• What Linux shell should I use?

• During this training we are going to use the BASH shell.  If you want to know what shell 

you are using, type in the terminal

• $> echo $SHELL

• If the output is /bin/bash, you are using BASH shell.

• If your output is something else, you are not using BASH shell.  In this case, to start using 

BASH shell type in the terminal,

• $> bash

• If you do not know what is the terminal or how to use Linux, do not worry we are going to 

give a quick introduction later.

http://www.openfoam.org/


Training agenda

Module 0.

• Training agenda

• On the training material

• Housekeeping issues

• Additional information

Module 1.

• Introduction to OpenFOAM®

• A few OpenFOAM® simulations 

• Library organization

• OpenFOAM® 101 – My first tutorial

Module 2.

• Solid modeling for CFD – Introduction to Onshape

Module 3.

• Meshing preliminaries

• Mesh quality assessment

• Meshing in OpenFOAM® – blockMesh and snappyHexMesh

• Mesh conversion and manipulation

Module 4.

• Running in parallel 

Module 5.

• Sampling and plotting

• Data conversion

Module 6.

• The finite volume method.  A crash introduction

• On the CFL number

• Boundary conditions and initial conditions

• Unsteady and steady simulations

• Assessing convergence

• Velocity pressure-coupling

• Linear solvers

Module 7.

• Implementing boundary conditions and initial conditions using 

codeStream

Module 8.

• Advanced modeling capabilities:

• Turbulence modeling

• Multiphase flows

• Compressible flows

• Moving reference frames and sliding grids

• Moving bodies and rigid body motion

• Source terms and passive scalars



Training agenda

Week 1.

• Course presentation, introduction to OpenFOAM®, running my first simulations, running in parallel

Week 2.

• Solid modeling using Onshape, mesh generation, mesh quality assessment, qualitative and quantitative 

postprocessing, scientific visualization

Week 3.

• Introduction to the finite volume method, numerical playground, best standard practices in CFD and 

OpenFOAM®, implementing boundary conditions and initial conditions using codeStream

Week 4.

• Implementing boundary conditions and initial conditions using codeStream (continuation), advanced physical 

models (turbulence, multiphase, compressible flows, dynamic meshes, source terms).

Week 5.

• Advanced physical models (continuation), extra topics (supplements), tips and tricks, closing remarks



Training agenda

Week 1.

• Module 0, Module 1, Module 4

Week 2.

• Module 2, Module 3, Module 5

Week 3.

• Module 6, Module 7

Week 4.

• Module 7, Module 8

Week 5.

• Module 8, extra topics



• The training agenda is organized in such a way that we will address the whole CFD simulation workflow.

Training agenda
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Module 1
OpenFOAM® overview – First tutorial –

Working our way in OpenFOAM® 



Roadmap

1. OpenFOAM® brief overview

2. OpenFOAM® directory organization

3. Directory structure of an application/utility

4. Applications/utilities in OpenFOAM®

5. Directory structure of an OpenFOAM® case

6. Running my first OpenFOAM® case setup blindfold

7. A deeper view to my first OpenFOAM® case setup

8. 3D Dam break – Free surface flow

9. Flow past a cylinder – From laminar to turbulent flow
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OpenFOAM® brief overview

General description:

• OpenFOAM® stands for Open Source Field Operation and Manipulation.

• OpenFOAM® is first and foremost a C++ library used to solve partial 

differential equations (PDEs), and ordinary differential equations (ODEs).

• It comes with several ready-to-use or out-of-the-box solvers, pre-processing 

utilities, and post-processing utilities. 

• It is licensed under the GNU General Public License (GPL).  That means it is 

freely available and distributed with the source code.

• It can be used in massively parallel computers. No need to pay for separate 

licenses.

• It is under active development.

• It counts with a wide-spread community around the world (industry, 

academia and research labs).

3



Multi-physics simulation capabilities:

• OpenFOAM® has extensive multi-physics simulation capabilities, among 

others:

• Computational fluid dynamics (incompressible and compressible flows).

• Computational heat transfer and conjugate heat transfer.

• Combustion and chemical reactions. 

• Multiphase flows and mass transfer.

• Particle methods (DEM, DSMC, MD) and lagrangian particles tracking.

• Stress analysis and fluid-structure interaction.

• Rotating frames of reference, arbitrary mesh interface, dynamic mesh 

handling, and adaptive mesh refinement.

• 6 DOF solvers, ODE solvers, computational aero-acoustics, 

computational electromagnetics, computational solid mechanics, MHD.

OpenFOAM® brief overview
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Physical modeling library: 

• OpenFOAM® comes with many physical models, among others:

• Extensive turbulence modeling capabilities (RANS, DES and LES).

• Transport/rheology models. Newtonian and non-Newtonian viscosity 

models.

• Thermophysical models and physical properties for liquids and gases.

• Source terms models.

• Lagrangian particle models.

• Interphase momentum transfer models for multiphase flows.

• Combustion, flame speed, chemical reactions, porous media, radiation, 

phase change.

OpenFOAM® brief overview
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Under the hood you will find the following:

• Finite Volume Method (FVM) based solver.

• Collocated polyhedral unstructured meshes.

• Second order accuracy in space and time.  Many discretization schemes 

available (including high order methods).

• Steady and transient solvers available.

• Pressure-velocity coupling via segregated methods (SIMPLE and PISO). 

• But coupled solvers are under active development.

• Massive parallelism through domain decomposition.

• It comes with its own mesh generation tools.

• It also comes with many mesh manipulation and conversion utilities. 

• It comes with many post-processing utilities.

• All components implemented in library form for easy re-use.

OpenFOAM® brief overview
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OpenFOAM® vs. Commercial CFD applications:

• OpenFOAM® capabilities mirror those of commercial CFD applications.

• The main differences with commercial CFD applications are:

• There is no native GUI.

• It does not come with predefined setups.  The users need to have a basic 

understanding of the CFD basics and be familiar with OpenFOAM® command 

line interface (CLI).

• Knowing your way around the Linux bash shell is extremely useful.

• It is not a single executable. Depending of what you are looking for, you will 

need to execute a specific application from the CLI.

• It is not well documented, but the source code is available.

• Access to complete source = no black magic.  But to understand the source 

code you need to know object-oriented programming and C++.

• Solvers can be tailored for a specific need, therefore OpenFOAM® is ideal for 

research and development. 

• It is free and has no limitation on the number of cores you can use.

OpenFOAM® brief overview

7



Developing new solvers (in case you need it):

• As the user has complete access to the source code, she/he has total 

freedom to modify existing solvers or use them as the starting point for new 

solvers.

• New solvers can be easily implemented using OpenFOAM® high level 

programming,  e.g.:

OpenFOAM® brief overview

solve

(

fvm::ddt(T)

+ fvm::div(phi,T)

- fvm::laplacian(nu,T)

==

0

);

Correspondence between the implementation and the original equation is clear.

8



OpenFOAM® is an excellent piece of C++ 

and software engineering. Decent piece of 

CFD code.

H. Jasak

OpenFOAM® brief overview
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Roadmap

1. OpenFOAM® brief overview

2. OpenFOAM® directory organization

3. Directory structure of an application/utility

4. Applications/utilities in OpenFOAM®

5. Directory structure of an OpenFOAM® case

6. Running my first OpenFOAM® case setup blindfold

7. A deeper view to my first OpenFOAM® case setup

8. 3D Dam break – Free surface flow

9. Flow past a cylinder – From laminar to turbulent flow
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If you installed OpenFOAM® in the default location, the 
environment variable $WM_PROJECT_DIR should point 

to the following directory (depending on the installed 

version):

$HOME/OpenFOAM/OpenFOAM-8

or

$HOME/OpenFOAM/OpenFOAM-dev

In this directory you will find all the files containing 

OpenFOAM® installation. 

In this directory you will also find additional files (such as 
README.org, COPYING, etc.), but the most important 

one is Allwmake, which compiles OpenFOAM®.

OpenFOAM® directory organization

$WM_PROJECT_DIR 

├── Allwmake

├── applications

├── bin

├── COPYING

├── doc

├── etc

├── platforms

├── README.org

├── src

├── tutorials

└── wmake

11



OpenFOAM® environment variables

The entries starting with the symbol $ are environment 

variables. You can find out the value of an environment 

variable by echoing its value, for example:

$> echo $WM_PROJECT_DIR

will print out the following information on the terminal,

$HOME/OpenFOAM/OpenFOAM-8

To list all the environment variables type in the terminal 

window,

$> env

To list all the environment variables related to 

OpenFOAM®, type in the terminal:

$> env | grep –i “OpenFOAM”

OpenFOAM® directory organization

$WM_PROJECT_DIR 

├── Allwmake

├── applications

├── bin

├── COPYING

├── doc

├── etc

├── platforms

├── README.org

├── src

├── tutorials

└── wmake
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OpenFOAM® aliases

You can go to any of these directories by using the 

predefined aliases set by OpenFOAM® (refer to 
$WM_PROJECT_DIR/etc/config.sh/aliases or 

$WM_PROJECT_DIR/etc/config.csh/aliases).  

Just to name a few of the aliases defined:

alias foam=‘cd $WM_PROJECT_DIR’

alias app=‘cd $FOAM_APP’

alias src=‘cd $FOAM_SRC’

alias tut=‘cd $FOAM_TUTORIALS’

For a complete list type  alias in the terminal.

To list all the aliases related to OpenFOAM®, type in the 

terminal:

$> alias | grep -i “FOAM”

OpenFOAM® directory organization

$WM_PROJECT_DIR 

├── Allwmake

├── applications

├── bin

├── COPYING

├── doc

├── etc

├── platforms

├── README.org

├── src

├── tutorials

└── wmake
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OpenFOAM® directory organization

$WM_PROJECT_DIR 

├── Allwmake

├── applications

├── bin

├── COPYING

├── doc

├── etc

├── platforms

├── README.org

├── src

├── tutorials

└── wmake

Let us study each directory inside 
$WM_PROJECT_DIR

• Any modification you add to the source code in 
WM_PROJECT_DIR will affect the whole library.

• Unless you know what are you doing,  do not 

modify anything in the original installation 
($WM_PROJECT_DIR), except for updates!

14



OpenFOAM® directory organization

Let us visit the applications directory. Type in the terminal app or                                       

$> cd $WM_PROJECT_DIR/applications.  You will find the following sub-directories:

• solvers, which contains the source code for the distributed solvers.

• test, which contains the source code of several test cases that show the usage of 

some of the OpenFOAM® classes.

• utilities, which contains the source code for the distributed utilities.

There is also an Allwmake script, which will compile all the content of solvers and 

utilities. To compile the test cases in test go to the desired test case directory and 

compile it by typing wmake.

$WM_PROJECT_DIR/applications 

├── Allwmake

├── solvers

├── test

└── utilities

The applications directory

15



OpenFOAM® directory organization

Let us visit the bin directory:

• The bin directory contains many shell 

scripts, such as foamNew, foamLog, 

foamJob, foamNewApp, etc.

• This directory also contains the script 
paraFoam that will launch paraView.

The bin directory

$WM_PROJECT_DIR/bin/

├── foamCleanPolyMesh

├── foamCleanTutorials

├── foamCloneCase

├── foamJob

├── foamLog

├── foamMonitor

├── foamNew

├── foamNewApp

├── foamNewBC

├── foamNewFunctionObject

├── paraFoam

├── ...

└── tools

The directory tree is not complete
16



OpenFOAM® directory organization

Let us visit the doc directory:

• The doc directory contains the documentation 

of OpenFOAM®, namely; user guide, 

programmer’s guide and Doxygen generated 

documentation in html format.

• The Doxygen documentation needs to be 
compiled by typing Allwmake doc in 

$WM_PROJECT_DIR. 

• You can access the Doxygen documentation 

online, http://cpp.openfoam.org/v8

The doc directory

$WM_PROJECT_DIR/doc/

├── Allwmake

├── codingStyleGuide.org

├── Doxygen

├── Guides

└── tools

17
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OpenFOAM® directory organization

Let us visit the etc directory:

• The etc directory contains the environment  

files, global OpenFOAM® instructions, 

templates, and the default thermochemical 
database thermoData/thermoData

• In the directory caseDicts, you will find many 

templates related to the input files used to setup 

a case in OpenFOAM®. We recommend you 

take some time and explore these files.

• It also contains the super dictionary 
controlDict, where you can set several 

debug flags and the defaults units.

The etc directory

$WM_PROJECT_DIR/etc/

├── bashrc

├── caseDicts

├── cellModels

├── codeTemplates

├── config.csh

├── config.sh

├── controlDict

├── cshrc

├── paraFoam

├── README.org

├── templates

└── thermoData

18



OpenFOAM® directory organization

Let us visit the platforms directory. 

• This directory contains the binaries generated when compiling the applications

directory and the libraries generated by compiling the source code in the src directory.

• After compilation, the binaries will be located in the directory 
$WM_PROJECT_DIR/platforms/linux64GccDPInt32OptSYSTEMOPENMPI/bin 

$WM_PROJECT_DIR/platforms/linux64GccDPOpt/lib).

• After compilation, the libraries will be located in the directory 
$WM_PROJECT_DIR/platforms/linux64GccDPInt32OptSYSTEMOPENMPI/lib

The platforms directory

$WM_PROJECT_DIR/platforms/

├── linux64GccDPInt32Opt

│ ├── applications

│ ├── bin

│ ├── lib

│ └── src

└── linux64GccDPInt32OptSYSTEMOPENMPI

└── src

19



Let us visit the src directory. Type in the terminal 

src or $> cd $WM_PROJECT_DIR/src

• This directory contains the source code for all 

the foundation libraries, this is the core of 

OpenFOAM®.  

• It is divided in different subdirectories and each 

of them can contain several libraries.

A few interesting directories are:

• OpenFOAM. This core library includes the 

definitions of the containers used for the 

operations, the field definitions, the declaration 

of the mesh and mesh features such as zones 

and sets.

OpenFOAM® directory organization

The src directory

$WM_PROJECT_DIR/src

├── Allwmake

├── combustionModels

├── finiteVolume

├── fvOptions

├── lagrangian

├── ...

├── OpenFOAM

├── parallel

├── MomentumTransportModels

├── sampling

├── sixDoFRigidBodyMotion

├── thermophysicalModels

├── transportModels

└── waves

The directory tree is not complete
20



A few interesting directories are:

• finiteVolume. This library provides all the 

classes needed for the finite volume 

discretization, such as mesh handling, finite 

volume discretization operators (divergence, 

laplacian, gradient, fvc/fvm and so on), and 

boundary conditions. In the directory 
finiteVolume/lnInclude you also find the 

very important file fvCFD.H, which is included 

in most applications.

• MomentumTransportModels, which contains 

many turbulence models.

• sixDoFRigidBodyMotion. This core library 

contains the solver for rigid body motion.

• transportModels. This core library contains 

many transport models.

OpenFOAM® directory organization

The src directory

The directory tree is not complete
21

$WM_PROJECT_DIR/src

├── Allwmake

├── combustionModels

├── finiteVolume

├── fvOptions

├── lagrangian

├── ...

├── OpenFOAM

├── parallel

├── MomentumTransportModels

├── sampling

├── sixDoFRigidBodyMotion

├── thermophysicalModels

├── transportModels

└── waves



OpenFOAM® directory organization

The tutorials directory

$WM_PROJECT_DIR/tutorials/

├── Allclean

├── Allrun

├── Alltest

├── basic

├── combustion

├── compressible

├── discreteMethods

├── DNS

├── electromagnetics

├── financial

├── heatTransfer

├── incompressible

├── IO

├── lagrangian

├── mesh

├── multiphase

├── resources

└── stressAnalysis

Let us visit the tutorials directory. Type in the 

terminal tut or

$> cd $WM_PROJECT_DIR/tutorials

• The tutorials directory contains example 

cases for each solver.  These are the tutorials 

distributed with OpenFOAM®.

• They are organized according to the physics 

involved.

• Use these tutorials as the starting point to 

develop you own cases.

• A word of caution, do not use these     

tutorials as  best practices, they are          

there just to show how to use the 

applications.

22



OpenFOAM® directory organization

The wmake directory

$WM_PROJECT_DIR/wmake/

├── makefiles

├── platforms

├── rules

├── scripts

├── src

├── wclean

├── wcleanLnIncludeAll

├── wcleanPlatform

├── wdep

├── wmake

├── ...

├── wmakeFilesAndOptions

├── wmakeLnInclude

├── wmakeLnIncludeAll

├── ...

└── wrmo

Let us visit the wmake directory.

• OpenFOAM® uses a special make 
command: wmake

• wmake understands the file structure in 

OpenFOAM® and uses default compiler 

directives set in this directory.

• If you add a new compiler name in 
OpenFOAM® bashrc file, you should also 

tell wmake how to interpret that name. 

• In wmake/rules you will find the default 

settings for the available compilers.

• In this directory, you will also find a few 

scripts that are useful when organizing your 

files for compilation, or for cleaning up. 

The directory tree is not complete
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• Let us now study OpenFOAM® user directory $WM_PROJECT_USER_DIR 

• When working with OpenFOAM®, you can put your files wherever you want.

• To keep things in order, it is recommended to put your cases in your 
OpenFOAM® user directory or $WM_PROJECT_USER_DIR. 

• It is also recommended to put your modified solvers, utilities, and libraries in 
your OpenFOAM® user directory or $WM_PROJECT_USER_DIR. This is done so 

you do not modify anything in the original installation. 

• If you followed the standard installation instructions, the variable 
$WM_PROJECT_USER_DIR should point to the directory               

$HOME/OpenFOAM/USER_NAME-8, where USER_NAME is the name of the 

user (e.g., johnDoe).

OpenFOAM® directory organization

$HOME/OpenFOAM/

├── $WM_PROJECT_USER_DIR      

└── $WM_PROJECT_DIR

OpenFOAM® user directory
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Looking for information in OpenFOAM® source code 

• To locate files you can use the find command.  

• If you want to locate a directory inside $WM_PROJECT_DIR that contains the string fvPatch in 

its name, you can proceed as follows,

• $> find $WM_PROJECT_DIR –type d -name “*fvPatch*”

• If you want to locate a file inside $WM_PROJECT_DIR that contains the string fvPatch in its 

name, you can proceed as follows,

• $> find $WM_PROJECT_DIR –type f -name “*fvPatch*”

• If you want to find a string inside a file, you can use the grep command.

• For example, if you want to find the string LES inside all the files within the directory

$FOAM_SOLVERS, you can proceed as follows,

• $> grep -r -n “LES” $FOAM_SOLVERS 

The argument -r means recursive and -n will output the line number.

OpenFOAM® directory organization

Where to look for Look for 

directories
Case 

sensitive

Look for this 

(using wildcards)

Where to look for Look for 

files
Case 

sensitive

Look for this 

(using wildcards)
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• Dictionaries are input files required by OpenFOAM®.

• As you can imagine, there are many dictionaries in OpenFOAM®.  The easiest way to find all of 

them is to do a local search in the installation directory as follows,

• For instance, if you are interested in finding all the files that end with the Dict word in the 
tutorials directory, in the terminal type: 

• $> find $FOAM_TUTORIALS -name “*Dict”

(Case sensitive search)

• $> find $FOAM_TUTORIALS –iname ‘*dict’

(Non-case sensitive search)

• When given the search string, you can use single quotes ‘ ’ or double-quotes “ ” (do not mixed 

them).  

• We recommend to use single quotes, but it is up to you.

Looking for information in OpenFOAM® source code 

OpenFOAM® directory organization
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• A few more advanced commands to find information in your OpenFOAM® installation.

• To find which tutorial files use the boundary condition slip: 

• $> find $FOAM_TUTORIALS -type f | xargs grep -sl ‘ slip’

This command will look for all files inside the directory $FOAM_TUTORIALS, then the 

output is used by grep to search for the string slip.

• To find where the source code for the boundary condition slip is located: 

• $> find $FOAM_SRC -name “*slip*”

• To find what applications do not run in parallel:

• $> find $WM_PROJECT_DIR -type f | xargs grep -sl ‘noParallel’

• OpenFOAM® understands REGEX syntax.

Looking for information in OpenFOAM® source code 

OpenFOAM® directory organization
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Environment variables

OpenFOAM® directory organization

• Remember, OpenFOAM® uses its own environment variables.

• OpenFOAM® environment settings are contained in the OpenFOAM-8/etc directory. 

• If you installed OpenFOAM® in the default location, they should be in:

• $HOME/OpenFOAM/OpenFOAM-8/etc

• If you are running bash or ksh (if in doubt type in the terminal echo $SHELL), you sourced the 

$WM_PROJECT_DIR/etc/bashrc file by adding the following line to your $HOME/.bashrc 

file: 

• source $HOME/OpenFOAM/OpenFOAM-8/etc/bashrc

• By sourcing the file $WM_PROJECT_DIR/etc/bashrc, we start to use OpenFOAM®

environment variables.

• By default, OpenFOAM® uses the system compiler and the system MPI compiler. 

• When you use OpenFOAM® you are using its environment settings, that is, its

path to libraries and compilers. So if you are doing software developing, and

you are having compilation problems due to conflicting libraries or missing

compilers, try to unload OpenFOAM® environment variables
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Directory structure of an OpenFOAM® application/utility

The $WM_PROJECT_DIR/applications/solvers/solverName/ directory contains the 

source code of the solver.

• solverName/appName.C: is the actual source code of the solver.

• solverName/createFields.H: declares all the field variables and initializes the solution.

• The Make directory contains compilation instructions.

• Make/files: names all the source files (.C), it specifies the solverName name and 

location of the output file.

• Make/options: specifies directories to search for include files and libraries to link the 

solver against. 

$WM_PROJECT_DIR/applications/solvers/solverName/

├── createFields.H

├── appName.C

└── Make

├── files

└── options

Directory structure of a general solver 
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The $WM_PROJECT_DIR/utilities/utilityName/ directory contains the source code of 

the utility.

• utilityName/utilityName.C: is the actual source code of the application.

• utilityName/header_files.H: header files required to compile the application.

• utilityName/utility_dictionary: application’s master dictionary.

• The Make directory contains compilation instructions.

• Make/files: names all the source files (.C), it specifies the utilityName name 

and location of the output file.

• Make/options: specifies directories to search for include files and libraries to link the 

solver against. 

$WM_PROJECT_DIR/applications/utilities/utilityName/

├── utility_dictionary

├── utilityName.C

├── header_files.H

└── Make

├── files

└── options

Directory structure of a general utility 

Directory structure of an OpenFOAM® application/utility
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• For your own solvers and utilities, it is recommended to put the source code 
in the directory $WM_PROJECT_USER_DIR following the same structure as 

in  $WM_PROJECT_DIR/applications/solvers and

$WM_PROJECT_DIR/utilities/.

• Also, you will need to modify the files Make/files and Make/options to 

point to the new name and location of the compiled binaries and libraries to 

link the solver against.

• You can do anything you want to your own copies, so you do not risk 

messing things up.

• This is done so you do not modify anything in the original installation, except 

for updates! 

Directory structure of an OpenFOAM® application/utility
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• OpenFOAM® is not a single executable.

• Depending of what you want to do, you will need to use a specific application and 

there are many of them.

• If you are interested in knowing all the solvers, utilities, and libraries that come with 

your OpenFOAM® distribution, read the applications and libraries section in the user 

guide (chapter 3). 

• In the directory $WM_PROJECT_DIR/doc you will find the documentation in pdf 

format.  

• You can also access the online user guide. Go to the link 

http://cfd.direct/openfoam/user-guide/#contents, then go to chapter 3 (applications 

and libraries).

• If you want to get help on how to run an application, type in terminal

Applications/utilities in OpenFOAM®

1. $> application_name -help

• The option –help will not run the application; it will only show all the options 

available.

• You can also get all the help you want from the source code.
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• You will find all the applications in the directory $FOAM_SOLVERS (you can use the 

alias sol to go there).

• You will find all the utilities in the directory $FOAM_UTILITIES (you can use the alias

util to go there).

• For example, in the directory $FOAM_SOLVERS, you will find the directories containing 

the source code for the solvers available in the OpenFOAM® installation (version 8):

Applications/utilities in OpenFOAM®

• basic  

• combustion  

• compressible  

• discreteMethods  

• DNS  

• electromagnetics 

• financial 

• heatTransfer  

• incompressible  

• lagrangian  

• multiphase  

• stressAnalysis

• The solvers are subdivided according to the physics they address.

• The utilities are also subdivided in a similar way.
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Applications/utilities in OpenFOAM®

• For example, in the sub-directory incompressible you will find several sub-

directories containing the source code of the following solvers:

• adjointShapeOptimizationFoam  

• boundaryFoam    

• icoFoam  

• nonNewtonianIcoFoam  

• pimpleFoam  

• pisoFoam   

• shallowWaterFoam  

• simpleFoam

• Inside each directory, you will find a file with the extension *.C and the same name 

as the directory. This is the main file, where you will find the top-level source code 

and a short description of the solver or utility. 

• For example, in the file incompressible/icoFoam/icoFoam.C you will find the 

following description:

Transient solver for incompressible, laminar flow of Newtonian fluids.
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• Remember, OpenFOAM® is not a single executable.

• You will need to find the solver or utility that best fit what you want to do.

• A few solvers that we will use during this course:

• icoFoam: laminar incompressible unsteady solver. Be careful, do not use this 

solver for production runs as it has many limitations.

• simpleFoam: incompressible steady solver for laminar/turbulent flows.

• pimpleFoam: incompressible unsteady solver for laminar/turbulent flows.

• rhoSimpleFoam: compressible steady solver for laminar/turbulent flows.

• rhoPimpleFoam: unsteady compressible solver for (laminar/turbulent flows.

• interFoam: unsteady multiphase solver for separated flows using the VOF 

method (laminar and turbulent flows).

• laplacianFoam: Laplace equation solver.

• potentialFoam: potential flow solver.

• scalarTransportFoam: steady/unsteady general transport equation solver.

Applications/utilities in OpenFOAM®
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• Take your time and explore the source code. 

• Also, while exploring the source code be careful not to add unwanted modifications in 

the original installation. 

• If you modify the source code, be sure to do the modifications in your user directory 

instead of the main source code.

Applications/utilities in OpenFOAM®
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Directory structure of an OpenFOAM® case

case_name

├── 0

│ ├── p

│ └── U

├── constant

│ ├── polyMesh

│ │ ├── boundary

│ │ ├── faces

│ │ ├── neighbour

│ │ ├── owner

│ │ └── points

│ └── transportProperties

├── system

│    ├── controlDict

│    ├── fvSchemes

│    └── fvSolution

└── time_directories

Directory structure of a general case 

• OpenFOAM® uses a very particular directory 

structure for running cases.

• You should always follow the directory structure, 

otherwise, OpenFOAM® will complain.

• To keep everything in order, the case directory is 

often located in the path 
$WM_PROJECT_USER_DIR/run.

• This is not compulsory but highly advisable. You can 

copy the case files anywhere you want. 

• The name of the case directory is given by the user 

(do not use white spaces or strange symbols).   

• Depending of the solver or application you would like 

to use, you will need different files in each sub-

directory.

• Remember, you always run the applications and 

utilities in the top level of the case directory (the 

directory with the name case_name). Not in the 
directory system, not in the directory constant, not 

in the directory 0. 
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Directory structure of an OpenFOAM® case

case_name

├── 0

│ ├── p

│ └── U

├── constant

│ ├── polyMesh

│ │ ├── boundary

│ │ ├── faces

│ │ ├── neighbour

│ │ ├── owner

│ │ └── points

│ └── transportProperties

├── system

│    ├── controlDict

│    ├── fvSchemes

│    └── fvSolution

└── time_directories

Directory structure of a general case 

case_name: the name of the case directory is given by 

the user (do not use white spaces or strange 

symbols). 

This is the top-level directory, where you run the 

applications and utilities. 

system: contains run-time control and solver 

numerics. 

constant: contains physical properties, 

turbulence modeling properties, advanced physics 

and so on.

constant/polyMesh: contains the 

polyhedral mesh information.

0: contains boundary conditions (BC) and initial 

conditions (IC).

time_directories: contains the solution and 

derived fields.  These directories are created by the 

solver automatically and according to the preset 

saving frequency, e.g., 1, 2, 3, 4, … , 100.
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Before we start – Always remember the directory structure

case_name

├── 0

├── constant

│ └── polyMesh

├── system

└── time_directories

• To keep everything in order, the case directory is often located in the path 
$WM_PROJECT_USER_DIR/run.   

• This is not compulsory but highly advisable, you can put the case in any directory of your preference. 

• The name of the case directory if given by the user (do not use white spaces).   

• You run the applications and utilities in the top level of this directory.

• The directory system contains run-time control and solver numerics.

• The directory constant contains physical properties, turbulence modeling properties, advanced physics 

and so on.

• The directory constant/polyMesh contains the polyhedral mesh information.

• The directory 0 contains boundary conditions (BC) and initial conditions (IC).

Running my first OpenFOAM® case setup blindfold
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Before we start – Setting OpenFOAM® cases

• As you will see, it is quite difficult to remember all the dictionary files needed to run 

each application.

• It is even more difficult to recall the compulsory and optional entries of each input file.

• When setting a case from scratch in OpenFOAM®, what you need to do is find a 

tutorial or a case that close enough does what you want to do and then you can adapt 

it to your physics. 

• Having this in mind, you have two sources of information:

• $WM_PROJECT_DIR/tutorials 
(The tutorials distributed with OpenFOAM®) 

• $PTOFC 
(The tutorials used during this training) 

• If you use a GUI, things are much easier.  However, OpenFOAM® does not come 

with a native GUI interface.

• We are going to do things in the hard way (and maybe the smart way), we are going 

to use the Linux terminal

Running my first OpenFOAM® case setup blindfold
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Running my first OpenFOAM® case setup blindfold

Flow in a lid-driven square cavity – Re = 100

Incompressible flow

Physical and numerical side of the 

problem:

• The governing equations of the problem are the 

incompressible laminar Navier-Stokes equations.

• We are going to work in a 2D domain, but the 

problem can be easily extended to 3D.

• To find the numerical solution we need to 

discretize the domain (mesh generation), set the 

boundary and initial conditions, define the flow 

properties, setup the numerical scheme and solver 

settings, and set runtime parameters (time step, 

simulation time, saving frequency and so on).

• For convenience, when dealing with 

incompressible flows we will use relative pressure.

• All the dictionaries files have been already preset.
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Workflow of the case

Running my first OpenFOAM® case setup blindfold

blockMesh

icoFoam

sampling

functionObjects

paraview
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A word of caution about the solver icoFoam

Running my first OpenFOAM® case setup blindfold
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• The solver icoFoam is targeted for laminar incompressible unsteady solver. 

• We do not recommend the use of this solver for production runs as it has no 

modeling capabilities and limited post-processing features. 

• Instead of using icoFoam, you are better of with pisoFoam or pimpleFoam.



Pressure field (relative pressure) Velocity magnitude field

Running my first OpenFOAM® case setup blindfold

Mesh (very coarse and 2D)

At the end of the day, you should get something like this
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At the end of the day, you should get something like this

Running my first OpenFOAM® case setup blindfold

Y centerline

X centerline

• And as CFD is not only about pretty colors, we should also 

validate the results

High-Re Solutions for incompressible flow using the navier-stokes equations and a multigrid method

U. Ghia, K. N. Ghia, C. T. Shin.

Journal of computational physics, 48, 387-411 (1982)
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• Let us run our first case. Go to the directory:

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this 

way, you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

$PTOFC/101OF/cavity2D 

Running my first OpenFOAM® case setup blindfold
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Loading OpenFOAM® environment 

• If you are using the lab workstations, you will need to source OpenFOAM® (load 

OpenFOAM® environment).

• To source OpenFOAM®, type in the terminal:

• $> of8

• To use PyFoam (a plotting utility) you will need to source it.  Type in the terminal:

• $> anaconda3

• Remember, every time you open a new terminal window you need to source 

OpenFOAM® and PyFoam. 

• Also, you might need to load OpenFOAM® again after loading PyFoam.

• By default, when installing OpenFOAM® and PyFoam you do not need to do this.  

This is our choice as we have many things installed and we want to avoid conflicts 

between applications.

Running my first OpenFOAM® case setup blindfold
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What are we going to do?

• We will use the lid-driven square cavity tutorial as a general example to show you how to set up 

and run solvers and utilities in OpenFOAM®.

• In this tutorial we are going to generate the mesh using blockMesh. 

• After generating the mesh, we will look for topological errors and assess the mesh quality.  For 
this we use the utility checkMesh.  Later on, we are going to talk about what is a good mesh.

• Then, we will find the numerical solution using icoFoam, which is a transient solver for 

incompressible, laminar flow of Newtonian fluids. By the way, we hope you did not forget where 

to look for this information.

• And we will finish with some quantitative post-processing and qualitative visualization using 
paraFoam and OpenFOAM® utilities.

• While we run this case, we are going to see a lot of information on the screen (standard output 

stream or stdout), but it will not be saved.  This information is mainly related to convergence of 

the simulation, we will talk about this later on.

• A final word, we are going to use the solver icoFoam but have in mind that this is a very basic 

solver with no modeling capabilities and limited post-processing features. 

• Therefore, is better to use pisoFoam or pimpleFoam which are equivalent to icoFoam but 

with many more features.

Running my first OpenFOAM® case setup blindfold
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Running the case blindfold

1. $> cd $PTOFC/101OF/cavity

2. $> ls –l 

3. $> blockMesh 

4. $> checkMesh

5. $> icoFoam

6. $> postProcess -func sampleDict -latestTime

7. $> gnuplot gnuplot/gnuplot_script

8. $> paraFoam 

• Let us run this case blindfold.  

• Later we will study in detail each file and directory.

• Remember, the variable $PTOFC is pointing to the path where you unpacked the 

tutorials.

• You can create this environment variable or write down the path to the directory.

• In the terminal window type:

Running my first OpenFOAM® case setup blindfold
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Running the case blindfold

• In step 1 we go to the case directory. Remember, $PTOFC is pointing to the path where you 

unpacked the tutorials.

• In step 2 we just list the directory structure (this step is optional). Does it look familiar to you? In 
the directory 0 you will the initial and boundary conditions, in the constant directory you will 

find the mesh information and physical properties, and in the directory system you will find the 

dictionaries that controls the numerics, runtime parameters and sampling.

• In step 3 we generate the mesh.

• In step 4 we check the mesh quality. We are going to address how to assess mesh quality later 

on.

• In step 5 we run the simulation. This will show a lot information on the screen, the standard 

output stream will not be saved.

• In step 6 we use the utility postProcess to do some sampling only of the last saved solution 

(the latestTime flag). This utility will read the dictionary file named sampleDict located in 

the directory system.

• In step 7 we use a gnuplot script to plot the sampled values. Feel free to take a look and reuse 

this script.

• Finally, in step 8 we visualize the solution using paraFoam. In the next slides we are going to 

briefly explore this application.

Running my first OpenFOAM® case setup blindfold
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Crash introduction to paraFoam

Menu Bar

Toolbars

Pipeline Browser

Advanced Toggle

Properties panel

3D View/Canvas

Apply button

Press this button to 

load the case or to 

apply a filter

Running my first OpenFOAM® case setup blindfold
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Crash introduction to paraFoam – Toolbars

• Main Controls

• VCR Controls (animation controls)

• Current Time Controls

• Active Variable Controls

• Representation Toolbar

• Camera Controls (view orientation)

• Center Axes Controls

• Common Filters

• Data Analysis Toolbar

Running my first OpenFOAM® case setup blindfold
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Crash introduction to paraFoam – Mesh visualization
Select Surface With Edges in the Representation Toolbar

Select Solid Color in the 

Active Variable Controls

Select the volume fields to 

visualize. By default it will select 

U and p

Select mesh parts to visualize. 

By default it will automatically 
select internalMesh

Click on the eyeball in 

the Pipeline Browser to 
hide/unhide the object

Fit to screen Select the -Z view

Running my first OpenFOAM® case setup blindfold

57



Crash introduction to paraFoam – 3D View and mouse interaction

Rotate

Zoom

Pan

Zoom

Select view orientation in the Camera Controls

Mouse interaction in the 

3D view

3D View/Canvas

Running my first OpenFOAM® case setup blindfold

58



Crash introduction to paraFoam – Fields visualization
Select Last Frame in the VCR Controls

Select U in Active Variable Controls 

Turn on/off color bar

Select Magnitude in the 

drop down menu

Select Surface in the 

Representation Toolbar

Select volume fields to visualize. 

By default it will select U and p.

Current Time Controls

Running my first OpenFOAM® case setup blindfold
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Crash introduction to paraFoam – Filters

• Filters are functions that generate, extract or derive features from the input data.

• They are attached to the input data.

• You can access the most commonly used filters from the Common Filters toolbar

• You can access all the filters from the menu Filter.

Running my first OpenFOAM® case setup blindfold
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Crash introduction to paraFoam – Filters

• Even if the case is 2D, it will be 

visualized as if it were a 3D case.

• Notice that there is only one cell in 

the Z direction.

• Let us use the slice filter. This filter 

will create a cut plane.

• Let us create a slice normal to the 

Z direction.  

Filters are attached 
to the input data

Running my first OpenFOAM® case setup blindfold
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Crash introduction to paraFoam – Slice filter

1. Select the Slice filter

2. Select the direction Z Normal.  

Additionally you can choose the 

origin of the plane (by default is the 

mid section)

3. Optional - Turn off the 
option Show Plane

4. Press Apply

If you want to erase a filter, 

right click on it and select 
Delete

Running my first OpenFOAM® case setup blindfold
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Crash introduction to paraFoam – Glyph filter

1. Select the Glyph filter.  This 

filter will be applied on the 
Slice1 filter

2. Filter options

3. Press Apply

4. Color the colors using Solid Color

Notice that the filter 
Glyph was applied on 

the Slice1 filter.

Running my first OpenFOAM® case setup blindfold

Notice that the vectors are plotted in the 

cell vertices.  To plot the vectors at the 
cell centers, use the filter cell 

centers and replot the vectors.
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Crash introduction to paraFoam – Plot Over Line filter

1.a. Select the Plot Over Line

filter.  

1.b. Alternative, you can select Plot 

Over Line filter from the Data 

Analysis Toolbar  

2. Enter the coordinates of the line

3. Press Apply

Notice that we are using the filter in 
a clean Pipeline

Line

Running my first OpenFOAM® case setup blindfold
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Crash introduction to paraFoam – Filters

1. Click on the line chart view (the blue frame indicates that it is the active view)

2. Select the variables to 

plot in the line chart view

3. Optional - To save the 

sampled data in CSV 

format, click on the filter.  
Then click on the File

menu and select the 
option Save Data

4. Optional – Use the VCR Control to change the frame.  
The line chart view will be updated automatically

Running my first OpenFOAM® case setup blindfold
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Running the case blindfold with log files

• In the previous case, we ran the simulation but we did not save the standard output 
stream (stdout) in a log file.  

• We just saw the information on-the-fly. 

• Our advice is to always save the standard output stream (stdout) in a log file.

• It is of interest to always save the log as if something goes wrong and you would like 

to do troubleshooting, you will need this information.

• Also, if you are interested in plotting the residuals you will need the log file.

• By the way, if at any point you ask us what went wrong with your simulation, it is likely 

that we will ask you for this file. 

• We might also ask for the standard error stream (stderr).

Running my first OpenFOAM® case setup blindfold
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Running the case blindfold with log files

1. $> foamCleanTutorials 

2. $> blockMesh | tee log.blockMesh

3. $> checkMesh | tee log.checkMesh

4. $> icoFoam | tee log.icoFoam

• There are many ways to save the log files.

• From now on, we will use the Linux tee command to save log files.

• To save a log file of the simulation or the output of any utility, you can proceed as 

follows:

Running my first OpenFOAM® case setup blindfold

The vertical bar or pipelining operator is used to concatenate commands

• You can use your favorite text editor to read the log file (e.g., gedit, vi, emacs).
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• In step 1 we erase the mesh and all the folders, except for 0, constant and system. This 

script comes with your OpenFOAM® installation.

• In step 2, we generate the mesh using the meshing tool blockMesh. We also redirect the 

standard output to an ascii file with the name log.blockMesh (it can be any name). The tee

command will redirect the screen output to the file log.blockMesh and at the same time will 

show you the information on the screen.

• In step 3 we check the mesh quality. We also redirect the standard output to an ascii file with the 
name log.checkMesh (it can be any name). 

• In step 4 we run the simulation. We also redirect the standard output to an ascii file with the 
name log.icoFoam (it can be any name). Remember, the tee command will redirect the 

screen output to the file log.icoFoam and at the same time will show you the information on 

the screen.

• To postprocess the information contained in the solver log file log.icoFoam, we can use the 

utility foamLog. Type in the terminal:

• $> foamLog log.icoFoam 

• This utility will extract the information inside the file log.icoFoam. The extracted information is 

saved in an editable/plottable format in the directory logs. 

• At this point we can use gnuplot to plot the residuals. Type in the terminal:

• $> gnuplot

Running my first OpenFOAM® case setup blindfold
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• To plot the information extracted with foamLog using gnuplot, we can proceed as 

follows (remember, at this point we are using the gnuplot prompt):

1. gnuplot> set logscale y

Set log scale in the y axis

2. gnuplot> plot ‘logs/p_0’ using 1:2 with lines

Plot the file p_0 located in the directory logs, use columns 1 and 2 in the file p_0, use lines to output the plot.

3. gnuplot> plot ‘logs/p_0’ using 1:2 with lines, ‘logs/pFinalRes_0’ using 1:2 with lines

Here we are plotting to different files. You can concatenate files using comma (,)

4. gnuplot> reset

To reset the scales

5. gnuplot> plot ‘logs/CourantMax_0’ u 1:2 w l

To plot file CourantMax_0. The letter u is equivalent to using. The letters w l are equivalent to with lines

6. gnuplot> set logscale y

7. gnuplot> plot [30:50][] ‘logs/Ux_0’ u 1:2 w l title ‘Ux’,‘logs/Uy_0’ u 1:2 w l title ‘Uy’

Set the x range from 30 to 50 and plot tow files and set legend titles

8. gnuplot> exit

To exit gnuplot

Running my first OpenFOAM® case setup blindfold
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• The output of step 3 is the following:

• The fact that the initial residuals (red line) are dropping to the same value of the final 

residuals (monotonic convergence), is a clear indication of a steady behavior.
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Running the case blindfold with log files
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• It is also possible to plot the log information on the fly. 

• The easiest way to do this is by using PyFoam (you will need to install it):

• $> pyFoamPlotRunner.py [options] <foamApplication>

• If you are using the lab workstations, you will need to source PyFoam.  To source PyFoam, type in the 

terminal:

• $> anaconda3

• If you need help or want to know all the options available,

• $> pyFoamPlotRunner.py –-help

• To run this case with pyFoamPlotRunner.py,  in the terminal type:

• $> pyFoamPlotRunner.py icoFoam

• If you do not feel comfortable using pyFoamPlotRunner.py to run the solver, it is also possible to plot the 

information saved in the log file using PyFoam.  

• To do so you will need to use the utility pyFoamPlotWatcher.py.  For example,

• $> icoFoam | tee log.icoFoam

• Then, in a new terminal window launch pyFoamPlotWatcher, as follows,

• $> pyFoamPlotWatcher.py log.icoFoam

• You can also use pyFoamPlotWatcher.py to plot the information saved in an old log file.

Running my first OpenFOAM® case setup blindfold

Running the case blindfold with log files and plotting the residuals
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• This is a screenshot on my computer. In this case, pyFoamPlotRunner is plotting 

the initial residuals and continuity errors on the fly.

Running my first OpenFOAM® case setup blindfold
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1 /*--------------------------------*- C++ -*----------------------------------*\

2 | =========                 |                                                 |

3 | \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

4 |  \\ /   O peration     | Version:  8                                     |

5 |   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

6 |    \\/     M anipulation  |                                                 |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version     2.0;

11 format      ascii;

12 class dictionary;

13 object      controlDict;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16

17 application     icoFoam;

18

19 startFrom       startTime;

20

21 startTime       0;

22

23 stopAt          endTime;

24

25 endTime         50;

• Your simulation will automatically stop at the time value you set using the keyword endTime in 
the controlDict dictionary.

endTime 50;

• If for any reason you want to stop your simulation before reaching the value set by the keyword 

endTime, you can change this value to a number lower than the current simulation time (you 

can use 0 for instance).  This will stop your simulation, but it will not save your last time-step or 

iteration, so be careful.

Stopping the simulation
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• If you want to stop the simulation and save the solution, in the controlDict dictionary made 

the following modification,

stopAt writeNow;

This will stop your simulation and will save the current time-step or iteration.

Stopping the simulation

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | =========                 |                                                 |

3 | \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

4 |  \\ /   O peration     | Version:  8                                     |

5 |   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

6 |    \\/     M anipulation  |                                                 |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version     2.0;

11 format      ascii;

12 class dictionary;

13 object      controlDict;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16

17 application     icoFoam;

18

19 startFrom       startTime;

20

21 startTime       0;

22

23 stopAt          writeNow;

24

25 endTime         50;

Running my first OpenFOAM® case setup blindfold
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• The previous modifications can be done on-the-fly, but you will need to set the 
keyword runTimeModifiable to true in the controlDict dictionary.  

• By setting the keyword runTimeModifiable to true, you will be able to modify most of 

the dictionaries on-the-fly.

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | =========                 |                                                 |

3 | \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

4 |  \\ /   O peration     | Version:  8                                     |

5 |   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

6 |    \\/     M anipulation  |                                                 |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version     2.0;

11 format      ascii;

12 class dictionary;

13 object      controlDict;

14    }

44

45 runTimeModifiable true;

46

Stopping the simulation
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• You can also kill the process.  For instance, if you did not launch the solver in background, go to its terminal 
window and press ctrl-c. This will stop your simulation, but it will not save your last time-step or iteration, so 

be careful.

• If you launched the solver in background, just identify the process id using top or htop (or any other process 

manager) and terminate the associated process. Again, this will not save your last time-step or iteration.

• To identify the process id of the OpenFOAM® solver or utility, just read screen. At the beginning of the output 

screen, you will find the process id number.

Stopping the simulation
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/*---------------------------------------------------------------------------*\

| =========                 |                                                 |

| \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

|  \\ /   O peration     | Version:  8                                     |

|   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

|    \\/     M anipulation  |                                                 |

\*---------------------------------------------------------------------------*/

Build  : 4.x-e964d879e2b3

Exec   : icoFoam

Date   : Mar 11 2017

Time   : 23:21:50

Host   : "linux-ifxc"

PID    : 3100

Case   : /home/joegi/my_cases_course/5x/101OF/cavity

nProcs : 1

sigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).

fileModificationChecking : Monitoring run-time modified files using timeStampMaster

allowSystemOperations : Allowing user-supplied system call operations

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Process id number
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• When working locally, we usually proceed in this way:

• $> icoFoam | tee log.icofoam

This will run the solver icoFoam (by the way, this works for any solver or utility), it will save the 

standard output stream in the file log.icofoam and will show the solver output on the fly.  

• If at any moment we want to stop the simulation, and we are not interested in saving the last 
time-step, we press ctrl-c.  

• If we are interested in saving the last time step, we modify the controlDict dictionary and 

add the following keyword

stopAt writeNow;

• Remember, this modification can be done on the fly. However, you will need to set the keyword 
runTimeModifiable to yes in the controlDict dictionary. 

Stopping the simulation
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• If you want to erase the mesh and the solution in the current case folder, you can type in the 

terminal,

$> foamCleanTutorials

If you are running in parallel, this will also erase the processorN directories.  We will talk about 

running in parallel later.

• If you are looking to only erase the mesh, you can type in the terminal,

$> foamCleanPolyMesh

• If you are only interested in erasing the saved solutions, in the terminal type,

$> foamListTimes -rm

• If you are running in parallel and you want to erase the solution saved in the processorN

directories, type in the terminal,

$> foamListTimes –rm -processor

Cleaning the case folder

Running my first OpenFOAM® case setup blindfold
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A deeper view to my first OpenFOAM® case setup

• We will take a close look at what we did by looking at the case files. 

• The case directory originally contains the following sub-directories: 0, constant, and 

system. After running icoFoam it also contains the time step directories 1, 2, 3, 

..., 48, 49, 50, the post-processing directory postProcessing, and the 

log.icoFoam file (if you chose to redirect the standard output stream).

• The time step directories contain the values of all the variables at those time 
steps (the solution). The 0 directory is thus the initial condition and boundary 

conditions.

• The constant directory contains the mesh and dictionaries for thermophysical, 

turbulence models and advanced physical models.

• The system directory contains settings for the run, discretization schemes and 

solution procedures.

• The postProcessing directory contains the information related to the 

functionObjects (we are going to address functionObjects later).

• The icoFoam solver reads these files and runs the case according to those 

settings.
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• Before continuing, we want to point out the following:

• Each dictionary file in the case directory has a header.

• Lines 1-7 are commented.  

• You should always keep lines 8 to 14, if not, OpenFOAM® will complain.

• According to the dictionary you are using, the class keyword (line 12) 

will be different.  We are going to talk about this later on.

• From now on and unless it is strictly necessary, we will not show the 

header when listing the dictionaries files.

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | =========                 |                                                 |

3 | \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

4 |  \\ /   O peration     | Version:  8                                     |

5 |   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

6 |    \\/     M anipulation  |                                                 |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version     2.0;

11 format      ascii;

12 class dictionary;

13 object      controlDict;

14    }
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A deeper view to my first OpenFOAM® case setup

Let us explore the case directory

82



• In this directory you will find the sub-directory polyMesh and the dictionary file 

transportProperties.

• The transportProperties file is a dictionary for the dimensioned scalar nu, or the 

kinematic viscosity.

A deeper view to my first OpenFOAM® case setup

The constant directory
(and by the way, open each file and go thru its content)

17 nu              nu [ 0 2 -1 0 0 0 0 ] 0.01; //Re 100

18    //nu              nu [ 0 2 -1 0 0 0 0 ] 0.001; //Re 1000

• Notice that line 18 is commented.

• The values between square bracket are the units. 

• OpenFOAM® is fully dimensional.  You need to define the dimensions for             

each field dictionary and physical properties defined.  

• Your dimensions shall be consistent.
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No. Property Unit Symbol

1 Mass Kilogram kg

2 Length meters m

3 Time second s

4 Temperature Kelvin K

5 Quantity moles mol

6 Current ampere A

7 Luminuous intensity candela cd

Dimensions in OpenFOAM® (metric system)  

[ 1 (kg), 2 (m), 3 (s), 4 (K), 5 (mol), 6 (A), 7 (cd)]

A deeper view to my first OpenFOAM® case setup
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• Therefore, the dimensioned scalar nu or the kinematic viscosity,

A deeper view to my first OpenFOAM® case setup

The constant directory
(and by the way, open each file and go thru its content)

17 nu              nu [ 0 2 -1 0 0 0 0 ] 0.01;

has the following units

[ 0 m^2 s^-1 0 0 0 0 ]

Which is equivalent to
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• In this case, as we are working with an incompressible flow, we only need to define 

the kinematic viscosity.

• Later on, we will ask you to change the Reynolds number, to do so you can change 

the value of nu.  Remember,

A deeper view to my first OpenFOAM® case setup

• You can also change the free stream velocity U or the reference length L.

The constant directory
(and by the way, open each file and go thru its content)
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The constant directory
(and by the way, open each file and go thru its content)

• Depending on the physics involved and models used, you will need to define more 
variables in the dictionary transportProperties.

• For instance, for a multiphase case you will need to define the density rho and 

kinematic viscosity nu for each single phase. You will also need to define the surface 

tension    .

• Also, depending of your physical model, you will find more dictionaries in the constant 

directory. 

• For example, if you need to set gravity, you will need to create the dictionary g.

• If you work with compressible flows you will need to define the dynamic viscosity mu, 
and many other physical properties in the dictionary thermophysicalProperties. 

• As we are not dealing with compressible flows (for the moment), we are not going into 

details.  
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The constant/polyMesh directory
(and by the way, open each file and go thru its content)

• In this case, the polyMesh directory is initially empty. After generating the mesh, it 

will contain the mesh in OpenFOAM® format.

• To generate the mesh in this case, we use the utility blockMesh. This utility reads 

the dictionary blockMeshDict located in the system folder.

• We will briefly address a few important inputs of the blockMeshDict dictionary.

• Do not worry, we are going to revisit this dictionary during the meshing session.

• However, have in mind that rarely you will use this utility to generate a mesh for 

complex geometries.

• Go to the directory system and open blockMeshDict dictionary with your favorite 

text editor, we will use gedit.
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The system/blockMeshDict dictionary 

• The blockMeshDict dictionary first defines a list with a number of vertices:

• The keyword convertToMeters (line 17), is a scaling factor.  In this case 

we do not scale the dimensions.

• In the section vertices (lines 37-58), we define the vertices coordinates of 

the geometry. In this case, there are eight vertices defining the geometry. 

OpenFOAM® always uses 3D meshes, even if the simulation is 2D.

• We can directly define the vertex coordinates in the section vertices  

(commented lines 49-56), or we can use macro syntax.

• Using macro syntax we first define a variable and its value (lines 19-24), 

and then we can use them by adding the symbol $ to the variable name 

(lines 39-46).

• In lines 26-28, we define a set of variables that will be used at a later time. 

These variables are related to the number of cells in each direction.

• Finally, notice that the vertex numbering starts from 0 (as the counters in 

c++). This numbering applies for blocks as well.

17 convertToMeters 1;

18 

19 xmin 0;

20 xmax 1;

21 ymin 0;

22 ymax 1;

23 zmin 0;

24 zmax 1;        

25

26 xcells 20;

27 ycells 20;

28 zcells 1;

29 

37 vertices

38 (

39 ($xmin  $ymin  $zmin) //vertex 0

40 ($xmax  $ymin  $zmin) //vertex 1

41 ($xmax  $ymax  $zmin) //vertex 2

42 ($xmin  $ymax  $zmin) //vertex 3

43 ($xmin  $ymin  $zmax) //vertex 4

44 ($xmax  $ymin  $zmax) //vertex 5

45 ($xmax  $ymax  $zmax) //vertex 6

46 ($xmin  $ymax  $zmax) //vertex 7

47 

48 /*

49 (0 0 0)

50 (1 0 0)

51 (1 1 0)

52 (0 1 0)

53 (0 0 0.1)

54 (1 0 0.1)

55 (1 1 0.1)

56 (0 1 0.1)

57 */

58 );
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A deeper view to my first OpenFOAM® case setup

The system/blockMeshDict dictionary 

• The blockMeshDict dictionary also defines the boundary patches:

90

71 boundary

72 (

73 movingWall

74 {

75 type wall;

76 faces

77 (

78 (3 7 6 2)

79 );

80 }

81 fixedWalls

82 {

83 type wall;

84 faces

85 (

86 (0 4 7 3)

87 (2 6 5 1)

88 (1 5 4 0)

89 );

90 }

91 frontAndBack

92 {

93 type empty;

94 faces

95 (

96 (0 3 2 1)

97 (4 5 6 7)

98 );

99 }

100    );

Name

Type

Connectivity

• In the section boundary, we define all the surface 

patches where we want to apply boundary conditions.

• This step is of paramount importance, because if we do 

not define the surface patches, we will not be able to 

apply the boundary conditions.

• For example: 

• In line 73 we define the patch name movingWall 

(the name is given by the user).

• In line 75 we give a base type to the surface patch. 

In this case wall (do not worry we are going to talk 

about this later on).

• In line 78 we give the connectivity list of the 

vertices that made up the surface patch or face, 

that is, (3 7 6 2). Have in mind that the vertices 

need to be neighbors and it does not matter if the 

ordering is clockwise or counterclockwise.

• Remember, faces are defined by a list of 4 vertex 

numbers, e.g., (3 7 6 2).
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The system/blockMeshDict dictionary 

• To sum up, the blockMeshDict dictionary generates in this case a single block with: 

• X/Y/Z dimensions: 1.0/1.0/1.0

• Cells in the X, Y and Z directions: 20 x 20 x 1 cells. 

• One single hex block with straight lines.

• Patch type wall and patch name fixedWalls at three sides.

• Patch type wall and patch name movingWall at one side. 

• Patch type empty and patch name frontAndBack patch at two sides.

• If you are interested in visualizing the actual block topology, you can use paraFoam

as follows,

• $> paraFoam –block
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The system/blockMeshDict dictionary 

• As you can see, the blockMeshDict dictionary can be really tricky.

• If you deal with really easy geometries (rectangles, cylinders, and so on), then you 
can use blockMesh to do the meshing, but this is the exception rather than the rule.

• When using snappyHexMesh, (a body fitted mesher that comes with OpenFOAM®) 

you will need to generate a background mesh using blockMesh. We are going to 

deal with this later on.

• Our best advice is to create a template and reuse it.

• Also, take advantage of macro syntax for parametrization, and #calc syntax to 
perform inline calculations (lines 30-35 in the blockMeshDict dictionary we just 

studied).

• We are going to deal with #codeStream syntax and #calc syntax during the 

programming session.
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• First of all, this file is automatically generated after you create the mesh 
using blockMesh or snappyHexMesh, or when you convert the mesh from 

a third-party format. 

• In this file, the geometrical information related to the base type patch of 

each boundary (or surface patch) of the domain is specified.

• The base type boundary condition is the actual surface patch where we are 

going to apply a numerical type boundary condition (or numerical boundary 

condition).

• The numerical type boundary condition assign a field value to the surface 

patch (base type).

• We define the numerical type patch (or the value of the boundary 
condition), in the directory 0 or time directories.

The constant/polyMesh/boundary dictionary
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• In this case, the file boundary is divided as follows

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary

18    3

19 (

20 movingWall 

21 { 

22 type wall;

23 inGroups 1(wall);

24 nFaces 20;

25 startFace 760;

26 }

27 fixedWalls

28 { 

29 type wall;

30 inGroups 1(wall);

31 nFaces 60;

32 startFace 780;

33 }

34 frontAndBack 

35 { 

36 type empty;

37 inGroups 1(empty);

38 nFaces 800;

39 startFace 840;

40 }

41 )

Number of surface patches

In the list bellow there must be 3 patches 

definition.

fixedWall

fi
x

e
d

W
a

ll

frontAndBack

movingWall

fi
x

e
d

W
a

ll

frontAndBack

94



• In this case, the file boundary is divided as follows

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary

Name and type of the surface patches

• The name and type of the patch is given by 

the user.

• In this case the name and type was assigned 
in the dictionary blockMeshDict.

• You can change the name if you do not like it.  

Do not use strange symbols or white spaces.

• You can also change the base type.  For 

instance, you can change the type of the 

patch movingWall from wall to patch.

• When converting the mesh from a third party 

format, OpenFOAM® will try to recover the 

information from the original format.  But it 

might happen that it does not recognizes the 

base type and name of the original file.  In this 

case you will need to modify this file manually.

18    3

19 (

20 movingWall 

21 { 

22 type wall;

23 inGroups 1(wall);

24 nFaces 20;

25 startFace 760;

26 }

27 fixedWalls

28 { 

29 type wall;

30 inGroups 1(wall);

31 nFaces 60;

32 startFace 780;

33 }

34 frontAndBack 

35 { 

36 type empty;

37 inGroups 1(empty);

38 nFaces 800;

39 startFace 840;

40 }

41 )

Name

Type
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18    3

19 (

20 movingWall 

21 { 

22 type wall;

23 inGroups 1(wall);

24 nFaces 20;

25 startFace 760;

26 }

27 fixedWalls

28 { 

29 type wall;

30 inGroups 1(wall);

31 nFaces 60;

32 startFace 780;

33 }

34 frontAndBack 

35 { 

36 type empty;

37 inGroups 1(empty);

38 nFaces 800;

39 startFace 840;

40 }

41 )

• In this case, the file boundary is divided as follows

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary
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inGroups keyword

• This keyword is optional. You can erase this information safely.

• It is used to group patches during visualization in 

ParaView/paraFoam.  If you open this mesh in paraFoam you will 

see that there are two groups, namely: wall and empty.

• As usual, you can change the name.

• If you want to put  a surface patch in two groups, you can proceed 

as follows: 

2(wall wall1)

In this case the surface patch belongs to the groups wall and

wall1.

• Groups can have more than one patch.

nFaces and startFace keywords

• Unless you know what you are doing, you do not need to        

modify this information.

• This information is related to the starting face and ending face of 

the boundary patch in the mesh data structure.

• This information is created automatically when generating the 

mesh or converting the mesh.
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The constant/polyMesh/boundary dictionary

• There are a few base type patches that are constrained or paired.  This means that the type 
should be the same in the boundary file and in the numerical boundary condition defined in the 

field files, e.g., the files 0/U and 0/p.

• In this case, the base type of the patch frontAndBack (defined in the file boundary), is 

consistent with the numerical type patch defined in the field files 0/U and 0/p.  They are of 

the type empty.  

• Also, the base type of the patches movingWall and fixedWalls (defined in the file boundary), 

is consistent with the numerical type patch defined in the field files 0/U and 0/p.

• This is extremely important, especially if you are converting meshes as not always the type of 

the patches is set as you would like.

• Hence, it is highly advisable to do a sanity check and verify that the base type of the patches 
(the type defined in the file boundary), is consistent with the numerical type of the patches 

(the patch type defined in the field files contained in the directory 0 (or whatever time directory 

you defined the boundary and initial conditions).

• If the base type and numerical type boundary conditions are not consistent, OpenFOAM® will 

complain.

• Do not worry, we are going to address boundary conditions later on.
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• The following base type boundary conditions are constrained or paired. 
That is, the type needs to be same in the boundary dictionary and field 

variables dictionaries (e.g. U, p).

constant/polyMesh/boundary 0/U - 0/p (IC/BC)

symmetry

symmetryPlane

empty

wedge

cyclic

processor

symmetry

symmetryPlane

empty

wedge

cyclic

processor

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary
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• The base type patch can be any of the numerical or derived type 

boundary conditions available in OpenFOAM®.  Mathematically speaking; 

they can be Dirichlet, Neumann or Robin boundary conditions.

constant/polyMesh/boundary 0/U - 0/p (IC/BC)

patch

fixedValue

zeroGradient

inletOutlet

slip

totalPressure

supersonicFreeStream

and so on …

Refer to the doxygen documentation for a list of all numerical 

type boundary conditions available.

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary
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• The wall base type boundary condition is defined as follows:

constant/polyMesh/boundary 0/U (IC/BC) 0/p (IC/BC)

wall
type fixedValue;

value uniform (U V W);
zeroGradient

• This boundary condition is not contained in the patch base type boundary 

condition group, because specialize modeling options can be used on this 

boundary condition.  

• An example is turbulence modeling, where turbulence can be generated or 

dissipated at the walls.

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary
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• The name of the base type boundary condition and the name of the 

numerical type boundary condition needs to be the same, if not, 

OpenFOAM® will complain.

• Pay attention to this, specially if you are converting the mesh from another 

format.

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary

constant/polyMesh/boundary 0/U (IC/BC) 0/p (IC/BC)

movingWall 

fixedWalls

frontAndBack 

movingWall 

fixedWalls

frontAndBack

movingWall 

fixedWalls

frontAndBack

• As you can see, all the names are the same across all the dictionary files.
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The system directory
(and by the way, open each file and go thru its content)

A deeper view to my first OpenFOAM® case setup

• The system directory consists of the following compulsory dictionary files: 

• controlDict 

• fvSchemes

• fvSolution

• controlDict contains general instructions on how to run the case. 

• fvSchemes contains instructions for the discretization schemes that will be used for the 

different terms in the equations.  

• fvSolution contains instructions on how to solve each discretized linear equation system. 

• Do not worry, we are going to study in details the most important entries of each dictionary (the 

compulsory entries).

• If you forget a compulsory keyword or give a wrong entry to the keyword, OpenFOAM® will 

complain and it will let you what are you missing.  This applies for all the dictionaries in the 

hierarchy of the case directory.

• There are many optional parameters, to know all of them refer to the doxygen documentation or 

the source code.  Hereafter we will try to introduce a few of them.

• OpenFOAM® will not complain if you are not using optional parameters, after all, they are 

optional.  However, if the entry you use for the optional parameter is wrong OpenFOAM® will let 

you know.
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The controlDict dictionary

17 application     icoFoam;

18

19 startFrom       startTime;

20

21 startTime       0;

22

23 stopAt          endTime;

24

25 endTime         50;

26

27 deltaT          0.01;

28

29 writeControl    runTime;

30

31 writeInterval   1;

32

33 purgeWrite      0;

34

35 writeFormat     ascii;

36

37 writePrecision  8;

38

39 writeCompression off;

40

41 timeFormat      general;

42

43 timePrecision   6;

44

45 runTimeModifiable true;

• The controlDict dictionary contains runtime simulation controls, such 

as, start time, end time, time step, saving frequency and so on. 

• Most of the entries are self-explanatory.

• This case starts from time 0 (keyword startFrom – line 19 – and 

keyword startTime  – line 21 –).  If you have the initial solution in a 

different time directory, just enter the number in line 21. 

• The case will stop when it reaches the desired time set using the keyword 

stopAt (line 23). 

• It will run up to 50 seconds (keyword endTime – line 25 –). 

• The time step of the simulation is 0.01 seconds (keyword deltaT              

– line 27 –). 

• It will write the solution every second (keyword writeInterval – line 31 –) 

of simulation time (keyword runTime – line 29 –). 

• It will keep all the solution directories (keyword purgeWrite – line 33 –).  

If you want to keep only the last 5 solutions just change the value to 5. 

• It will save the solution in ascii format (keyword writeFormat – line 35 –) 

with a precision of 8 digits (keyword writePrecision – line 37 –). 

• And as the option runTimeModifiable (line 45) is on (true), we can 

modify all these entries while we are running the simulation.

• FYI, you can modify the entries on-the-fly for most of the dictionaries files.
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The controlDict dictionary

17 application     icoFoam;

18

19 startFrom       startTime;

20

21 startTime       0;

22

23 stopAt          banana;

24

25 endTime         50;

26

27 deltaT          0.01;

28

29 writeControl    runTime;

30

31 writeInterval   1;

32

33 purgeWrite      0;

34

35 writeFormat     ascii;

36

37 writePrecision  8;

38

39 writeCompression off;

40

41 timeFormat      general;

42

43 timePrecision   6;

44

45 runTimeModifiable true;

• So how do we know what options are available for each keyword?

• The hard way is to refer to the source code.

• The easy way is to use the banana method.

• So what is the banana method? This method consist in inserting a dummy word 

(that does not exist in the installation) and let OpenFOAM® list the available 

options.

• For example. If you add banana in line 23, you will get this output:

banana is not in enumeration 

4 

( 

nextWrite

writeNow 

noWriteNow 

endTime 

)

• So your options are nextWrite, writeNow, noWriteNow, endTime

• And how do we know that banana does not exist in the source code? Just type in 

the terminal:

• $> src

• $> grep –r –n banana .

• If you see some bananas in your output someone is messing around with your 

installation.

• Remember, you can use any dummy word, but you have to be sure that it does 

not exist in OpenFOAM®.
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The controlDict dictionary

17 application     icoFoam;

18

19 startFrom       startTime;

20

21 startTime       0;

22

23 stopAt endTime;

24

25 //endTime         50;

26

27 deltaT          0.01;

28

29 writeControl    runTime;

30

31 writeInterval   1;

32

33 purgeWrite      0;

34

35 writeFormat     ascii;

36

37 writePrecision  8;

38

39 writeCompression off;

40

41 timeFormat      general;

42

43 timePrecision   6;

44

45 runTimeModifiable true;

• If you forget a compulsory keyword, OpenFOAM® will tell you what 

are you missing.

• So if you comment line 25, you will get this output:

--> FOAM FATAL IO ERROR

keyword endTime is undefined in dictionary …

• This output is just telling you that you are missing the keyword 

endTime.

• Do not pay attention to the words FATAL ERROR, maybe the 

developers of OpenFOAM® exaggerated a little bit.
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The fvSchemes dictionary

17 ddtSchemes

18 {

19 default         backward;

20 }

21 

22 gradSchemes

23 {

24 default         Gauss linear;

25 grad(p)         Gauss linear;

26 }

27 

28 divSchemes

29 {

30 default         none;

31 div(phi,U)      Gauss linear;

32

33 div((nuEff*dev2(T(grad(U))))) Gauss linear;

34 }

35 

36 laplacianSchemes

37 {

38 //default         Gauss linear orthogonal;

39 default         Gauss linear limited 1;

40 }

41 

42 interpolationSchemes

43 {

44 default         linear;

45 }

46 

47 snGradSchemes

48 {

49 //default         orthogonal;

50 default         limited 1;

51 }

• The fvSchemes dictionary contains the information related to 

the discretization schemes for the different terms appearing in 

the governing equations.

• As for the controlDict dictionary, the parameters can be 

changed on-the-fly.

• Also, if you want to know what options are available, just use 

the banana method.

• In this case we are using the backward method for time 

discretization (ddtSchemes). For gradients discretization 

(gradSchemes) we are using Gauss linear method. For the 

discretization of the convective terms (divSchemes) we are 

using linear interpolation for the term div(phi,U). 

• For the discretization of the Laplacian (laplacianSchemes and 

snGradSchemes) we are using the Gauss linear method with 

limited 1 corrections (to handle mesh non-orthogonality and 

non-uniformity).

• The method we are using is second order accurate but 

oscillatory.  We are going to talk about the properties of the 

numerical schemes later.

• Remember, at the end of the day we want a solution that is 

second order accurate.
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The fvSolution dictionary

17 solvers

18 {

19 p

20 {

21 solver          PCG;

22 preconditioner  DIC;

23 tolerance       1e-06;

24 relTol          0;

39 }

40 

41 pFinal

42 {

43 $p;

44 relTol          0;

45 }

46 

47 U

48 {

49 solver          smoothSolver;

50 smoother        symGaussSeidel;

51 tolerance       1e-08;

52 relTol          0;

53 }

54 }

55 

56 PISO

57 {

58 nCorrectors     1;

59 nNonOrthogonalCorrectors 0;

60 pRefCell        0;

61 pRefValue       0;

62 }
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• The fvSolution dictionary contains the instructions of how 

to solve each discretized linear equation system. The equation 

solvers, tolerances, and algorithms are controlled from the sub-

dictionary solvers. 

• In the dictionary file fvSolution (and depending on the solver 

you are using), you will find the additional sub-dictionaries 

PISO, PIMPLE, SIMPLE, and relaxationFactors. These 

entries will be described later.

• As for the controlDict and fvSchemes dictionaries, the 

parameters can be changed on-the-fly.

• Also, if you want to know what options are available just use 

the banana method.

• In this case, to solve the pressure (p) we are using the PCG

method, with the preconditioner DIC, an absolute tolerance

equal to 1e-06 and a relative tolerance relTol equal to 0. 

• The entry pFinal refers to the final pressure correction (notice 

that we are using macro syntax), and we are using a relative 

tolerance relTol equal to 0.  We are putting more computational 

effort in the last iteration. 

• In this case, we are using the same tolerances for p and 

pFinal. However, you can use difference tolerances, where 

usually you use a tighter tolerance in pFinal.
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The fvSolution dictionary

17 solvers

18 {

19 p

20 {

21 solver          PCG;

22 preconditioner  DIC;

23 tolerance       1e-06;

24 relTol          0;

39 }

40 

41 pFinal

42 {

43 $p;

44 relTol          0;

45 }

46 

47 U

48 {

49 solver          smoothSolver;

50 smoother        symGaussSeidel;

51 tolerance       1e-08;

52 relTol          0;

53 }

54 }

55 

56 PISO

57 {

58 nCorrectors     1;

59 nNonOrthogonalCorrectors 0;

60 pRefCell        0;

61 pRefValue       0;

62 }

• To solve U we are using the smoothSolver method, with the 

smoother symGaussSeidel, an absolute tolerance equal to 

1e-08 and a relative tolerance relTol equal to 0. 

• The solvers will iterative until reaching any of the tolerance 

values set by the user or reaching a maximum value of 

iterations (optional entry). 

• FYI, solving for the velocity is relative inexpensive, whereas 

solving for the pressure is expensive.

• The PISO sub-dictionary contains entries related to the 

pressure-velocity coupling method (the PISO method).

• In this case we are doing only one PISO correction and no 

orthogonal corrections.

• You need to do at least one PISO loop (nCorrectors).
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The system directory
(optional dictionary files)

A deeper view to my first OpenFOAM® case setup

• In the system directory you will also find these two additional files:

• decomposeParDict 

• sampleDict

• decomposeParDict is read by the utility decomposePar.  This dictionary 

file contains information related to the mesh partitioning. This is used when 

running in parallel.  We will address running in parallel later.

• sampleDict is read by the utility postProcess.  This utility sample field 

data (points, lines or surfaces).  In this dictionary file we specify the sample 

location and the fields to sample.  The sampled data can be plotted using 

gnuplot or Python. 
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The sampleDict dictionary

17 type sets;

18

19 setFormat raw;

20 

23 interpolationScheme cellPointFace;

24 

26 fields

27 (

28 U

29 );

30 

31 sets

32 (

33 

34 l1

35 {

38 type            lineFace;

43 axis            x;

44 start           ( -1  0.5 0);

45 end             ( 2  0.5 0);

46 }

47 

48 l2

49 {

52 type            lineFace;

57 axis            y;

58 start           (0.5 -1 0);

59 end             (0.5 2 0);

60 }

61 

62 );

Format of the output file, raw format is a generic format 

that can be read by many applications.  The output file is 
human readable (ascii format).

Interpolation method at the solution level (location of the 
interpolation points).

Fields to sample.

Location of the sample line. We define start and end 
point, and the axis of the sampling.

Location of the sample line. We define start and end 
point, and the axis of the sampling.

Sample method.  How to interpolate the solution to the 
sample entity (line in this case)

Sample method from the solution to the line.

Type of sampling, sets will sample along a line.
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The sampleDict dictionary

Name of the output file

Name of the output file

The sampled information is always saved in the 

directory,

postProcessing/name_of_input_dictionary

As we are sampling the latest time solution (50) and 
using the dictionary sampleDict, the sampled data 

will be located in the directory:

postProcessing/sampleDict/50

The files l1_U.xy and l2_U.xy located in the 

directory postProcessing/sampleDict/50 

contain the sampled data. Feel free to open them using 

your favorite text editor.
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17 type sets;

18

19 setFormat raw;

20 

23 interpolationScheme cellPointFace;

24 

26 fields

27 (

28 U

29 );

30 

31 sets

32 (

33 

34 l1

35 {

38 type            lineFace;

43 axis            x;

44 start           ( -1  0.5 0);

45 end             ( 2  0.5 0);

46 }

47 

48 l2

49 {

52 type            lineFace;

57 axis            y;

58 start           (0.5 -1 0);

59 end             (0.5 2 0);

60 }

61 

62 );



• The 0 directory contains the initial and boundary conditions for all primitive variables, 

in this case p and U.  The U file contains the following information (velocity vector):

The 0 directory
(and by the way, open each file and go thru its content)

A deeper view to my first OpenFOAM® case setup

17 dimensions      [0 1 -1 0 0 0 0];

18 

19 internalField   uniform (0 0 0);

20 

21 boundaryField

22 {

23 movingWall

24 {

25 type            fixedValue;

26 value           uniform (1 0 0);

27 }

28 

29 fixedWalls

30 {

31 type            fixedValue;

32 value           uniform (0 0 0);

33 }

34 

35 frontAndBack

36 {

37 type            empty;

38 }

39 }

Dimensions of the field

Uniform initial conditions.

The velocity field is initialize to (0 0 0) in all 

the domain

Remember velocity is a vector with three 
components, therefore the notation (0 0 0).

Note:
If you take some time and compare the files 0/U and

constant/polyMesh/boundary, you will see that the name and type of each 

numerical type patch (the patch defined in 0/U), is consistent with the base 

type patch (the patch defined in the file constant/polyMesh/boundary).
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• The 0 directory contains the initial and boundary conditions for all primitive variables, 

in this case p and U.  The U file contains the following information (velocity):

The 0 directory
(and by the way, open each file and go thru its content)

A deeper view to my first OpenFOAM® case setup

17 dimensions      [0 1 -1 0 0 0 0];

18 

19 internalField   uniform (0 0 0);

20 

21 boundaryField

22 {

23 movingWall

24 {

25 type            fixedValue;

26 value           uniform (1 0 0);

27 }

28 

29 fixedWalls

30 {

31 type            fixedValue;

32 value           uniform (0 0 0);

33 }

34 

35 frontAndBack

36 {

37 type            empty;

38 }

39 }

Numerical boundary condition for the patch 
movingWall

Numerical boundary condition for the patch 
fixedWalls

Numerical boundary condition for the patch 

frontAndBack (this is a constrained boundary 
condition).

Dimensions of the field
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• The 0 directory contains the initial and boundary conditions for all primitive variables, 

in this case p and U.  The p file contains the following information (modified pressure):

The 0 directory
(and by the way, open each file and go thru its content)

A deeper view to my first OpenFOAM® case setup

17 dimensions      [0 2 -2 0 0 0 0];

18 

19 internalField   uniform 0;

20 

21 boundaryField

22 {

23 movingWall

24 {

25 type            zeroGradient;

26 }

27 

28 fixedWalls

29 {

30 type            zeroGradient;

31 }

32 

33 frontAndBack

34 {

35 type            empty;

36 }

37 }

38 

Dimensions of the field

Uniform initial conditions.

The modified pressure field is initialize to 0

in all the domain. This is relative 

pressure.

Note:
If you take some time and compare the files 0/p and

constant/polyMesh/boundary, you will see that the name and type of each 

numerical type patch (the patch defined in 0/p), is consistent with the base 

type patch (the patch defined in the file constant/polyMesh/boundary).
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• The 0 directory contains the initial and boundary conditions for all primitive variables, 

in this case p and U.  The p file contains the following information (modified pressure):

The 0 directory
(and by the way, open each file and go thru its content)

A deeper view to my first OpenFOAM® case setup

17 dimensions      [0 2 -2 0 0 0 0];

18 

19 internalField   uniform 0;

20 

21 boundaryField

22 {

23 movingWall

24 {

25 type            zeroGradient;

26 }

27 

28 fixedWalls

29 {

30 type            zeroGradient;

31 }

32 

33 frontAndBack

34 {

35 type            empty;

36 }

37 }

38 

Dimensions of the field

Numerical boundary condition for the patch 
movingWall

Numerical boundary condition for the patch 
fixedWalls

Numerical boundary condition for the patch 

frontAndBack (this is a constrained boundary 
condition).
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• We just used icoFoam which is an incompressible solver.

• Let us be really loud on this. All the incompressible solvers implemented in OpenFOAM® 
(icoFoam, simpleFoam, pisoFoam, and pimpleFoam), use the modified pressure, that is, 

A deeper view to my first OpenFOAM® case setup

• Or in OpenFOAM® jargon: dimensions [0 2 -2 0 0 0 0]

• So when visualizing or post processing the results do not forget to multiply the pressure by 

the density in order to get the right units of the physical pressure, that is,

• Or in OpenFOAM® jargon: dimensions [1 -1 -2 0 0 0 0] 

A very important remark on the pressure field

with units
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/*--------------------------------*- C++ -*----------------------------------*\

| =========                 |                                                 |

| \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

|  \\ /   O peration     | Version:  8                                     |

|   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

|    \\/     M anipulation  |                                                 |

\*---------------------------------------------------------------------------*/

FoamFile

{

version     2.0;

format      ascii;

class       volScalarField;

object      p;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

A deeper view to my first OpenFOAM® case setup

• Coming back to the headers, and specifically the headers related to the field variable 
dictionaries (e.g. U, p, gradU, and so on).

• In the header of the field variables, the class type should be consistent with the type 

of field variable you are using.  

• Be careful with this, specially if you are copying and pasting files.

• If the field variable is a scalar, the class should be volScalarField.
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/*--------------------------------*- C++ -*----------------------------------*\

| =========                 |                                                 |

| \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

|  \\ /   O peration     | Version:  8                                     |

|   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

|    \\/     M anipulation  |                                                 |

\*---------------------------------------------------------------------------*/

FoamFile

{

version     2.0;

format      ascii;

class       volTensorField;

object      gradU;

}

• If the field variable is a vector, the class should be volVectorField.
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/*--------------------------------*- C++ -*----------------------------------*\

| =========                 |                                                 |

| \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

|  \\ /   O peration     | Version:  8                                     |

|   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

|    \\/     M anipulation  |                                                 |

\*---------------------------------------------------------------------------*/

FoamFile

{

version     2.0;

format      ascii;

class       volVectorField;

object      U;

}

• If the field variable is a tensor (e.g. the velocity gradient tensor), the class should be 

volTensorField.



• Finally, let us talk about the output screen, which shows a lot of information.

The output screen

Simulation time
Courant number

Velocity residuals

Continuity errors

Pressure residuals

No orthogonal corrections

Only one PISO correction

Execution time (wall time)

Additional information

Minimum and maximum values of each fieldEnd of the simulation

A deeper view to my first OpenFOAM® case setup
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• By default, OpenFOAM® does not show the minimum and maximum information. To print out this information, 

we use functionObjects.  We are going to address functionObjects in detail when we deal with post-

processing and sampling.

• But for the moment, what we need to know is that we add functionObjects at the end of the controlDict

dictionary.  In this case, we are using a functionObject that prints the minimum and maximum information of 

the selected fields.

• This information complements the residuals information and it is saved in the postProcessing directory.  It 

gives a better indication of stability, boundedness and consistency of the solution.

The output screen

A deeper view to my first OpenFOAM® case setup

49 functions

50 {

51

52 ///////////////////////////////////////////////////////////////////////////

53

54 minmaxdomain

55 {

56 type fieldMinMax;

57

58 functionObjectLibs ("libfieldFunctionObjects.so");

59

60 enabled true; //true or false

61

62 mode component;

63

64 writeControl timeStep;

65 writeInterval 1;

66

67 log true;

68

69 fields (p U);

70 }

91

92 };

functionObject to use

Turn on/off functionObject

Output interval of functionObject

Field variables to sample

Name of the folder where the output of 
the functionObject will be saved

Save output of the functionObject in a ascii file
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• Another very important output information is the CFL or Courant number.

• The Courant number imposes the CFL number condition, which is the maximum allowable 

CFL number a numerical scheme can use. For the n - dimensional case, the CFL number 

condition becomes,

The output screen

A deeper view to my first OpenFOAM® case setup

• In OpenFOAM®, most of the solvers are implicit, which means they are unconditionally 

stable. In other words, they are not constrained to the CFL number condition.

• However, the fact that you are using a numerical method that is unconditionally stable, does 

not mean that you can choose a time step of any size.

• The time-step must be chosen in such a way that it resolves the time-dependent features, and it 

maintains the solver stability.

• For the moment and for the sake of simplicity, let us try to keep the CFL number below 5.0 and 

preferably close to 1.0 (for good accuracy).

• Other properties of the numerical method that you should observe are: conservationess, 

boundedness, transportiveness, and accuracy. We are going to address these properties and 

the CFL number when we deal with the FVM theory. 121
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Time = 49.99

Courant Number mean: 0.044365026 max: 0.16800273

smoothSolver:  Solving for Ux, Initial residual = 1.1174405e-09, Final residual = 1.1174405e-09, No Iterations 0

smoothSolver:  Solving for Uy, Initial residual = 1.4904251e-09, Final residual = 1.4904251e-09, No Iterations 0

DICPCG:  Solving for p, Initial residual = 6.7291723e-07, Final residual = 6.7291723e-07, No Iterations 0

time step continuity errors : sum local = 2.5096865e-10, global = -1.7872395e-19, cumulative = 2.6884327e-18

ExecutionTime = 4.47 s  ClockTime = 5 s

fieldMinMax minmaxdomain output:

min(p) = -0.37208362 at location (0.025 0.975 0.5)

max(p) = 0.77640927 at location (0.975 0.975 0.5)

min(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

max(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

Time = 50

Courant Number mean: 0.044365026 max: 0.16800273

smoothSolver:  Solving for Ux, Initial residual = 1.0907508e-09, Final residual = 1.0907508e-09, No Iterations 0

smoothSolver:  Solving for Uy, Initial residual = 1.4677462e-09, Final residual = 1.4677462e-09, No Iterations 0

DICPCG:  Solving for p, Initial residual = 1.0020944e-06, Final residual = 1.0746895e-07, No Iterations 1

time step continuity errors : sum local = 4.0107145e-11, global = -5.0601748e-20, cumulative = 2.637831e-18

ExecutionTime = 4.47 s  ClockTime = 5 s

fieldMinMax minmaxdomain output:

min(p) = -0.37208345 at location (0.025 0.975 0.5)

max(p) = 0.77640927 at location (0.975 0.975 0.5)

min(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

max(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

The output screen

• To control the CFL number you can change the time step or you can change the mesh.

• The easiest way is by changing the time step.

• For a time step of 0.01 seconds, this is the output you should get for this case,

CFL number at 
time step n

CFL number at 
time step n - 1
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Time = 49.9

Courant Number mean: 0.4441161 max: 1.6798756

smoothSolver:  Solving for Ux, Initial residual = 0.00016535808, Final residual = 2.7960145e-09, No Iterations 5

smoothSolver:  Solving for Uy, Initial residual = 0.00015920267, Final residual = 2.7704949e-09, No Iterations 5

DICPCG:  Solving for p, Initial residual = 0.0015842846, Final residual = 5.2788554e-07, No Iterations 26

time step continuity errors : sum local = 8.6128916e-09, global = 3.5439859e-19, cumulative = 2.4940081e-17

ExecutionTime = 0.81 s  ClockTime = 1 s

fieldMinMax minmaxdomain output:

min(p) = -0.34322821 at location (0.025 0.975 0.5)

max(p) = 0.73453489 at location (0.975 0.975 0.5)

min(U) = (0.0002505779 -0.00025371425 0) at location (0.025 0.025 0.5)

max(U) = (0.0002505779 -0.00025371425 0) at location (0.025 0.025 0.5)

Time = 50

Courant Number mean: 0.44411473 max: 1.6798833

smoothSolver:  Solving for Ux, Initial residual = 0.00016378098, Final residual = 2.7690608e-09, No Iterations 5

smoothSolver:  Solving for Uy, Initial residual = 0.00015720331, Final residual = 2.7354499e-09, No Iterations 5

DICPCG:  Solving for p, Initial residual = 0.0015662416, Final residual = 5.2290439e-07, No Iterations 26

time step continuity errors : sum local = 8.5379223e-09, global = -3.6676527e-19, cumulative = 2.4573316e-17

ExecutionTime = 0.81 s  ClockTime = 1 s

fieldMinMax minmaxdomain output:

min(p) = -0.34244269 at location (0.025 0.975 0.5)

max(p) = 0.73656831 at location (0.975 0.975 0.5)

min(U) = (0.00025028679 -0.00025338014 0) at location (0.025 0.025 0.5)

max(U) = (0.00025028679 -0.00025338014 0) at location (0.025 0.025 0.5)

The output screen

• To control the CFL number you can change the time step or you can change the mesh.

• The easiest way is by changing the time step.

• For a time step of 0.1 seconds, this is the output you should get for this case,

CFL number at 
time step n - 1

CFL number at 
time step n
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Time = 2

Courant Number mean: 1.6828931 max: 5.6061178

smoothSolver:  Solving for Ux, Initial residual = 0.96587058, Final residual = 4.9900041e-09, No Iterations 27

smoothSolver:  Solving for Uy, Initial residual = 0.88080685, Final residual = 9.7837781e-09, No Iterations 25

DICPCG:  Solving for p, Initial residual = 0.95568243, Final residual = 7.9266324e-07, No Iterations 33

time step continuity errors : sum local = 6.3955627e-06, global = 1.3227253e-17, cumulative = 1.4125109e-17

ExecutionTime = 0.04 s  ClockTime = 0 s

fieldMinMax minmaxdomain output:

min(p) = -83.486425 at location (0.975 0.875 0.5)

max(p) = 33.078468 at location (0.025 0.925 0.5)

min(U) = (0.1309243 -0.13648118 0) at location (0.025 0.025 0.5)

max(U) = (0.1309243 -0.13648118 0) at location (0.025 0.025 0.5)

Time = 2.5

Courant Number mean: 8.838997 max: 43.078153

#0  Foam::error::printStack(Foam::Ostream&) at ??:?

#1  Foam::sigFpe::sigHandler(int) at ??:?

#2  ? in "/lib64/libc.so.6"

#3  Foam::symGaussSeidelSmoother::smooth(Foam::word const&, Foam::Field<double>&, Foam::lduMatrix const&, Foam::Field<double> const&, 

Foam::FieldField<Foam::Field, double> const&, Foam::UPtrList<Foam::lduInterfaceField const> const&, unsigned char, int) at ??:?

#4  Foam::symGaussSeidelSmoother::smooth(Foam::Field<double>&, Foam::Field<double> const&, unsigned char, int) const at ??:?

#5  Foam::smoothSolver::solve(Foam::Field<double>&, Foam::Field<double> const&, unsigned char) const at ??:?

#6  ? at ??:?

The output screen

• To control the CFL number you can change the time step or you can change the mesh.

• The easiest way is by changing the time step.

• For a time step of 0.5 seconds, this is the output you should get for this case,

Compare these values with the values 

of the previous cases.  For the 

physics involve these values are 
unphysical. 

The solver crashed.

The offender? Time step too large.

CFL number at 
time step n - 1

CFL number at 

time step n (way 
too high)
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Time = 50

Courant Number mean: 0.44411473 max: 1.6798833

smoothSolver:  Solving for Ux, Initial residual = 0.00016378098, Final residual = 2.7690608e-09, No Iterations 5

smoothSolver:  Solving for Uy, Initial residual = 0.00015720331, Final residual = 2.7354499e-09, No Iterations 5

DICPCG:  Solving for p, Initial residual = 0.0015662416, Final residual = 5.2290439e-07, No Iterations 26

time step continuity errors : sum local = 8.5379223e-09, global = -3.6676527e-19, cumulative = 2.4573316e-17

ExecutionTime = 0.81 s  ClockTime = 1 s

fieldMinMax minmaxdomain output:

min(p) = -0.34244269 at location (0.025 0.975 0.5)

max(p) = 0.73656831 at location (0.975 0.975 0.5)

min(U) = (0.00025028679 -0.00025338014 0) at location (0.025 0.025 0.5)

max(U) = (0.00025028679 -0.00025338014 0) at location (0.025 0.025 0.5)

The output screen

• Another output you should monitor are the continuity errors.

• These numbers should be small (it does not matter if they are negative or positive).

• If these values increase in time (about the order of 1e-2), you better control the case setup because 

something is wrong.

• The continuity errors are defined in the following file

$WM_PROJECT_DIR/src/finiteVolume/cfdTools/incompressible/continuityErrs.H

Continuity errors
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• If you forget a keyword or a dictionary file, give a wrong option to a compulsory or optional entry, 

misspelled something, add something out of place in a dictionary, use the wrong dimensions, 
forget a semi-colon and so on, OpenFOAM® will give you the error FOAM FATAL IO ERROR.

• This error does not mean that the actual OpenFOAM® installation is corrupted. It is telling you 

that you are missing something or something is wrong in a dictionary.

• Maybe the guys of OpenFOAM® went a little bit extreme here.

/*---------------------------------------------------------------------------*\

| =========                 |                                                 |

| \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

|  \\ /   O peration     | Version:  8                                     |

|   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

|    \\/     M anipulation  |                                                 |

\*---------------------------------------------------------------------------*/

Build  : 5.x-5d8318b22cbe

Exec   : icoFoam

Date   : Nov 02 2014

Time   : 00:33:41

Host   : "linux-cfd"

PID    : 3675

Case   : /home/cfd/my_cases_course/cavity

nProcs : 1

sigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).

fileModificationChecking : Monitoring run-time modified files using timeStampMaster

allowSystemOperations : Allowing user-supplied system call operations

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Create time

--> FOAM FATAL IO ERROR: 

Error output
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Build  : 6.x-5d8318b22cbe

Exec   : icoFoam

Date   : Nov 02 2014

Time   : 00:33:41

Host   : "linux-cfd"

PID    : 3675

Case   : /home/cfd/my_cases_course/cavity

nProcs : 1

sigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).

fileModificationChecking : Monitoring run-time modified files using timeStampMaster

allowSystemOperations : Allowing user-supplied system call operations

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Create time

--> FOAM FATAL IO ERROR: 

banana_endTime is not in enumeration: 

4

(

endTime

nextWrite

noWriteNow

writeNow

)

file: /home/cfd/my_cases_course/cavity/system/controlDict.stopAt at line 24.

From function NamedEnum<Enum, nEnum>::read(Istream&) const

in file lnInclude/NamedEnum.C at line 72.

FOAM exiting

• Also, before entering into panic read carefully the output screen because OpenFOAM® is telling 

you what is the error and how to correct it.

The origin of the error

Possible options to correct the error

Location of the error

Error output
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• It is very important to read the screen and understand the output. 

--> FOAM FATAL IO ERROR: 

cannot find file

file: /home/joegi/my_cases_course/6/101OF/cavity/0/p at line 0.

From function regIOobject::readStream()

in file db/regIOobject/regIOobjectRead.C at line 73.

FOAM exiting

• Train yourself to identify the errors.  Hereafter we list a few possible errors.

• Missing compulsory file p

Error output

“E perience is simply the name we give our mistakes.”
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--> FOAM FATAL IO ERROR: 

Cannot find patchField entry for xmovingWall

file: /home/joegi/my_cases_course/6/101OF/cavity/0/p.boundaryField from line 25 to line 35.

From function GeometricField<Type, PatchField, GeoMesh>::GeometricBoundaryField::readField(const 

DimensionedField<Type, GeoMesh>&, const dictionary&)

in file /home/joegi/OpenFOAM/OpenFOAM-6/src/OpenFOAM/lnInclude/GeometricBoundaryField.C at line 209.

FOAM exiting

• Mismatching patch name in file p

--> FOAM FATAL IO ERROR: 

keyword div(phi,U) is undefined in dictionary 

"/home/joegi/my_cases_course/6/101OF/cavity/system/fvSchemes.divSchemes"

file: /home/joegi/my_cases_course/6/101OF/cavity/system/fvSchemes.divSchemes from line 30 to line 30.

From function dictionary::lookupEntry(const word&, bool, bool) const

in file db/dictionary/dictionary.C at line 442.

FOAM exiting

• Missing compulsory keyword in fvSchemes

Error output
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--> FOAM FATAL IO ERROR: 

"ill defined primitiveEntry starting at keyword 'PISO' on line 68 and ending at line 68"

file: /home/joegi/my_cases_course/6/101OF/cavity/system/fvSolution at line 68.

From function primitiveEntry::readEntry(const dictionary&, Istream&)

in file lnInclude/IOerror.C at line 132.

FOAM exiting

• Missing entry  in file fvSolution at keyword PISO

• Incompatible dimensions. Likely the offender is the file U

Error output

--> FOAM FATAL ERROR: 

incompatible dimensions for operation 

[U[0 1 -2 1 0 0 0] ] + [U[0 1 -2 2 0 0 0] ]

From function checkMethod(const fvMatrix<Type>&, const fvMatrix<Type>&)

in file /home/joegi/OpenFOAM/OpenFOAM-6/src/finiteVolume/lnInclude/fvMatrix.C at line 1295.

FOAM aborting

#0  Foam::error::printStack(Foam::Ostream&) at ??:?

#1  Foam::error::abort() at ??:?

#2  void Foam::checkMethod<Foam::Vector<double> >(Foam::fvMatrix<Foam::Vector<double> > const&, 

Foam::fvMatrix<Foam::Vector<double> > const&, char const*) at ??:?

#3  ? at ??:?

#4  ? at ??:?

#5  __libc_start_main in "/lib64/libc.so.6"

#6  ? at /home/abuild/rpmbuild/BUILD/glibc-2.19/csu/../sysdeps/x86_64/start.S:125
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--> FOAM FATAL IO ERROR: 

keyword deltaT is undefined in dictionary "/home/joegi/my_cases_course/6/101OF/cavity/system/controlDict"

file: /home/joegi/my_cases_course/6/101OF/cavity/system/controlDict from line 17 to line 69.

From function dictionary::lookupEntry(const word&, bool, bool) const

in file db/dictionary/dictionary.C at line 442.

FOAM exiting

• Missing keyword deltaT in file controlDict

--> FOAM FATAL ERROR: 

Cannot find file "points" in directory "polyMesh" in times 0 down to constant

From function Time::findInstance(const fileName&, const word&, const IOobject::readOption, const word&)

in file db/Time/findInstance.C at line 203.

FOAM exiting

• Missing file points in directory polyMesh. Likely you are missing the mesh.

Error output
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--> FOAM FATAL IO ERROR: 

Unknown patchField type sfixedValue for patch type wall

Valid patchField types are :

74

(

SRFFreestreamVelocity

SRFVelocity

SRFWallVelocity

activeBaffleVelocity

...

...

...

variableHeightFlowRateInletVelocity

waveTransmissive

wedge

zeroGradient

)

file: /home/joegi/my_cases_course/6/101OF/cavity/0/U.boundaryField.movingWall from line 25 to line 26.

From function fvPatchField<Type>::New(const fvPatch&, const DimensionedField<Type, volMesh>&, const 

dictionary&)

in file /home/joegi/OpenFOAM/OpenFOAM-6/src/finiteVolume/lnInclude/fvPatchFieldNew.C at line 143.

FOAM exiting

• Unknown boundary condition type.

Error output
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/*---------------------------------------------------------------------------*\

| =========                 |                                                 |

| \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

|  \\ /   O peration     | Version:  8                                     |

|   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

|    \\/     M anipulation  |                                                 |

\*---------------------------------------------------------------------------*/

Build  : 6.x-5d8318b22cbe

Exec   : icoFoam

Date   : Nov 02 2014

Time   : 00:33:41

Host   : "linux-cfd"

PID    : 3675

fileName::stripInvalid() called for invalid fileName /home/cfd/my_cases_course/cavity0

For debug level (= 2) > 1 this is considerd fatal

Aborted

• This one is especially hard to spot

• This error is related to the name of the working directory.  In this case the name of the 
working directory is cavity 0 (there is a blank space between the word cavity and 

the number 0).

• Do not use blank spaces or funny symbols when naming directories and files.

• Instead of cavity 0 you could use cavity_0. 

Error output
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• You should worry about the SIGFPE error signal.  This error signal indicates that something 

went really wrong (erroneous arithmetic operation).

• This message (that seems a little bit difficult to understand), is giving you a lot information.

• For instance, this output is telling us that the error is due to SIGFPE and the class associated to 

the error is lduMatrix.  It is also telling you that the GAMGSolver solver is the affected one 

(likely the offender is the pressure).

Error output

#0  Foam::error::printStack(Foam::Ostream&) at ??:?

#1  Foam::sigFpe::sigHandler(int) at ??:?

#2   in "/lib64/libc.so.6"

#3  Foam::DICPreconditioner::calcReciprocalD(Foam::Field<double>&, Foam::lduMatrix const&) at ??:?

#4  Foam::DICSmoother::DICSmoother(Foam::word const&, Foam::lduMatrix const&, Foam::FieldField<Foam::Field, double> 

const&, Foam::FieldField<Foam::Field, double> const&, Foam::UPtrList<Foam::lduInterfaceField const> const&) at ??:?

#5  Foam::lduMatrix::smoother::addsymMatrixConstructorToTable<Foam::DICSmoother>::New(Foam::word const&, 

Foam::lduMatrix const&, Foam::FieldField<Foam::Field, double> const&, Foam::FieldField<Foam::Field, double> const&, 

Foam::UPtrList<Foam::lduInterfaceField const> const&) at ??:?

#6  Foam::lduMatrix::smoother::New(Foam::word const&, Foam::lduMatrix const&, Foam::FieldField<Foam::Field, double> 

const&, Foam::FieldField<Foam::Field, double> const&, Foam::UPtrList<Foam::lduInterfaceField const> const&, 

Foam::dictionary const&) at ??:?

#7  Foam::GAMGSolver::initVcycle(Foam::PtrList<Foam::Field<double> >&, Foam::PtrList<Foam::Field<double> >&, 

Foam::PtrList<Foam::lduMatrix::smoother>&, Foam::Field<double>&, Foam::Field<double>&) const at ??:?

#8  Foam::GAMGSolver::solve(Foam::Field<double>&, Foam::Field<double> const&, unsigned char) const at ??:?

#9  Foam::fvMatrix<double>::solveSegregated(Foam::dictionary const&) at ??:?

#10  Foam::fvMatrix<double>::solve(Foam::dictionary const&) at ??:?

#11  

at ??:?

#12  __libc_start_main in "/lib64/libc.so.6"

#13  

at /home/abuild/rpmbuild/BUILD/glibc-2.17/csu/../sysdeps/x86_64/start.S:126
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Dictionary files general features

• OpenFOAM® follows same general syntax rules as in C++.

• Commenting in OpenFOAM® (same as in C++):

135

• As in C++, you can use the #include directive in your dictionaries (do not forget to create the respective include file): 

#include “ n t   C nd t  n ” 

• Scalars, vectors, lists and dictionaries.

• Scalars in OpenFOAM® are represented by a single value, e.g., 

3.14159

• Vectors in OpenFOAM® are represented as a list with three components, e.g.,

(1.0  0.0  0.0)

• A second order tensor in OpenFOAM® is represented as a list with nine components, e.g.,

(

1.0  0.0  0.0

0.0  1.0  0.0

0.0  0.0  1.0

)

/* 

This is a block comment

*/

// This is a line comment 
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Dictionary files general features

• Scalars, vectors, lists and dictionaries.

• List entries are contained within parentheses ( ).  A list can contain scalars, vectors, tensors, words, and so on.

• A list of scalars is represented as follows:

name_of_the_list

(

0

1

2

);

• A list of vectors is represented as follows:

name_of_the_list

(

(0 0 0)

(1 0 0)

(2 0 0)

);

• A list of words is represented as follows

name_of_the_list

(

“  rd1”

“  rd2”

“  rd3”

);
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Dictionary files general features

solvers

{

p

{

solver                 PCG;

preconditioner   DIC;

tolerance            1e-06;

relTol                   0;

}

U

{

solver                 PBiCGStab;

preconditioner   DILU;

tolerance            1e-06;

relTol                   0;

}

…

…

…

}

• OpenFOAM® uses dictionaries to specify data in an input file (dictionary file). 

• A dictionary in OpenFOAM® can contain multiple data entries and at the same time dictionaries can contain 

sub-dictionaries.

• To specify a dictionary entry, the name is followed by the keyword entries in curly braces:

Dictionary solvers

Sub-dictionary p
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Sub-dictionary U



• Macro expansion.  

• We first declare a variable (x = 10) and then we use it through the $ macro substitution ($x).

vectorField (20 0 0); //Declare variable

internalField uniform $vectorField; //Use declared variable

scalarField 101328; //Declare variable

type fixedValue;

value uniform $scalarField; //Use declared variable

• You can use macro expansion to duplicate and access variables in dictionaries

p // Declare/create the dictionary p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

$p; //To create a copy of the dictionary p

$p.solver; //To access the variable solver in the dictionary p

A deeper view to my first OpenFOAM® case setup

Dictionary files general features
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Dictionary files general features

• In tead of writing  t e poor  an’  way :

139

leftWall 

{

type fixedValue; 

value uniform (0 0 0);

}

rightWall 

{

type fixedValue; 

value uniform (0 0 0);

}

topWall 

{

type fixedValue; 

value uniform (0 0 0);

}

• You can write (the lazy way):

“( eft|r ght|t  )W   ”

{

type fixedValue; 

value uniform (0 0 0);

}

• You could also try (even lazier):

“.*W   ”

{

type fixedValue; 

value uniform (0 0 0);

}

• OpenFOAM® understands the syntax of regular expressions (regex or regeaxp).
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Dictionary files general features

• Inline calculations.  

• You can use the directive #calc to do inline calculations, the syntax is as follows:

X = 10.0; //Declare variable

Y = 3.0; //Declare variable

Z    #c  c    “$ *$  – 12.0”; //Do inline calculation. The result is saved in the variable Z

• With inline calculations you can access all the mathematical functions available in C++.

• Macro expansions and inline calculations are very useful to parametrize dictionaries and avoid repetitive tasks.

• Switches: they are used to enable or disable a function or a feature in the dictionaries. 

• Switches are logical values.  You can use the following values:
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Switches

false true

off on

no yes

n y

f t

none true

• You can find all the valid switches in the following file:

OpenFOAM-6/src/OpenFOAM/primitives/bools/Switch/Switch.C



• If you need help about a solver or utility, you can use the option –help. For 

instance:

• $> icoFoam –help

will print some basic help and usage information about icoFoam

• Remember, you have the source code there so you can always              

check the original source.

A deeper view to my first OpenFOAM® case setup

Solvers and utilities help
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Solvers and utilities help

• To get more information about the boundary conditions, post-processing utilities, and the API read the 

Doxygen documentation. 

• If you did not compile the Doxygen documentation, you can access the information online, 

http://cpp.openfoam.org/v6/
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API documentation

Boundary conditions and post-processing 

utilities documentation

http://cpp.openfoam.org/v8/
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Exercises

• Run the case with Re = 10 and Re = 1000. Feel free to change any variable to achieve the Re value (velocity, 

viscosity or length). Do you see an unsteady behavior in any of the cases? What about the computing time, 

what simulation is faster?

• Run the tutorial with Re = 100, a mesh with  120 x 120 x 1 cells, and using the default setup (original 
controlDict, fvSchemes and fvSolution). Did the simulation converge? Did it crash?  Any comments.

• If your simulation crashed, try to solve the problem. 

(Hint: try to reduce the time-step to get a CFL less than 1)

• Besides reducing the time-step, can you find another solution? 

(Hint: look at the PISO options)

• Change the base type of the boundary patch movingWall to patch. (the boundary file). Do you get the same 

results? Can you comment on this?

• Try to extent the problem to 3D and use a uniform mesh (20 x 20 x 20). Compare the solution at the mid 

section of the 3D simulation with the 2D solution. Are the solutions similar?

• How many time discretization schemes are there in OpenFOAM®? Try to use a different discretization 

scheme.

• Run the simulation using Gauss upwind instead of Gauss linear for the term div(phi,U) (fvSchemes).  Do 

you get the same quantitative results?

• Sample the field variables U and P at a different location and plot the results using gnuplot.

• What density value do you think we were using? What about dynamic viscosity?

Hint: the physical pressure is equal to the modified pressure and
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Dam break free surface flow

Physical and numerical side of the 

problem:

• In this case we are going to use the volume of 

fluid (VOF) method.  

• This method solves the incompressible Navier-

Stokes equations plus an additional equation to 

track the phases (free surface location).

• As this is a multiphase case, we need to define 

the physical properties for each phase involved 

(viscosity, density and surface tension).

• The working fluids are water and air.

• Additionally, we need to define the gravity vector 

and initialize the two flows.

• This is a three-dimensional and unsteady case.

• The details of the case setup can be found in 

the following reference:

A Volume-of-Fluid Based Simulation Method for Wave 

Impact Problems. 

Journal of Computational Physics 206(1):363-393. 

June, 2005.

3D Dam break – Free surface flow

Gravity

Obstacle

Water column

Box with open top
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Workflow of the case

3D Dam break – Free surface flow

setFields

interFoam

sampling

functionObjects

paraview

blockMesh

+

snappyHexMesh
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Initial conditions – Coarse mesh Solution at Time = 1 second – Coarse mesh

3D Dam break – Free surface flow

At the end of the day, you should get something like this
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VOF Fraction (Free surface tracking) – Very fine mesh
http://www.wolfdynamics.com/validations/3d_db/dbreak.gif

3D Dam break – Free surface flow
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3D Dam break – Free surface flow

• Let us run this case. Go to the directory:

$PTOFC/101OF/3d_damBreak 

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this 

way, you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 
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What are we going to do?

3D Dam break – Free surface flow

• We will use this case to introduce the multiphase solver interFoam.

• interFoam is a solver for 2 incompressible, isothermal immiscible fluids using a VOF 

(volume of fluid) phase-fraction based interface capturing approach 

• We will define the physical properties of two phases, and we are going to initialize 

these phases.

• We will define the gravity vector in the dictionary g.

• After finding the solution, we will visualize the results. This is an unsteady case so 

now we are going to see things moving.

• We are going to briefly address how to post-process multiphase flows.

• We are going to generate the mesh using snappyHexMesh, but for the purpose of this 

tutorial we are not going to discuss the dictionaries.

• Remember, different solvers have different input dictionaries.
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The constant directory

• In this directory, we will find the following compulsory dictionary files:

• g

• transportProperties

• momentumTransport

• g contains the definition of the gravity vector. 

• transportProperties contains the definition of the physical properties of 

each phase.

• momentumTransport contains the definition of the turbulence model to use. 

3D Dam break – Free surface flow
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• This dictionary file is located in the directory 
constant.

• For multiphase flows, this dictionary is 

compulsory.

• In this dictionary we define the gravity vector (line 

19).

• Pay attention to the class type (line 12).

The g dictionary file

8  FoamFile

9  {

10 version     2.0;

11 format      ascii;

12 class       uniformDimensionedVectorField;

13 location    "constant";

14 object      g;

15 }

17 

18 dimensions      [0 1 -2 0 0 0 0];

19 value           (0 0 -9.81);
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• This dictionary file is located in the directory 
constant.

• We first define the name of the phases (line 17). 

In this case we are defining the names water and 

air. The first entry in this list is the primary phase 

(water).

• The name of the primary phase is the one you will 

use to initialize the solution.

• The name of the phases is given by the user.

• In this file we set the kinematic viscosity (nu), 

density (rho) and transport model 

(transportModel) of the phases.

• We also define the surface tension (sigma).

The transportProperties dictionary file

17 phases (water air);

18 

19 water

20 {

21 transportModel  Newtonian;

22 nu              [0 2 -1 0 0 0 0] 1e-06;

23 rho             [1 -3 0 0 0 0 0] 1000;

24 }

25 

26 air

27 {

28 transportModel  Newtonian;

29 nu              [0 2 -1 0 0 0 0] 1.48e-05;

30 rho             [1 -3 0 0 0 0 0] 1;

31 }

32 

33 sigma           [1 0 -2 0 0 0 0] 0.07;

Primary phase 
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• In this dictionary file we select what model we would like to use (laminar or 

turbulent).

• This dictionary is compulsory.

• In this case we use a RANS turbulence model (kEpsilon).

The momentumTransport dictionary file

17 simulationType    RAS;

18

19 RAS

20 {

21 RASModel kEpsilon;

22

23 turbulence on;

24

25 printCoeffs on;

26 }
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The 0 directory

• In this directory, we will find the dictionary files that contain the boundary and 

initial conditions for all the primitive variables.

• As we are solving the incompressible RANS Navier-Stokes equations using 

the VOF method, we will find the following field files:

• alpha.water (volume fraction of water phase)

• p_rgh (pressure field minus hydrostatic component)

• U (velocity field)

• k (turbulent kinetic energy field)

• epsilon (rate of dissipation of turbulence energy field)

• nut (turbulence viscosity field)
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The file 0/alpha.water

17 dimensions      [0 0 0 0 0 0 0];

18 

19 internalField   uniform 0;

20 

21 boundaryField

22 {

23 front

24 {

25 type            zeroGradient;

26 }

27 back

28 {

29 type            zeroGradient;

30 }

31 left

32 {

33 type            zeroGradient;

34  }

35 right

36 {

37 type            zeroGradient;

38 }

39 bottom

40 {

41 type            zeroGradient;

42 }

43 top

44 {

45 type            inletOutlet;

46 inletValue      uniform 0;

47 value           uniform 0;

48 }

49 stlSurface

50 {

51 type zeroGradient;

52 }

53 

54 }

• This file contains the boundary and initial conditions 

for the non-dimensional scalar field alpha.water

• This file is named alpha.water, because the 

primary phase is water (we defined the primary 
phase in the transportProperties dictionary).

• Initially, this field is initialized as 0 in the whole 

domain (line 19). This means that there is no water in 

the domain at time 0.  Later, we will initialize the 

water column and this file will be overwritten with a 

non-uniform field for the internalField.

• For the front, back, left, right, bottom and 

stlSurface patches we are using a zeroGradient

boundary condition (we are just extrapolating the 

internal values to the boundary face).

• For the top patch we are using an inletOutlet

boundary condition.  This boundary condition avoids 

backflow into the domain. If the flow is going out it 

will use zeroGradient and if the flow is coming back 

it will assign the value set in the keyword inletValue

(line 46).
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The file 0/p_rgh

• This file contains the boundary and initial conditions 

for the dimensional scalar field p_rgh.  The 

dimensions of this field are given in Pascal (line 17)

• This scalar field contains the value of the static 

pressure field minus the hydrostatic component.

• This field is initialized as 0 in the whole domain (line 

19). 

• For the front, back, left, right, bottom and 

stlSurface patches we are using the 

fixedFluxPressure boundary condition (refer to the 

source code or doxygen documentation to know 

more about this boundary condition).

• For the top patch we are using the totalPressure

boundary condition (refer to the source code or 

doxygen documentation to know more about this 

boundary condition).
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17 dimensions      [1 -1 -2 0 0 0 0];

18 

19 internalField   uniform 0;

20 

21 boundaryField

22 {

23 front

24 {

25 type            fixedFluxPressure;

26 value uniform 0;

27 }

28 back

33 left

38 right

43 bottom

48 top

49 {

50 type            totalPressure;

51 p0 uniform 0;

52 U U;

53 phi phi;

54 rho rho;

55 psi none;

56 gamma 1;

57 value uniform 0;

58 }

59 stlSurface

60 {

61 type            fixedFluxPressure;

62 value uniform 0;

63 }

64 

65 }

157



The file 0/U

• This file contains the boundary and initial conditions 

for the dimensional vector field U. 

• We are using uniform initial conditions and the 

numerical value is (0 0 0) (keyword internalField in 

line 19).

• The front, back, left, right, bottom and stlSurface

patches are no-slip walls, therefore we impose a 

fixedValue boundary condition with a value of (0 0 0) 

at the wall.

• For the top patch we are using the 

pressureInlterOutletVelocity boundary condition

(refer to the source code or doxygen documentation 

to know more about this boundary condition).
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17 dimensions      [0 -1 -1 0 0 0 0];

18 

19 internalField   uniform (0 0 0);

20 

21 boundaryField

22 {

23 front

24 {

25 type            fixedValue;

26 value uniform (0 0 0);

27 }

28 back

33 left

38 right

43 bottom

48 top

49 {

50 type            pressureInletOutletVelocity;

51 value uniform (0 0 0);

52 }

53 stlSurface

54 {

55 type            fixedValue;

56 value uniform (0 0 0);

57 }

58 

59 }
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The file 0/k

• This file contains the boundary and initial conditions 

for the dimensional scalar field k. 

• This scalar (turbulent kinetic energy), is related to the 

turbulence model.

• This field is initialized as 0.1 in the whole domain, 

and all the boundary patches take the same value 

($internalField). 

• For the front, back, left, right, bottom and 

stlSurface patches we are using the 

kqRWallFunction boundary condition, which applies 

a wall function at the walls (refer to the source code 

or doxygen documentation to know more about this 

boundary condition).

• For the top patch we are using the inletOutlet

boundary condition, this boundary condition handles 

backflow (refer to the source code or doxygen 

documentation to know more about this boundary 

condition).

• We will deal with turbulence modeling later.
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17 dimensions      [0 2 -2 0 0 0 0];

18 

19 internalField   uniform 0.1;

20 

21 boundaryField

22 {

23 “(front|back|left|right|bottom|stlSurface)”

24 {

25 type            kqRWallFunction;

26 value $internalField;

27 }

28

29 top

30 {

31 type            inletOutlet;

32 inletValue $internalField;

33 value $internalField;

34 }

35 

36 }
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The file 0/epsilon

• This file contains the boundary and initial conditions 

for the dimensional scalar field epsilon. 

• This scalar (rate of dissipation of turbulence energy), 

is related to the turbulence model.

• This field is initialized as 0.1 in the whole domain, 

and all the boundary patches take the same value 

($internalField). 

• For the front, back, left, right, bottom and 

stlSurface patches we are using the 

epsilonWallFunction boundary condition, which 

applies a wall function at the walls (refer to the 

source code or doxygen documentation to know 

more about this boundary condition).

• For the top patch we are using the inletOutlet

boundary condition, this boundary condition handles 

backflow (refer to the source code or doxygen 

documentation to know more about this boundary 

condition).

• We will deal with turbulence modeling later.
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17 dimensions      [0 2 -3 0 0 0 0];

18 

19 internalField   uniform 0.1;

20 

21 boundaryField

22 {

23 “(front|back|left|right|bottom|stlSurface)”

24 {

25 type            epsilonWallFunction;

26 value $internalField;

27 }

28

29 top

30 {

31 type            inletOutlet;

32 inletValue $internalField;

33 value $internalField;

34 }

35 

36 }
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The file 0/nut

• This file contains the boundary and initial conditions 

for the dimensional scalar field nut. 

• This scalar (turbulent viscosity), is related to the 

turbulence model.

• This field is initialized as 0 in the whole domain, and 

all the boundary patches take the same value 

($internalField). 

• For the front, back, left, right, bottom and 

stlSurface patches we are using the 

nutkWallFunction boundary condition, which applies 

a wall function at the walls (refer to the source code 

or doxygen documentation to know more about this 

boundary condition).

• For the top patch we are using the calculated

boundary condition, this boundary condition 

computes the value of nut from k and epsilon (refer to 

the source code or doxygen documentation to know 

more about this boundary condition).

• We will deal with turbulence modeling later.
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17 dimensions      [0 2 -1 0 0 0 0];

18 

19 internalField   uniform 0;

20 

21 boundaryField

22 {

23 “(front|back|left|right|bottom|stlSurface)”

24 {

25 type            nutkWallFunction;

26 value $internalField;

27 }

28

29 top

30 {

31 type            calculated;

32 value $internalField;;

33 }

34 

35 }
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The system directory

• The system directory consists of the following compulsory dictionary files: 

• controlDict 

• fvSchemes

• fvSolution

• controlDict contains general instructions on how to run the case. 

• fvSchemes contains instructions for the discretization schemes that will be 

used for the different terms in the equations.  

• fvSolution contains instructions on how to solve each discretized linear 

equation system. 
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17   application     interFoam;

18   

19   startFrom       startTime;

20   

21   startTime       0;

22   

23   stopAt          endTime;

24   

25   endTime         8;

26   

27   deltaT          0.0001;

28   

29   writeControl    adjustableRunTime;

30   

31   writeInterval   0.02;

32   

33   purgeWrite      0;

34   

35   writeFormat     ascii;

36   

37   writePrecision  8;

38   

39   writeCompression uncompressed;

40   

41   timeFormat      general;

42   

43   timePrecision   8;

44   

45   runTimeModifiable yes;

46   

47   adjustTimeStep  yes;

48   

49   maxCo           1.0;

50   maxAlphaCo      0.5;

51   maxDeltaT       0.01;

• This case starts from time 0 (startTime), and it will run up to 8 

seconds (endTime). 

• The initial time step of the simulation is 0.0001 seconds 

(deltaT).

• It will write the solution every 0.02 seconds (writeInterval) of 

simulation time (runTime).  It will automatically adjust the time 

step (adjustableRunTime), in order to save the solution at the 

precise write interval.

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat).

• The write precision is  8 digits (writePrecision). It will only save 

eight digits in the output files.

• And as the option runTimeModifiable is on, we can modify all 

these entries while we are running the simulation.

• In line 47 we turn on the option adjustTimeStep. This option 

will automatically adjust the time step to achieve the maximum 

desired courant number (lines 49-50). We also set a maximum 

time step in line 51.

• Remember, the first time step of the simulation is done using 

the value set in line 27 and then it is automatically scaled to 

achieve the desired maximum values (lines 49-51). 

The controlDict dictionary
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55   functions

56   {

60   minmaxdomain

61   {

62   type fieldMinMax;

63   

64   functionObjectLibs ("libfieldFunctionObjects.so");

65   

66   enabled true; //true or false

67   

68   mode component;

69   

70   writeControl timeStep;

71   writeInterval 1;

72   

73   log true;

74   

75   fields (p p_rgh U alpha.water k epsilon);

76   }

144  };

• Let us take a look at the functionObjects definitions.

• In lines 60-76 we define the fieldMinMax functionObject 

which computes the minimum and maximum values of 

the field variables (p p_rgh U alpha.water k epsilon).

The controlDict dictionary
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55   functions

56   {

81   water_in_domain

82   {

83   type            volRegion;

84   functionObjectLibs ("libfieldFunctionObjects.so");

85   enabled         true;

86   

87   enabled         true;

88   

89   //writeControl     outputTime;

90   writeControl   timeStep;

91   writeInterval  1;

92   

93   log             true;

94   

95   regionType      all;

96   

97  operation       volIntegrate;

98  fields

99  (

100  alpha.water

101  );

102  }

144  };

The controlDict dictionary

• Let us take a look at the functionObjects definitions.

• In lines 81-102 we define the volRegion functionObject 

which computes the volume integral (volIntegrate) of the 

field variable alpha.water in all the domain.

• Basically, we are monitoring the quantity of water in the 

domain.
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55   functions

56   {

107   probes1

108   {

109   type            probes;

110   functionObjectLibs ("libsampling.so");

111

112   pobeLocations

113   (

114  (0.82450002 0 0.021)

115  (0.82450002 0 0.061)

116  (0.82450002 0 0.101)

117  (0.82450002 0 0.141)

118  (0.8035 0 0.161)

119  (0.7635 0 0.161)

120  (0.7235 0 0.161)

121  (0.6835 0 0.161)

122   );

123   

124  fields

125  (

126  p p_rgh

127  );

128

129   writeControl   timeStep;

130   writeInterval 1;

131  }

144  };

The controlDict dictionary

• Let us take a look at the functionObjects definitions.

• In lines 107-131 we define the probes functionObject 

which sample the selected fields (lines 124-127) at the 

selected locations (lines 112-122).

• This sampling is done on-the-fly.  All the information 

sample by this functionObject is saved in the directory 
./postProcessing/probes1

• As we are sampling starting from time 0, the sampled 

data will be located in the directory:

postProcessing/probes1/0

• Feel free to open the files located in the directory 
postProcessing/probes1/0 using your favorite text 

editor.
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Sampling locations 
(probeLocations)
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55   functions

56   {

135   yplus

136   {

137   type            yPlus;

138   functionObjectLibs ("libutilityFunctionObjects.so ");

139 enabled true;

140 writeControl outputTime;

141 }

144  };

The controlDict dictionary

• Let us take a look at the functionObjects definitions.

• In lines 135-141 we define the yplus functionObject 

which computes the yplus value.  

• This quantity is related to the turbulence modeling.

• This functionObject will save the yplus field in the 

solution directories with the same saving frequency as the 

solution (line 140).

• It will also save the minimum, maximum and mean values 

of yplus in the directory:

postProcessing/yplus
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17 ddtSchemes

18 {

19 default         Euler;

21 }

22 

23 gradSchemes

24 {

25 default         Gauss linear;

26 grad(U)         cellLimited Gauss linear 1;

27 }

28 

29 divSchemes

30 {

31 div(rhoPhi,U)  Gauss linearUpwindV grad(U);

33 div(phi,alpha)  Gauss interfaceCompression vanLeer 1;

39 div(phi,k) Gauss upwind;

40 div(phi,epsilon) Gauss upwind;

41 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

42 }

43 

44 laplacianSchemes

45 {

46 default         Gauss linear corrected;

47 }

48 

49 interpolationSchemes

50 {

51 default         linear;

52 }

53 

54 snGradSchemes

55 {

56 default         corrected;

57 }

• In this case, for time discretization (ddtSchemes) we are using the 

Euler method.

• For gradient discretization (gradSchemes) we are using the Gauss 

linear as the default method and slope limiters (cellLimited) for the 

velocity gradient or grad(U). 

• For the discretization of the convective terms (divSchemes) we are 

using linearUpwindV interpolation method for the term 

div(rhoPhi,U).

• For the term div(phi,alpha) we are using interfaceCompression

vanLeer interpolation scheme.  

• This is an interface compression corrected scheme used to 

maintain sharp interfaces in VOF simulations. 

• The coefficient defines the degree of compression, where 1 is 

suitable for most VOF applications. 

• For the terms div(phi,k) and div(phi,epsilon) we are using upwind 

(these terms are related to the turbulence modeling).

• For the term div(((rho*nuEff)*dev2(T(grad(U))))) we are using 

linear interpolation (this term is related to the turbulence modeling).

• For the discretization of the Laplacian (laplacianSchemes and 

snGradSchemes) we are using the Gauss linear corrected method 

• In overall, this method is second order accurate but a little bit 

diffusive. Remember, at the end of the day we want a solution that is 

second order accurate.

The fvSchemes dictionary
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17 solvers

18 {

19 "alpha.water.*"

20 {

21 nAlphaCorr      3;

22 nAlphaSubCycles 1;

23 cAlpha          1;

24 

25 MULESCorr       yes;

26 nLimiterIter    10;

27 

28 solver          smoothSolver;

29 smoother        symGaussSeidel;

30 tolerance       1e-8;

31 relTol          0;

32 }

33 

34 “(pcorr|pcorrFinal)”

35 {

36 solver          PCG;

37 preconditioner  DIC;

38 tolerance       1e-8;

39 relTol          0;

40 }

41 

42 p_rgh

43 {

44 solver          PCG;

45 preconditioner  DIC;

46 tolerance       1e-06;

47 relTol          0.01;

48 minIter         1;

49 }

• To solve the volume fraction or alpha.water (lines 19-32) we 

are using the smoothSolver method. 

• In line 25 we turn on the semi-implicit method MULES. The 

keyword nLimiterIter controls the number of MULES iterations 

over the limiter.

• To have more stability it is possible to increase the number of 

loops and corrections used to solve alpha.water (lines 21-22). 

• The keyword cAlpha (line 23) controls the sharpness of the 

interface (1 is usually fine for most cases).

• In lines 34-40 we setup the solver for pcorr and pcorrFinal 

(pressure correction).

• In this case pcorr is solved only one time at the beginning of 

the computation.

• In lines 42-49 we setup the solver for p_rgh.  

• The keyword minIter (line 48), means that the linear solver will 

do at least one iteration.

The fvSolution dictionary
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51 p_rghFinal

52 {

53 $p_rgh;

54 relTol          0;

55 minIter         1;

56 }

57 

58 "(U|UFinal)"

59 {

60 solver          PBiCGStab;

61 Preconditioner  DILU;

62 tolerance       1e-08;

63 relTol          0;

72 }

73

74 "(k|epsilon).*"

75 {

76 solver          PBiCGStab;

77 Preconditioner  DILU;

78 tolerance       1e-08;

79 relTol          0;

80 }

81 }

82 

• In lines 51-56 we setup the solver for p_rghFinal. This 

correspond to the last iteration in the loop (we can use a tighter 

convergence criteria to get more accuracy without increasing 

the computational cost)

• In lines 58-72 we setup the solvers for U and UFInal.  

• In lines 74-80 we setup the solvers for the turbulent quantities, 

namely, k and epsilon.

The fvSolution dictionary
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82

83 PIMPLE

84 {

85 momentumPredictor   yes;

86 nOuterCorrectors    1;

87 nCorrectors         3;

88 nNonOrthogonalCorrectors 1;

89 }

90 

91 relaxationFactors

92 {

93 fields

94 {

95 ".*" 0.9;

96 }

97 equations

98 {

99 ".*" 0.9;

100 }

101 }

102

• In lines 83-89 we setup the entries related to the pressure-

velocity coupling method used (PIMPLE in this case). Setting 

the keyword nOuterCorrectors to 1 is equivalent to running 

using the PISO method.

• To gain more stability we can increase the number of correctors 

(lines 87-88), however this will increase the computational cost. 

• In lines 91-101 we setup the under-relaxation factors related to 

the PIMPLE method outer iterations.

• The values defined correspond to the industry standard of 

the SIMPLEC method. 

• By using under-relaxation we ensure diagonal equality. 

• Be careful not use too low values as you will loose time 

accuracy.

• If you want to disable under-relaxation, comment out 

these lines. 

• The option momentumPredictor (line 85), is recommended for 

highly convective flows.

The fvSolution dictionary
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The system directory

• In the system directory you will find the following optional dictionary files: 

• decomposeParDict

• setFieldsDict

• decomposeParDict is read by the utility decomposePar.  This dictionary 

file contains information related to the mesh partitioning. This is used when 

running in parallel. 

• setFieldsDict is read by the utility setFields.  This utility set values on 

selected cells/faces. 

3D Dam break – Free surface flow

172



The setFieldsDict dictionary

17 defaultFieldValues

18 (

19 volScalarFieldValue alpha.water 0

20 );

21 

22 regions

23 (

24 boxToCell

25 {

26 box (1.992 -10 0) (5 10 0.55);

27 fieldValues

28 (

29 volScalarFieldValue alpha.water 1

30 );

31 }

32 );

• This dictionary file is located in the directory system.

• In lines 17-20 we set the default value to be 0 in the whole 

domain (no water).

• In lines 22-32, we initialize a rectangular region (box) 

containing water (alpha.water 1). 

• In this case, setFields will look for the dictionary file 

alpha.water and it will overwrite the original values 

according to the regions defined in setFieldsDict.

• We initialize the water phase because is the primary phase in 
the dictionary transportProperties.

• If you are interested in initializing the vector field U, you can 

proceed as follows volVectorFieldValue U (0 0 0)
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boxToCell region

Water
alpha.water = 1

Air
alpha.water = 0
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The decomposeParDict dictionary

17 numberOfSubdomains 4;

18 

19 method scotch;

20 

• This dictionary file is located in the directory system.

• This dictionary is used to decompose the domain in order to run in parallel.

• The keyword numberOfSubdomains (line 17) is used to set the number of cores we want to use in the 

parallel simulation.

• In this dictionary we also set the decomposition method (line 19).  

• Most of the times the scotch method is fine.

• In this case we set the numberOfSubdomains to 4, therefore we will run in parallel using 4 cores.
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• When you run in parallel, the solution is saved in the directories processorN, where N stands for processor 

number.  In this case you will find the following directories with the decomposed mesh and solution: 
processor0, processor1, processor2, and processor3.
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Running the case

1. $> foamCleanTutorials

2. $> rm –rf 0

3. $> blockMesh 

4. $> surfaceFeatures 

5. $> snappyHexMesh -overwrite

6. $> createPatch -dict system/createPatchDict.0 -overwrite

7. $> createPatch -dict system/createPatchDict.1 -overwrite

8. $> checkMesh

9. $> paraFoam
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• Let us first generate the mesh.  

• To generate the mesh will use snappyHexMesh (sHM), do not worry we will talk about 

sHM tomorrow.
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Running the case

1. $> rm –rf 0

2. $> cp –r 0_org 0

3. $> setFields

4. $> paraFoam

5. $> decomposePar

6. $> mpirun –np 4 interFoam –parallel | tee log.interFoam

7. $> reconstructPar

8. $> paraFoam
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• Let us run the simulation in parallel using the solver interFoam. 

• We will talk more about running in parallel tomorrow 

• To run the case, type in the terminal:
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Running the case

• In steps 1-2 we copy the information of the backup directory 0_org into the directory 

0. We do this because in the next step the utility setFields will overwrite the file 

0/alpha.water, so it is a good idea to keep a backup.

• In step 3 we initialize the solution using the utility setFields. This utility reads the 

dictionary setFieldsDict located in the system directory. 

• In step 4 we visualize the initialization using paraFoam. 

• In step 5 we use the utility decomposePar to do the domain decomposition needed 

to run in parallel. 

• In step 6 we run the simulation in parallel.  Notice that np means number of 

processors and the value used should be the same number as the one you set in the 
dictionary decomposeParDict. 

• If you want to run in serial, type in the terminal: interFoam | tee log

• In step 7 we reconstruct the parallel solution. This step is only needed if you are 

running in parallel.

• Finally, in step 8 we visualize the solution. 
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• To plot the sampled data using gnuplot you can proceed as follows. To enter to the 

gnuplot prompt type in the terminal:

1. $> gnuplot

3D Dam break – Free surface flow

1. set xlabel 'Time (seconds)'

2. set ylabel 'Water volume integral'

3. gnuplot> plot 'postProcessing/water_in_domain/0/volRegion.dat' u 1:2 w l title 

'Water in domain'

4. set xlabel 'Time (seconds)'

5. set ylabel 'Pressure'

6. plot 'SPHERIC_Test2/case.txt' u 1:2 w l title 'Experiment', 

'postProcessing/probes1/0/p' u 1:2 w l title 'Numerical simulation'

7. gnuplot> exit

To exit gnuplot

• Now that we are inside the gnuplot prompt, we can type,
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• The output of steps 3 and 6 is the following:

3D Dam break – Free surface flow

alpha.water vs. time p vs. time (at probe 0)
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The output screen

3D Dam break – Free surface flow

Courant Number mean: 0.0099001831 max: 0.50908228

Interface Courant Number mean: 0.0012838336 max: 0.05362054

deltaT = 0.00061195165

Time = 0.41265658

PIMPLE: iteration 1

smoothSolver:  Solving for alpha.water, Initial residual = 0.00035163885, Final residual = 9.3476388e-11, No Iterations 2

Phase-1 volume fraction = 0.20706923  Min(alpha.water) = -9.1300674e-12  Max(alpha.water) = 1.0000113

MULES: Correcting alpha.water

MULES: Correcting alpha.water

MULES: Correcting alpha.water

Phase-1 volume fraction = 0.20706923  Min(alpha.water) = -1.2354076e-07  Max(alpha.water) = 1.0000113

DILUPBiCGStab:  Solving for Ux, Initial residual = 0.00057936556, Final residual = 2.3207684e-09, No Iterations 1

DILUPBiCGStab:  Solving for Uy, Initial residual = 0.0021990412, Final residual = 7.228845e-09, No Iterations 1

DILUPBiCGStab:  Solving for Uz, Initial residual = 0.00041048425, Final residual = 3.946807e-10, No Iterations 1

DICPCG:  Solving for p_rgh, Initial residual = 0.0013260985, Final residual = 1.2556023e-05, No Iterations 4

DICPCG:  Solving for p_rgh, Initial residual = 1.4873252e-05, Final residual = 8.7706547e-07, No Iterations 13

time step continuity errors : sum local = 2.166836e-08, global = -4.8300033e-11, cumulative = -5.8278026e-05

DICPCG:  Solving for p_rgh, Initial residual = 1.6925332e-05, Final residual = 8.9811533e-07, No Iterations 9

DICPCG:  Solving for p_rgh, Initial residual = 1.1731393e-06, Final residual = 4.991128e-07, No Iterations 1

time step continuity errors : sum local = 1.2328745e-08, global = -3.6165262e-09, cumulative = -5.8281643e-05

DICPCG:  Solving for p_rgh, Initial residual = 8.2834963e-07, Final residual = 4.6047958e-07, No Iterations 1

DICPCG:  Solving for p_rgh, Initial residual = 4.6053278e-07, Final residual = 4.65519e-07, No Iterations 1

time step continuity errors : sum local = 1.1498949e-08, global = -3.1908629e-09, cumulative = -5.8284834e-05

DILUPBiCGStab:  Solving for epsilon, Initial residual = 0.001169828, Final residual = 9.2601488e-11, No Iterations 2

DILUPBiCGStab:  Solving for k, Initial residual = 0.0014561556, Final residual = 9.4651262e-11, No Iterations 2

ExecutionTime = 23.21 s  ClockTime = 24 s

fieldMinMax minmaxdomain write:

min(p) = -9.8942827 in cell 5509 at location (2.490155 0.025000016 1) on processor 2

max(p) = 4703.3656 in cell 1485 at location (3.1948336 -0.425 0) on processor 2

min(p_rgh) = -7.9025882 in cell 1241 at location (0.82088765 -0.20846334 0.043756428) on processor 1

max(p_rgh) = 4831.247 in cell 3285 at location (3.1948341 -0.475 0.42499986) on processor 2

min(U) = (-0.96505264 -0.019641482 -0.052664083) in cell 2 at location (2.1879167 -0.42500042 0.024999822) on processor 2

max(U) = (0.32541708 0.29383224 2.7117589) in cell 5246 at location (0.8884354 0.087713417 0.16296979) on processor 1

min(alpha.water) = -1.2354076e-07 in cell 2653 at location (0.84202094 -0.10628417 0.0062556498) on processor 1

max(alpha.water) = 1.0000113 in cell 224 at location (2.6411358 -0.42500003 0.074999874) on processor 2

min(k) = 0.0041733636 in cell 2510 at location (0.65789113 -0.0062500875 0.0062360099) on processor 1

max(k) = 0.83402261 in cell 6589 at location (1.2803306 -0.025028634 0.17499623) on processor 1

min(epsilon) = 0.018352121 in cell 2510 at location (0.65789113 -0.0062500875 0.0062360099) on processor 1

max(epsilon) = 11.712212 in cell 1933 at location (0.83147515 -0.19630576 0.068753535) on processor 1

volFieldValue water_in_domain write:

volIntegrate() of alpha.water = 0.66459985

Flow courant number

Interface courant number. When solving multiphase flows, is always 

desirable to keep the interface courant number less than 1.  
alpha.water 
residuals

nAlphaCorr 3
nAlphaSubCycles 1
Only one loop

3 pressure correctors 

and no non-orthogonal 
corrections 

Tighter tolerance 

(p_rghFinal) is only applied 

to this iteration (the final 
one)

Volume integral functionObject
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Post-processing multiphase flows in paraFoam

• To visualize the volume fraction, proceed as follows,

3D Dam break – Free surface flow

2. Select alpha.water in 

the Active Variable drop-

down menu

1. In the Properties tab select 

alpha.water in Volume Fields 

3. Select Surface in the 

Representation drop-down 
menu

Air
alpha.water = 0

Water
alpha.water = 1

Interface
alpha.water = 0.5

4. To animate the solution, press Play in the 

VCR Controls
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Post-processing multiphase flows in paraFoam

• To visualize a surface representing the interface, proceed as follows,

3D Dam break – Free surface flow

1. Select the filter Contour

2. Select alpha.water or the field you 

want to use to plot the iso-surface (it 

has to be a scalar)

3. Enter the value 0.5 which 

corresponds to the interface 
between water and air

4. Press apply

5. To animate the solution, press Play in the 

VCR Controls

Iso-surface representing the interface 
between water and air
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Post-processing multiphase flows in paraFoam

• To visualize all the cells representing the water fraction, proceed as follows,

3D Dam break – Free surface flow

1. Select the filter Threshold

2. Select alpha.water or the field 

you want to use to visualize the 

cells (it has to be a scalar)

3. Select the range you want to 

visualize.  To visualize the 
water select Minimum 0.5 and 

Maximum 1.

4. Press apply

Cells representing the 
water location

5. To animate the solution, press Play in the 

VCR Controls
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3D Dam break – Free surface flow

• Instead of using the boundary condition totalPressure and pressureInletOutletVelocity for the patch top, try 

to use zeroGradient.  Do you get the same results? Any comments?

(Hint: this combination of boundary conditions might give you an error, if so, read carefully the screen 
and try to find a fix, you can start by looking at the file fvSolution)

• Instead of using the boundary condition fixedFluxPressure for the walls, try to use zeroGradient. Do you get 

the same results? Any comments?

• Run the simulation in a close domain. Does the volume integral of alpha.water remains the same? Why the 

value is not constant when the domain is open?

• Use a functionObject to measure the average pressure on the obstacle.

• How many initialization methods are there available in the dictionary setFieldsDict?

(Hint: use the banana method)

• Run the simulation using Gauss upwind instead of Gauss vanLeer or Gauss interfaceCompression 
vanLeer 1 for the term div(phi,alpha) (fvSchemes).  Do you get the same quantitative results?

Exercises
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3D Dam break – Free surface flow

• Run a numerical experiment for cAlpha equal to 0, 1, and 2.  Do you see any difference in the solution? What 

about computing time?

• Use the solver GAMG instead of using the solver PCG for the variable p_rgh.  Do you see any difference on 

the solution or computing time?

• Increase the number of nOuterCorrector to 2 and study the output screen. What difference do you see?

• Turn off the MULES corrector (MULESCorr). Do you see any difference on the solution or computing time? 

• If you set the gravity vector to (0 0 0), what do you think will happen?

• Try to break the solver and identify the cause of the error.  You are free to try any kind of setup.

Exercises
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Roadmap

1. OpenFOAM® brief overview

2. OpenFOAM® directory organization

3. Directory structure of an application/utility

4. Applications/utilities in OpenFOAM®

5. Directory structure of an OpenFOAM® case

6. Running my first OpenFOAM® case setup blindfold

7. A deeper view to my first OpenFOAM® case setup

8. 3D Dam break – Free surface flow

9. Flow past a cylinder – From laminar to turbulent flow
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• At this point we all have a rough idea of what is going 

on with all these dictionary files.

• Unless it is strictly necessary, from now on we will not 

go into details about the dictionaries and  files we are 

using.

• Remember, if you are using the lab computers, do not 

forget to load the environment variables.

Flow past a cylinder – From laminar to turbulent flow
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Flow around a cylinder – 10 < Re < 2 000 000

Incompressible and compressible flow

All the dimensions are in meters

Flow past a cylinder – From laminar to turbulent flow

Physical and numerical side of the 

problem:

• In this case we are going to solve the flow 

around a cylinder.  We are going to use 

incompressible and compressible solvers, in 

laminar and turbulent regime.

• Therefore, the governing equations of the 

problem are the incompressible/compressible 

laminar/turbulent Navier-Stokes equations.

• We are going to work in a 2D domain.

• Depending on the Reynolds number, the flow 

can be steady or unsteady.

• This problem has a lot of validation data.
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Workflow of the case

Flow past a cylinder – From laminar to turbulent flow

icoFoam

pisoFoam

pimpleFoam

pimpleDyMFoam

simpleFoam

rhoPimpleFoam

interFoam

sonicFoam

potentialFoam

mapFields

sampling

functionObjects

postProcessing 

utilities

paraview

blockMesh

Or

fluentMeshToFoam

NOTE:

One single mesh can be used with all 

solvers and utilities
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Vortex shedding behind a cylinder

Flow past a cylinder – From laminar to turbulent flow

Drag coefficient

Strouhal number

Re < 5

5 < Re < 40 - 46

40 - 46 < Re < 150

150 < Re < 300

300 < Re < 3 x 10
5

3 x 10  < Re < 3 x 10
5 6

Transition to turbulence

3 x 10  > Re 
6

Creeping flow (no separation)
Steady flow

A pair of stable vortices
in the wake
Steady flow

Laminar vortex street
(Von Karman street)
Unsteady flow

Laminar boundary layer up to
the separation point, turbulent 
wake
Unsteady flow

Boundary layer transition to
turbulent
Unsteady flow

Turbulent vortex street, but the 
wake is  narrower than in the 
laminar case
Unsteady flow
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Flow past a cylinder – From laminar to turbulent flow

Some experimental (E)  and numerical (N)  results of the flow past a circular 
cylinder at various Reynolds numbers

[1]  D. Tritton.  Experiments on the flow past a circular cylinder at low Reynolds numbers.  Journal of Fluid Mechanics, 6:547-567, 1959.

[2]  M. Cuntanceau and R. Bouard.  Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation.  Part 1.  Steady flow.  Journal of Fluid 

Mechanics, 79:257-272, 1973.

[3]  D. Rusell and Z. Wang.  A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow.  Journal of Computational Physics, 191:177-205, 2003.

[4]  D. Calhoun and Z. Wang. A cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions.  Journal of Computational Physics. 176:231-275, 2002.

[5]  T. Ye, R. Mittal, H. Udaykumar, and W. Shyy.  An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries.  Journal of Computational Physics, 

156:209-240, 1999.

[6]  B. Fornberg.  A numerical study of steady viscous flow past a circular cylinder.  Journal of Fluid Mechanics, 98:819-855, 1980.

[7]  J. Guerrero.  Numerical simulation of the unsteady aerodynamics of flapping flight.  PhD Thesis, University of Genoa, 2009.

Lrb = length of recirculation bubble, cd = drag coefficient, Re = Reynolds number, 

Reference cd – Re = 20 Lrb – Re = 20 cd – Re = 40 Lrb – Re = 40

[1] Tritton (E) 2.22 – 1.48 –

[2] Cuntanceau and Bouard (E) – 0.73 – 1.89

[3] Russel and Wang (N) 2.13 0.94 1.60 2.29

[4] Calhoun and Wang (N) 2.19 0.91 1.62 2.18

[5] Ye et al. (N) 2.03 0.92 1.52 2.27

[6] Fornbern (N) 2.00 0.92 1.50 2.24

[7] Guerrero (N) 2.20 0.92 1.62 2.21
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Flow past a cylinder – From laminar to turbulent flow

Some experimental (E)  and numerical (N)  results of the flow past a circular 
cylinder at various Reynolds numbers

[1]  D. Rusell and Z. Wang.  A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow.  Journal of Computational Physics, 191:177-205, 2003.

[2]  D. Calhoun and Z. Wang. A cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions.  Journal of Computational Physics. 176:231-275, 2002.

[3]  M. Braza, P. Chassaing, and H. Hinh. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder.  Journal of Fluid Mechanics, 165:79-130, 

1986.

[4]  J. Choi, R. Oberoi, J. Edwards, an J. Rosati.  An immersed boundary method for complex incompressible flows.  Journal of Computational Physics, 224:757-784, 2007.

[5]  C. Liu, X. Zheng, and C. Sung. Preconditioned multigrid methods for unsteady incompressible flows.  Journal of Computational Physics, 139:33-57, 1998.

[6]  J. Guerrero.  Numerical Simulation of the unsteady aerodynamics of flapping flight.  PhD Thesis, University of Genoa, 2009.

Reference cd – Re = 100 cl – Re = 100 cd – Re = 200 cl – Re = 200

[1] Russel and Wang (N) 1.38 ± 0.007 ± 0.322 1.29 ± 0.022 ± 0.50

[2] Calhoun and Wang (N) 1.35 ± 0.014 ± 0.30 1.17 ± 0.058 ± 0.67

[3] Braza et al. (N) 1.386± 0.015 ± 0.25 1.40 ± 0.05 ± 0.75

[4] Choi et al. (N) 1.34 ± 0.011 ± 0.315 1.36 ± 0.048 ± 0.64

[5] Liu et al. (N) 1.35 ± 0.012 ± 0.339 1.31 ± 0.049 ± 0.69

[6] Guerrero (N) 1.38 ± 0.012 ± 0.333 1.408 ± 0.048 ± 0.725

cl = lift coefficient, cd = drag coefficient, Re = Reynolds number
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Incompressible flow – Reynolds 200

At the end of the day, you should get something like this

Flow past a cylinder – From laminar to turbulent flow

Instantaneous velocity magnitude field
www.wolfdynamics.com/wiki/cylinder_vortex_shedding/movvmag.gif

Instantaneous vorticity magnitude field
www.wolfdynamics.com/wiki/cylinder_vortex_shedding/movvort.gif
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Incompressible flow – Reynolds 200

At the end of the day, you should get something like this

Flow past a cylinder – From laminar to turbulent flow
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Flow past a cylinder – From laminar to turbulent flow

195

• Let us run this case. Go to the directory:

$PTOFC/101OF/vortex_shedding 

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this 

way, you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 



What are we going to do?

• We will use this case to learn how to use different solvers and utilities.

• Remember, different solvers have different input dictionaries.

• We will learn how to convert the mesh from a third-party software.

• We will learn how to use setFields to initialize the flow field and accelerate the 

convergence.

• We will learn how to map a solution from a coarse mesh to a fine mesh.

• We will learn how to setup a compressible solver.

• We will learn how to setup a turbulence case.

• We will use gnuplot to plot and compute the mean values of the lift and drag 

coefficients.

• We will visualize unsteady data.

Flow past a cylinder – From laminar to turbulent flow

196



• Let us first convert the mesh from a third-party format (Fluent format).

• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c2 

• In the terminal window type:              

1. $> foamCleanTutorials 

2. $> fluent3DMeshToFoam ../../../meshes_and_geometries/vortex_shedding/ascii.msh

3. $> checkMesh

4. $> paraFoam

• In step 2, we convert the mesh from Fluent format to OpenFOAM® format.  Have in 

mind that the Fluent mesh must be in ascii format.

• If we try to open the mesh using paraFoam (step 4), it will crash.  Can you tell what is 

the problem by just reading the screen? 

Running the case

Flow past a cylinder – From laminar to turbulent flow

197



• To avoid this problem, type in the terminal,

• Basically, the problem is related to the names and type of the patches in the file 
boundary and the boundary conditions (U, p). Notice that OpenFOAM® is telling you 

what and where is the error.

Running the case

Flow past a cylinder – From laminar to turbulent flow

1. $> paraFoam -builtin

Created temporary 'c2.OpenFOAM'

--> FOAM FATAL IO ERROR: 

patch type 'patch' not constraint type 'empty'

for patch front of field p in file "/home/joegi/my_cases_course/8/101OF/vortex_shedding/c2/0/p"

file: /home/joegi/my_cases_course/8/101OF/vortex_shedding/c2/0/p.boundaryField.front from line 60 to line 60.

From function Foam::emptyFvPatchField<Type>::emptyFvPatchField(const Foam::fvPatch&, const 

Foam::DimensionedField<Type, Foam::volMesh>&, const Foam::dictionary&) [with Type = double]

in file fields/fvPatchFields/constraint/empty/emptyFvPatchField.C at line 80.

FOAM exiting

What Where
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• Remember, when converting meshes the name and type of the patches are not 

always set as you would like, so it is always a good idea to take a look at the file 
boundary and modify it according to your needs.

• Let us modify the boundary dictionary file.

• In this case, we would like to setup the following numerical type boundary 

conditions.

Flow past a cylinder – From laminar to turbulent flow
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The boundary dictionary file 

• This dictionary is located in the 
constant/polyMesh directory. 

• This file is automatically created when converting 

or generating the mesh.

• To get a visual reference of the patches, you can 

visualize the mesh with paraFoam/paraview.

• The type of the out patch is OK.

• The type of the sym1 patch is OK.

• The type of the sym2 patch is OK.

• The type of the in patch is OK.

18  7

19  (

20  out

21  {

22  type            patch;

23  nFaces          80;

24  startFace       18180;

25  }

26  sym1

27  {

28  type            symmetry;

29  inGroups        1(symmetry);

30  nFaces          100;

31  startFace       18260;

32  }

33  sym2

34  {

35  type            symmetry;

36  inGroups        1(symmetry);

37  nFaces          100;

38  startFace       18360;

39  }

40  in

41  {

42  type            patch;

43  nFaces          80;

44  startFace       18460;

45  }

Flow past a cylinder – From laminar to turbulent flow
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The boundary dictionary file 

46  cylinder

47  {

48  type            wall;

49  inGroups        1(wall);

50  nFaces          80;

51  startFace       18540;

52  }

53  back

54  {

55  type            patch;

56  nFaces          9200;

57  startFace       18620;

58  }

59  front

60  {

61  type            patch;

62  nFaces          9200;

63  startFace       27820;

64  }

65  )

• The type of the cylinder patch is OK.

• The type of the back patch is NOT OK. 

Remember, this is a 2D simulation, therefore the 

type should be empty. 

• The type of the front patch is NOT OK. 

Remember, this is a 2D simulation, therefore the 

type should be empty. 

• Remember, we assign the numerical type 

boundary conditions (numerical values), in the 
field files found in the directory 0

Flow past a cylinder – From laminar to turbulent flow
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• At this point, check that the name and type of the base type boundary conditions 

and numerical type boundary conditions are consistent.  If everything is ok, we are 

ready to go.

• Do not forget to explore the rest of the dictionary files, namely:

• 0/p (p is defined as relative pressure)

• 0/U

• constant/transportProperties

• system/controlDict 

• system/fvSchemes

• system/fvSolution

• Reminder:

• The diameter of the cylinder is 2.0 m.

• And we are targeting for a Re = 200.

Flow past a cylinder – From laminar to turbulent flow
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• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c2 

• In the folder c1 you will find the same setup, but to generate the mesh we use 

blockMesh (the mesh is identical).

• To run this case, in the terminal window type:

1. $> renumberMesh -overwrite 

2. $> icoFoam | tee log.icofoam

3.
$> pyFoamPlotWatcher.py log.icofoam

You will need to launch this script in a different terminal

4.
$> gnuplot scripts0/plot_coeffs

You will need to launch this script in a different terminal

5. $> paraFoam 

Running the case

Flow past a cylinder – From laminar to turbulent flow
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• In step 1 we use the utility renumberMesh to make the linear system more diagonal 

dominant, this will speed-up the linear solvers.  This is inexpensive (even for large 

meshes), therefore is highly recommended to always do it.

• In step 2 we run the simulation and save the log file.  Notice that we are sending the 

job to background.

• In step 3 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly.  As the 

job is running in background, we can launch this utility in the same terminal tab.

• In step 4 we use the gnuplot script scripts0/plot_coeffs to plot the force 

coefficients on-the-fly.  Besides monitoring the residuals, is always a good idea to 

monitor a quantity of interest. Feel free to take a look at the script and to reuse it.

• The force coefficients are computed using functionObjects.

• After the simulation is over, we use paraFoam to visualize the results. Remember to 

use the VCR Controls to animate the solution.

• In the folder c1 you will find the same setup, but to generate the mesh we use 

blockMesh (the mesh is identical).

Running the case

Flow past a cylinder – From laminar to turbulent flow
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• At this point try to use the following utilities. In the terminal type:

• $> postProcess –func vorticity –noZero 
This utility will compute and write the vorticity field. The –noZero option means do not compute the vorticity field for the 

solution in the directory 0.  If you do not add the –noZero option, it will compute and write the vorticity field for all the 

saved solutions, including 0

• $> postprocess –func 'grad(U)' –latestTime
This utility will compute and write the velocity gradient or grad(U) in the whole domain (including at the walls).  The       

–latestTime option means compute the velocity gradient only for the last saved solution.

• $> postprocess –func 'grad(p)' 
This utility will compute and write the pressure gradient or grad(U) in the whole domain (including at the walls). 

• $> foamToVTK –time 50:300 
This utility will convert the saved solution from OpenFOAM® format to VTK format.  The –time 50:300 option means 

convert the solution to VTK format only for the time directories 50 to 300

• $> postProcess -func 'div(U)'
This utility will compute and write the divergence of the velocity field or grad(U) in the whole domain (including at the 

walls).

• $> pisoFoam -postProcess -func CourantNo 
This utility will compute and write the Courant number. This utility needs to access the solver database for the physical 
properties and additional quantities; therefore we need to tell what solver we are using.  As the solver icoFoam does not 

accept the option –postProcess, we can use the solver pisoFoam instead. Remember, icoFoam is a fully laminar 

solver and pisoFoam is a laminar/turbulent solver.

• $> pisoFoam -postProcess -func wallShearStress
This utility will compute and write the wall shear stresses at the walls.  As no arguments are given, it will save the wall 

shear stresses for all time steps.

Flow past a cylinder – From laminar to turbulent flow
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Non-uniform field initialization

• In the previous case, it took about 150 seconds of simulation time to onset the instability.

• If you are not interested in the initial transient or if you want to speed-up the computation, you 

can add a perturbation in order to trigger the onset of the instability.

• Let us use the utility setFields to initialize a non-uniform flow.

• This case is already setup in the directory ,

$PTOFC/101OF/vortex_shedding/c3

• As you saw in the previous example, icoFoam is a very basic solver that does not have access 

to all the advanced modeling or postprocessing capabilities that comes with OpenFOAM®.

• Therefore, instead of using icoFoam we will use pisoFoam (or pimpleFoam) from now on.

• To run the solver pisoFoam (or pimpleFoam) starting from the directory structure of an 

icoFoam case, you will need to add the followings modifications:

• Add the file momentumTransport in the directory constant.

• Add the transportModel to be used in the file constant/transportProperties.

• Add the entry div((nuEff*dev2(T(grad(U))))) Gauss linear; to the dictionary 
system/fvSchemes in the section divSchemes (this entry is related to the Reynodls 

stresses).
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The setFieldsDict dictionary

17 defaultFieldValues

18 (

19 volVectorFieldValue U (1 0 0)

20 );

21 

22 regions

23 (

24 boxToCell

25 {

26 box (0 -100 -100) (100 100 100);

27 fieldValues

28 (

29 volVectorFieldValue U (0.98480 0.17364 0)

30 );

31 }

32 );

• This dictionary file is located in the directory system.

• In lines 17-20 we set the default value of the velocity vector 

to be (0 0 0) in the whole domain.

• In lines 24-31, we initialize a rectangular region (box) just 

behind the cylinder with a velocity vector equal to (0.98480 

0.17364 0)

• In this case, setFields will look for the dictionary file U 

and it will overwrite the original values according to the 
regions defined in setFieldsDict.

boxToCell region

U
 (

1
 0

 0
)

U
 (

0
.9

8
4
8
0
 0

.1
7
3
6
4
 0

)

• Let us run the same case but using a non-uniform field
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• Let us run the same case but using a non-uniform field.

• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c3 

• Feel free to use the Fluent mesh or the mesh generated with blockMesh.  Hereafter, we will 

use blockMesh.

• To run this case, in the terminal window type:

1. $> foamCleanTutorials 

2. $> blockMesh 

3. $> rm –rf 0 > /dev/null 2>&1

4. $> cp –r 0_org/ 0

5. $> setFields

6. $> renumberMesh -overwrite 

7. $> pisoFoam | tee log.solver

8.
$> pyFoamPlotWatcher.py log.pisofoam 

You will need to launch this script in a different terminal

9.
$> gnuplot scripts0/plot_coeffs

You will need to launch this script in a different terminal

10. $> paraFoam 
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Running the case – Non-uniform field initialization

• In step 2 we generate the mesh using blockMesh. The name and type of the 

patches are already set in the dictionary blockMeshDict so there is no need to 

modify the boundary file.

• In step 4 we copy the original files to the directory 0.  We do this to keep a backup of 

the original files as the file 0/U will be overwritten when using setFields.

• In step 5 we initialize the solution using setFields.

• In step 6 we use the utility renumberMesh to make the linear system more diagonal 

dominant, this will speed-up the linear solvers. 

• In step 7 we run the simulation and save the log file.  Notice that we are sending the 

job to background.

• In step 8 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly.  As the 

job is running in background, we can launch this utility in the same terminal tab.

• In step 9 we use the gnuplot script scripts0/plot_coeffs to plot the lift and drag 

coefficients on-the-fly.  Besides monitoring the residuals, is always a good idea to 

monitor a quantity of interest. Feel free to take a look at the script and to reuse it.
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No field initialization With field initialization

Does non-uniform field initialization make a difference?

• A picture is worth a thousand words. No need to tell you yes, even if the solutions are 

slightly different.

• This bring us to the next subject, for how long should we run the simulation?
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For how long should run the simulation?

• This is the difficult part when dealing with 

unsteady flows.

• Usually you run the simulation until the 

behavior of a quantity of interest does not 

oscillates or it becomes periodic.

• In this case we can say that after the 50 

seconds mark the solution becomes 

periodic, therefore there is no need to run up 

to 350 seconds (unless you want to gather a 

lot of statistics).

• We can stop the simulation at 150 seconds 

(or maybe less), and do the average of the 

quantities between 100 and 150 seconds.
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• Residuals are telling you a lot, but they are 

difficult to interpret.

• In this case the fact that the initial residuals 

are increasing after about 10 seconds, does 

not mean that the solution is diverging. This 

is in indication that something is happening 

(in this case the onset of the instability).

• Remember, the residuals should always 

drop to the tolerance criteria set in the 
fvSolution dictionary (final residuals). If 

they do not drop to the desired tolerance, we 

are talking about unconverged time-steps.

• Things that are not clear from the residuals:  

• For how long should we run the 

simulation? 

• Is the solution converging to the right 

value?

What about the residuals?



51  functions

52  {

178 forceCoeffs_object

179 {

188 type forceCoeffs;

189 functionObjectLibs ("libforces.so");

191 patches (cylinder);

193 pName p;

194 Uname U;

195 rhoName rhoInf;

196 rhoInf 1.0;

198 //// Dump to file

199 log true;

201 CofR (0.0 0 0);

202 liftDir (0 1 0);

202 dragDir (1 0 0);

204 pitchAxis (0 0 1);

205 magUInf 1.0;

206 lRef 1.0;       

207 Aref 2.0;         

209 outputControl   timeStep;

210 outputInterval  1;

211 }

237 };

• To compute the force coefficients we use 

functionObjects.

• Remember, functionObjects are defined at the end of 
the controlDict dictionary file.

• In line 178 we give a name to the functionObject.

• In line 191 we define the patch where we want to 

compute the forces.

• In lines 195-196 we define the reference density value.

• In line 201 we define the center of rotation (for moments).

• In line 202 we define the lift force axis.

• In line 203 we define the drag force axis.

• In line 204 we define the axis of rotation for moment 

computation.

• In line 206 we give the reference length (for computing 

the moments)

• In line 207 we give the reference area (in this case the 

frontal area).

• The output of this functionObject is saved in the file 
forceCoeffs.dat located in the directory 

forceCoeffs_object/0/

How to compute force coefficients
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Can we compute basic statistics of the force coefficients using gnuplot?

1. gnuplot> stats ‘postProcessing/forceCoeffs_object/0/forceCoeffs.dat’ u 3

This will compute the basic statistics of all the rows in the file forceCoeffs.dat (we are sampling column 3 in the input file)

2. gnuplot> stats ‘postProcessing/forceCoeffs_object/0/forceCoeffs.dat’ every ::3000::7000 u 3

This will compute the basic statistics of rows 3000 to 7000 in the file forceCoeffs.dat (we are sampling column 3 in the input file)

3. gnuplot> plot ‘postProcessing/forceCoeffs_object/0/forceCoeffs.dat’ u 3 w l

This will plot column 3 against the row number (iteration number)

4. gnuplot> exit

To exit gnuplot

• Yes we can. Enter the gnuplot prompt and type:

• Remember the force coefficients information is saved in the file forceCoeffs.dat

located in the directory postProcessing/forceCoeffs_object/0
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17 ddtSchemes

18 {

20 default         backward;

22 }

23 

24 gradSchemes

25 {  

29 default cellLimited leastSquares 1;

35 }

36 

37 divSchemes

38 {

39 default         none;  

43 div(phi,U)      Gauss linearUpwindV default;

48 div((nuEff*dev2(T(grad(U))))) Gauss linear;

49 }

50 

51 laplacianSchemes

52 { 

53 default         Gauss linear limited 1;

54 }

55

56 interpolationSchemes

57 {

58 default linear;

59 }

60 

61 snGradSchemes

62 {

63 default limited 1;

64 }

• At the end of the day we want a solution that is second order 

accurate.

• We define the discretization schemes (and therefore the 
accuracy) in the dictionary fvSchemes.

• In this case, for time discretization (ddtSchemes) we are 

using the backward method.

• For gradient discretization (gradSchemes) we are using the 

leastSquares method with slope limiters (cellLimited) for all 

terms (default option).  

• Sometimes adding a gradient limiter to the pressure gradient 

or grad(p) can be too diffusive, so it is better not to use 

gradient limiters for grad(p), e.g., grad(p) leastSquares.

• For the discretization of the convective terms (divSchemes) 

we are using linearUpwindV interpolation method for the 

term div(rho,U).

• For the discretization of the Laplacian (laplacianSchemes

and snGradSchemes) we are using the Gauss linear 

limited 1 method 

• In overall, this method is second order accurate (this is what 

we want).

On the solution accuracy
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17 solvers

18 {

31 p

32 {

33 solver           GAMG;

34 tolerance        1e-6;

35 relTol           0;

36 smoother         GaussSeidel;

37 nPreSweeps       0;

38 nPostSweeps      2;

39 cacheAgglomeration on;

40 agglomerator     faceAreaPair;

41 nCellsInCoarsestLevel 100;

42 mergeLevels      1;

43 }

44 

45 pFinal

46 {

47 $p;

48 relTol          0;

49 }

50 

51 U

52 {

53 solver          PBiCGStab;

54 preconditioner  DILU;

55 tolerance       1e-08;

56 relTol          0;

57 }

69 }

70 

71 PISO

72 {

73 nCorrectors     2;

74 nNonOrthogonalCorrectors 2;

77 }

• We define the solution tolerance and linear solvers in the 
dictionary fvSolution.

• To solve the pressure (p) we are using the GAMG method 

with an absolute tolerance of 1e-6 and a relative tolerance 

relTol of 0.01.

• The entry pFinal refers to the final correction of the PISO

loop.  It is possible to use a tighter convergence criteria only 

in the last iteration. 

• To solve U we are using the solver PBiCGStab and the DILU

preconditioner, with an absolute tolerance of 1e-8 and a 

relative tolerance relTol of 0 (the solver will stop iterating 

when it meets any of the conditions).

• Solving for the velocity is relative inexpensive, whereas 

solving for the pressure is expensive.

• The PISO sub-dictionary contains entries related to the 

pressure-velocity coupling (in this case the PISO method). 

Hereafter we are doing two PISO correctors (nCorrectors) 

and two non-orthogonal corrections 

(nNonOrthogonalCorrectors).

On the solution tolerance and linear solvers
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17  application     pisoFoam;

18  

20  startFrom       latestTime;

21  

22  startTime       0;

23  

24  stopAt          endTime;

26  

27  endTime         350;

28  

29  deltaT          0.05;

30  

31  writeControl    runTime;

32  

33  writeInterval   1;

34  

35  purgeWrite      0;

36  

37  writeFormat     ascii;

38  

39  writePrecision 8;

40  

41  writeCompression off;

42  

43  timeFormat      general;

44  

45  timePrecision   6;

46  

47  runTimeModifiable true;

• This case starts from the latest saved solution (startFrom). 

• In this case as there are no saved solutions, it will start from 

0 (startTime).

• It will run up to 350 seconds (endTime). 

• The time step of the simulation is 0.05 seconds (deltaT). The 

time step has been chosen in such a way that the Courant 

number is less than 1

• It will write the solution every 1 second (writeInterval) of 

simulation time (runTime). 

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat).

• The write precision is 8 digits (writePrecision).

• And as the option runTimeModifiable is on, we can modify 

all these entries while we are running the simulation.

On the runtime parameters
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Time = 350

Courant Number mean: 0.11299953 max: 0.87674198

DILUPBiCG:  Solving for Ux, Initial residual = 0.0037946307, Final residual = 4.8324843e-09, No Iterations 3

DILUPBiCG:  Solving for Uy, Initial residual = 0.011990022, Final residual = 5.8815028e-09, No Iterations 3

GAMG:  Solving for p, Initial residual = 0.022175872, Final residual = 6.2680545e-07, No Iterations 14

GAMG:  Solving for p, Initial residual = 0.0033723932, Final residual = 5.8494331e-07, No Iterations 8

GAMG:  Solving for p, Initial residual = 0.0010074964, Final residual = 4.4726195e-07, No Iterations 7

time step continuity errors : sum local = 1.9569266e-11, global = -3.471923e-14, cumulative = -2.8708402e-10

GAMG:  Solving for p, Initial residual = 0.0023505548, Final residual = 9.9222424e-07, No Iterations 8

GAMG:  Solving for p, Initial residual = 0.00045248026, Final residual = 7.7250386e-07, No Iterations 6

GAMG:  Solving for p, Initial residual = 0.00014664077, Final residual = 4.5825218e-07, No Iterations 5

time step continuity errors : sum local = 2.0062733e-11, global = 1.2592813e-13, cumulative = -2.8695809e-10

ExecutionTime = 746.46 s  ClockTime = 807 s

faceSource inMassFlow output:

sum(in) of phi = -40

faceSource outMassFlow output:

sum(out) of phi = 40

fieldAverage fieldAverage output:

Calculating averages

Writing average fields

forceCoeffs forceCoeffs_object output:

Cm    = 0.0043956828

Cd    = 1.4391786

Cl    = 0.44532594

Cl(f) = 0.22705865

Cl(r) = 0.21826729

fieldMinMax minmaxdomain output:

min(p) = -0.82758125 at location (2.2845502 0.27072681 1.4608125e-17)

max(p) = 0.55952746 at location (-1.033408 -0.040619346 0)

min(U) = (-0.32263726 -0.054404584 -1.8727033e-19) at location (2.4478235 -0.69065656 -2.5551406e-17)

max(U) = (1.4610304 0.10220218 2.199981e-19) at location (0.43121241 1.5285504 -1.4453535e-17)

The output screen

• This is the output screen of the pisoFoam solver.

nNonOrthogonalCorrectors 2

Force 
coefficients

Mass flow at in patch

Mass flow at out patch

Computing averages of fields

Courant number

pFinal

nCorrectors 2
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Let us use a potential solver to find a quick solution

• In this case we are going to use the potential solver potentialFoam (remember potential 

solvers are inviscid, irrotational and incompressible)

• This solver is super fast, and it can be used to find a solution to be used as initial conditions 

(non-uniform field) for an incompressible solver. 

• A good initial condition will accelerate and improve the convergence rate.

• This case is already setup in the directory 

$PTOFC/101OF/vortex_shedding/c4

• Do not forget to explore the dictionary files.

• The following dictionaries are different

• system/fvSchemes

• system/fvSolution

Try to spot the differences.
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• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c4

• Feel free to use the Fluent mesh or the mesh generated with blockMesh.  In this 

case we will use blockMesh.

• To run this case, in the terminal window type:

1. $> foamCleanTutorials 

2. $> blockMesh 

3. $> rm –rf 0

4. $> cp –r 0_org 0

5. $> potentialFoam –noFunctionObjects –initialiseUBCs –writep -writePhi

6. $> paraFoam 

Running the case – Let us use a potential solver to find a quick solution
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• In step 2 we generate the mesh using blockMesh. The name and type of the 

patches are already set in the dictionary blockMeshDict so there is no need to 

modify the boundary file.

• In step 4 we copy the original files to the directory 0.  We do this to keep a backup of 

the original files as they will be overwritten by the solver potentialFoam.

• In step 5 we run the solver.  We use the option –noFunctionObjects to avoid 

conflicts with the functionobjects. The options –writep and –writePhi will write 

the pressure field and fluxes respectively.

• At this point, if you want to use this solution as initial conditions for an incompressible 
solver, just copy the files U and p into the start directory of the incompressible case 

you are looking to run. Have in mind that the meshes need to be the same.

• Be careful with the name and type of the boundary conditions, they should be same 

between the potential case and incompressible case.
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Potential solution

• Using a potential solution as initial conditions is much better than using a uniform 

flow. It will speed up the solution and it will give you more stability.

• Finding a solution using the potential solver is inexpensive.

Velocity field Pressure field
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Calculating potential flow

DICPCG:  Solving for Phi, Initial residual = 2.6622265e-05, Final residual = 8.4894837e-07, No Iterations 27

DICPCG:  Solving for Phi, Initial residual = 1.016986e-05, Final residual = 9.5168103e-07, No Iterations 9

DICPCG:  Solving for Phi, Initial residual = 4.0789046e-06, Final residual = 7.7788216e-07, No Iterations 5

DICPCG:  Solving for Phi, Initial residual = 1.8251249e-06, Final residual = 8.8483568e-07, No Iterations 1

DICPCG:  Solving for Phi, Initial residual = 1.1220074e-06, Final residual = 5.6696809e-07, No Iterations 1

DICPCG:  Solving for Phi, Initial residual = 7.1187246e-07, Final residual = 7.1187246e-07, No Iterations 0

Continuity error = 1.3827583e-06

Interpolated velocity error = 7.620206e-07

Calculating approximate pressure field

DICPCG:  Solving for p, Initial residual = 0.0036907012, Final residual = 9.7025397e-07, No Iterations 89

DICPCG:  Solving for p, Initial residual = 0.0007470416, Final residual = 9.9942495e-07, No Iterations 85

DICPCG:  Solving for p, Initial residual = 0.00022829496, Final residual = 8.6107759e-07, No Iterations 36

DICPCG:  Solving for p, Initial residual = 7.9622793e-05, Final residual = 8.4360883e-07, No Iterations 31

DICPCG:  Solving for p, Initial residual = 2.8883108e-05, Final residual = 8.7152873e-07, No Iterations 25

DICPCG:  Solving for p, Initial residual = 1.151539e-05, Final residual = 9.7057871e-07, No Iterations 9

ExecutionTime = 0.17 s  ClockTime = 0 s

End

The output screen

• This is the output screen of the potentialFoam solver.

• The output of this solver is also a good indication of the sensitivity of the mesh quality 

to gradients computation. If you see that the number of iterations are dropping 

iteration after iteration, it means that the mesh is fine.

• If the number of iterations remain stalled, it means that the mesh is sensitive to 

gradients, so you should use non-orthogonal correction.

• In this case we have a good mesh.

nNonOrthogonalCorrectors 5

Initial approximation
Velocity computation

Pressure computation
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Let us map a solution from a coarse mesh to a finer mesh

• It is also possible to map the solution from a coarse mesh to a finer mesh (and all the 

way around).

• For instance, you can compute a full Navier-Stokes solution in a coarse mesh (fast 

solution), and then map it to a finer mesh.

• Let us map the solution from the potential solver to a finer mesh (if you want you can 
map the solution obtained using pisoFoam or icoFoam). To do this we will use the 

utility mapFields.

• This case is already setup in the directory 

$PTOFC/101OF/vortex_shedding/c6
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• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c6 

• To generate the mesh, use blockMesh (remember this mesh is finer).

• To run this case, in the terminal window type:

1. $> foamCleanTutorials 

2. $> blockMesh 

3. $> rm –rf 0

4. $> cp –r 0_org 0

5. $> mapfields ../c4 –consistent –noFunctionObjects –mapMethod cellPointInterpolate -sourceTime 0

6. $> paraFoam 

Running the case – Let us map a solution from a coarse mesh to a finer mesh
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• In step 2 we generate a finer mesh using blockMesh. The name and type of the 

patches are already set in the dictionary blockMeshDict so there is no need to 

modify the boundary file.

• In step 4 we copy the original files to the directory 0.  We do this to keep a backup of 

the original files as they will be overwritten by the utility mapFields.

• In step 5 we use the utility mapFields with the following options:

• We copy the solution from the directory ../c4 

• The options –consistent is used when the domains and BCs are the same.

• The option –noFunctionObjects is used to avoid conflicts with the 

functionObjects. 

• The option –mapMethod cellPointInterpolate defines the interpolation 

method.

• The option -sourceTime 0 defines the time from which we want to interpolate 

the solution.
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Coarse mesh Fine mesh

mapFields

The meshes and the mapped fields
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Source: "/home/joegi/my_cases_course/OF8/101OF/vortex_shedding" "c5"

Target: "/home/joegi/my_cases_course/OF8/101OF/vortex_shedding" "c6"

Mapping method: cellPointInterpolate

Create databases as time

Source time: 350

Target time: 0

Create meshes

Source mesh size: 9200  Target mesh size: 36800

Consistently creating and mapping fields for time 0

interpolating Phi

interpolating p

interpolating U

End

The output screen

• This is the output screen of the mapFields utility.

• The utility mapFields, will try to interpolate all fields in the source directory.

• You can control the target time via the startFrom and startTime keywords in the 
controlDict dictionary file.

Interpolated fields

Source case

Source and target mesh cell count

Target case

Interpolation method

Source time

Target time
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Setting a turbulent case

• So far we have used laminar incompressible solvers.  

• Let us do a turbulent simulation.

• When doing turbulent simulations, we need to choose the turbulence model, define 

the boundary and initial conditions for the turbulent quantities, and modify the 
fvSchemes and fvSolution dictionaries to take account for the new variables we 

are solving (the transported turbulent quantities).

• This case is already setup in the directory 

$PTOFC/101OF/vortex_shedding/c14
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• The following dictionaries remain unchanged

• system/blockMeshDict

• constant/polyMesh/boundary

• 0/p

• 0/U

• The following dictionaries need to be adapted for the turbulence case

• constant/transportProperties

• system/controlDict

• system/fvSchemes

• system/fvSolution

• The following dictionaries need to be adapted for the turbulence case

• constant/momentumTransport 
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• This dictionary file is located in the directory constant.

• In this file we set the transport model and the kinematic viscosity (nu).

The transportProperties dictionary file

16 transportModel  Newtonian;

17 

19 nu              nu [ 0 2 -1 0 0 0 0 ] 0.0002;

Flow past a cylinder – From laminar to turbulent flow
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• The diameter of the cylinder is 2.0 m.

• And we are targeting for a Re = 10000.
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• This dictionary file is located in the directory constant.

• In this dictionary file we select what model we would like to use (laminar or turbulent).

• In this case we are interested in modeling turbulence, therefore the dictionary is as follows

The momentumTransport dictionary file

17 simulationType  RAS;

18 

19 RAS

20 {

21 RASModel        kOmegaSST;

22 

23 turbulence      on;

24 

25 printCoeffs     on;

26 }

• If you want to know the models available use the banana method.

RANS type simulation

RANS model to use 

Turn on/off turbulence.  Runtime modifiable

Print coefficients at the beginning

RANS sub-dictionary
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17 application     pimpleFoam;

18 

20 startFrom       latestTime;

21 

22 startTime       0;

23 

24 stopAt          endTime;

25 

26 endTime         500;

27 

28 deltaT          0.001;

29 

30 writeControl    runTime;

31 

32 writeInterval   1;

33 

34 purgeWrite      0;

35 

36 writeFormat     ascii;

37 

38 writePrecision  8;

39 

40 writeCompression off;

41 

42 timeFormat      general;

43 

44 timePrecision   6;

45 

46 runTimeModifiable yes;

47 

48 adjustTimeStep  yes;

49 

50 maxCo           0.9;

51 maxDeltaT       0.1;

• This case will start from the last saved solution (startFrom).  If there is 

no solution, the case will start from time 0 (startTime).

• It will run up to 500 seconds (endTime). 

• The initial time step of the simulation is 0.001 seconds (deltaT).

• It will write the solution every 1 second (writeInterval) of simulation time 

(runTime). 

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat).

• The write precision is  8 digits (writePrecision). 

• And as the option runTimeModifiable is on, we can modify all these 

entries while we are running the simulation.

• In line 48 we turn on the option adjustTimeStep. This option will 

automatically adjust the time step to achieve the maximum desired 

courant number maxCo (line 50). 

• We also set a maximum time step maxDeltaT in line 51.

• Remember, the first time-step of the simulation is done using the value 

set in line 28 and then it is automatically scaled to achieve the desired 

maximum values (lines 50-51).

• The feature adjustTimeStep is only present in the PIMPLE family 

solvers, but it can be added to any solver by modifying the source code.

The controlDict dictionary
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17 ddtSchemes

18 {

21 default         CrankNicolson 0.7;

22 }

24 gradSchemes

25 {   

29 default cellLimited leastSquares 1;

34 grad(U) cellLimited Gauss linear 1;

35 }

37 divSchemes

38  {

39  default none;

45  div(phi,U)      Gauss linearUpwindV grad(U);

47  div((nuEff*dev2(T(grad(U))))) Gauss linear;

49  div(phi,k) Gauss linearUpwind default;

50  div(phi,omega) Gauss linearUpwind default;

57  } 

59  laplacianSchemes

60  {

61  default         Gauss linear limited 1;

62  }

64  interpolationSchemes

65  {

66  default linear;

67  }

69  snGradSchemes

70  {

71  default         limited 1;

72  } 

74  wallDist

75  {

76  method meshWave;

77  }

The fvSchemes dictionary

• In this case, for time discretization (ddtSchemes) we are using the 

blended CrankNicolson method.  The blending coefficient goes from 0 

to 1, where 0 is equivalent to the Euler method and 1 is a pure Crank 

Nicolson.

• For gradient discretization (gradSchemes) we are using as default 

option the leastSquares method.  For grad(U) we are using Gauss 

linear with slope limiters (cellLimited). You can define different 

methods for every term in the governing equations, for example, you 

can define a different method for grad(p).

• For the discretization of the convective terms (divSchemes) we are 

using linearUpwindV interpolation method with slope limiters for the 

term div(phi,U).

• For the terms div(phi,k) and div(phi,omega) we are using 

linearUpwind interpolation method with no slope limiters. These terms 

are related to the turbulence modeling.

• For the term div((nuEff*dev2(T(grad(U))))) we are using linear 

interpolation (this term is related to turbulence modeling).

• For the discretization of the Laplacian (laplacianSchemes and 

snGradSchemes) we are using the Gauss linear limited 1 method.

• To compute the distance to the wall and normals to the wall, we use the 

method meshWave.  This only applies when using wall functions 

(turbulence modeling).

• This method is second order accurate.
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17  solvers

18  {

31  p

32  {

33  solver           GAMG;

34  tolerance        1e-6;

35  relTol           0.001;

36  smoother         GaussSeidel;

37  nPreSweeps       0;

38  nPostSweeps      2;

39  cacheAgglomeration on;

40  agglomerator     faceAreaPair;

41  nCellsInCoarsestLevel 100;

42  mergeLevels      1; 

44  minIter 2;

45  }

46  

47  pFinal

48  {

49  solver          PCG;

50  preconditioner  DIC;

51  tolerance       1e-06;

52  relTol          0;

53  minIter 3;

54  }

55  

56  U

57  {

58  solver          PBiCGStab;

59  preconditioner  DILU;

60  tolerance       1e-08;

61  relTol         0;

62  minIter 3;

63  }

The fvSolution dictionary

• To solve the pressure (p) we are using the GAMG method, with an 

absolute tolerance of 1e-6 and a relative tolerance relTol of 0.001. 

Notice that we are fixing the number of minimum iterations (minIter).

• To solve the final pressure correction (pFinal) we are using the PCG

method with the DIC preconditioner, with an absolute tolerance of 1e-6 

and a relative tolerance relTol of 0. 

• Notice that we can use different methods between p and pFinal. In this 

case we are using a tighter tolerance for the last iteration. 

• We are also fixing the number of minimum iterations (minIter). This 

entry is optional.

• To solve U we are using the solver PBiCGStab with the DILU

preconditioner, an absolute tolerance of 1e-8 and a relative tolerance 

relTol of 0. Notice that we are fixing the number of minimum iterations 

(minIter).
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17  solvers

18  {

77  UFinal

78  {

79  solver          PBiCGStab;

80  preconditioner  DILU;

81  tolerance       1e-08;

82  relTol          0;

83  minIter 3;

84  }

85  

86  omega

87  {

88  solver          PBiCGStab;

89  preconditioner  DILU;

90  tolerance       1e-08;

91  relTol          0;

92  minIter 3;

93  }

94  

95  omegaFinal

96  {

97  solver          PBiCGStab;

98  preconditioner  DILU;

99  tolerance       1e-08;

100 relTol          0;

101 minIter 3;

102 }

103 

104 k

105 {

106 solver          PBiCGStab;

107 preconditioner  DILU;

108 tolerance       1e-08;

109 relTol          0;

110 minIter 3;

111 }

The fvSolution dictionary

• To solve UFinal we are using the solver PBiCGStab with an absolute 

tolerance of 1e-8 and a relative tolerance relTol of 0. Notice that we are 

fixing the number of minimum iterations (minIter).

• To solve omega and omegaFinal we are using the solver PBiCGStab 

with an absolute tolerance of 1e-8 and a relative tolerance relTol of 0. 

Notice that we are fixing the number of minimum iterations (minIter).

• To solve k we are using the solver PBiCGStab with an absolute 

tolerance of 1e-8 and a relative tolerance relTol of 0. Notice that we are 

fixing the number of minimum iterations (minIter).
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113 kFinal

114 {

115 solver          PBiCGStab;

116 preconditioner  DILU;

117 tolerance       1e-08;

118 relTol          0;

119 minIter 3;

120 }

121 }

122 

123 PIMPLE

124 {

126 nOuterCorrectors 1;

127 //nOuterCorrectors 2;

128 

129 nCorrectors 3;

130 nNonOrthogonalCorrectors 1;

133 }

134 

135 relaxationFactors

136 {

137 fields

138 {

139 p               0.3;

140 }

141 equations

142 {

143 U               0.7;

144 k               0.7;

145 omega           0.7;

146 }

147 }

The fvSolution dictionary

• To solve kFinal we are using the solver PBiCGStab with an absolute 

tolerance of 1e-8 and a relative tolerance relTol of 0. Notice that we are 

fixing the number of minimum iterations (minIter).

• In lines 123-133 we setup the entries related to the pressure-velocity 

coupling method used (PIMPLE in this case). Setting the keyword 

nOuterCorrectors to 1 is equivalent to running using the PISO method.

• To gain more stability we are using 1 outer correctors 

(nOuterCorrectors), 3 inner correctors or PISO correctors 

(nCorrectors), and 1 correction due to non-orthogonality 

(nNonOrthogonalCorrectors). 

• Remember, adding corrections increase the computational cost. 

• In lines 135-147 we setup the under-relaxation factors used during the 

outer corrections of the PIMPLE method.

• The values defined correspond to the industry standard of the 

SIMPLE method. 

• By using under-relaxation we ensure diagonal equality. 

• Be careful not use too low values as you will loose time accuracy.

• If you want to disable under-relaxation, comment out these lines. 
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• The following dictionaries are new

• 0/k

• 0/omega

• 0/nut

These are the field variables related to the closure equations of the turbulent 

model.

• As we are going to use the                        model we need to define the initial 

conditions and boundaries conditions.

• To define the IC/BC we will use  the free stream values of       and

• In the following site, you can find a lot information about choosing initial and 

boundary conditions for the different turbulence models:

• https://turbmodels.larc.nasa.gov/
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• The initial value for the turbulent kinetic energy       can be found as follows

Turbulence model free-stream boundary conditions

Flow past a cylinder – From laminar to turbulent flow

• The initial value for the specific kinetic energy        can be found as follows 

• Where            is the viscosity ratio and                    is the turbulence intensity.  

• If you are working with external aerodynamics or virtual wind tunnels, you can use the following 

reference values for the turbulence intensity and the viscosity ratio.  They work most of the 

times, but it is a good idea to have some experimental data or a better initial estimate.

Low Medium High

1.0 % 5.0 % 10.0 %

1 10 100
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The file 0/k

19  internalField   uniform 0.00015;

20  

21  boundaryField

22  {

23  out

24  {

25  type            inletOutlet;

26  inletValue      uniform 0.00015;

27  value           uniform 0.00015;

28  }

29  sym1

30  {

31  type            symmetryPlane;

32  }

33  sym2

34  {

35  type            symmetryPlane;

36  }

37  in

38  {

39  type            fixedValue;

40  value           uniform 0.00015;

41  }

42  cylinder

43  {

44  type            kqRWallFunction;

45  value           uniform 0.00015;

46  }

47  back

48  {

49  type            empty;

50  }

51  front

52  {

53  type            empty;

54  }

55  }

• We are using uniform initial conditions (line 19). 

• For the in patch we are using a fixedValue boundary 

condition.  

• For the out patch we are using an inletOutlet boundary 

condition (this boundary condition avoids backflow).

• For the cylinder patch (which is base type wall), we 

are using the kqRWallFunction boundary condition.  

This is a wall function, we are going to talk about this 

when we deal with turbulence modeling.  Remember, 

we can use wall functions only if the patch is of base 

type wall.

• The rest of the patches are constrained.

• FYI, the inlet velocity is 1 and the turbulence intensity is 

equal to 1%.

• We will study with more details how to setup the 

boundary conditions when we deal with turbulence 

modeling in the advanced modules.
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The file 0/omega

19  internalField   uniform 0.075;

20  

21 boundaryField

22 {

23 out

24 {

25 type            inletOutlet;

26 inletValue      uniform 0.075;

27 value           uniform 0.075;

28 }

29 sym1

30 {

31 type            symmetryPlane;

32 }

33 sym2

34 {

35 type            symmetryPlane;

36 }

37 in

38 {

39 type            fixedValue;

40 value           uniform 0.075;

41 }

42 cylinder

43 {

44 type            omegaWallFunction;

45 Cmu             0.09;

46 kappa           0.41;

47 E               9.8;

48 beta1           0.075;

49 value           uniform 0.075;

50 }

51 back

52 {

53 type            empty;

54 }

55 front

56 {

57 type            empty;

58 }

59 }

• We are using uniform initial conditions (line 19). 

• For the in patch we are using a fixedValue boundary 

condition.  

• For the out patch we are using an inletOutlet boundary 

condition (this boundary condition avoids backflow).

• For the cylinder patch (which is base type wall), we 

are using the omegaWallFunction boundary condition.  

This is a wall function; we are going to talk about this 

when we deal with turbulence modeling. Remember, we 

can use wall functions only if the patch is of base type 

wall.

• The rest of the patches are constrained.

• FYI, the inlet velocity is 1 and the eddy viscosity ratio is 

equal to 10.

• We will study with more details how to setup the 

boundary conditions when we deal with turbulence 

modeling in the advanced modules.
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The file 0/nut

19 internalField   uniform 0;

20 

21 boundaryField

22 {

23 out

24 {

25 type            calculated;

26 value           uniform 0;

27 }

28 sym1

29 {

30 type            symmetryPlane;

31 }

32 sym2

33 {

34 type            symmetryPlane;

35 }

36 in

37 {

38 type            calculated;

39 value           uniform 0;

40 }

41 cylinder

42 {

43 type            nutkWallFunction;

44 Cmu             0.09;

45 kappa           0.41;

46 E               9.8;

47 value           uniform 0;

48 }

49 back

50 {

51 type            empty;

52 }

53 front

54 {

55 type            empty;

56 }

57 }

• We are using uniform initial conditions (line 19). 

• For the in patch we are using the calculated boundary 

condition (nut is computed from kappa and omega)

• For the out patch we are using the calculated

boundary condition (nut is computed from kappa and 

omega)

• For the cylinder patch (which is base type wall), we 

are using the nutkWallFunction boundary condition.  

This is a wall function, we are going to talk about this 

when we deal with turbulence modeling. Remember, we 

can use wall functions only if the patch is of base type 

wall.

• The rest of the patches are constrained.

• Remember, the turbulent viscosity       (nut) is equal to

• We will study with more details how to setup the 

boundary conditions when we deal with turbulence 

modeling in the advanced modules. 
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• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c14 

• Feel free to use the Fluent mesh or the mesh generated with blockMesh.  In this case we will use 

blockMesh.

• To run this case, in the terminal window type:

1. $> foamCleanTutorials 

2. $> blockMesh 

3. $> renumberMesh -overwrite 

4.
$> pimpleFoam | tee log.solver

You will need to launch this script in a different terminal

5.
$> pyFoamPlotWatcher.py log.solver

You will need to launch this script in a different terminal

6.
$> gnuplot scripts0/plot_coeffs

You will need to launch this script in a different terminal

7. $> pimpleFoam –postprocess –func yPlus –latestTime -noFunctionObjects

8. $> paraFoam 

Running the case – Setting a turbulent case
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• In step 3 we use the utility renumberMesh to make the linear system more diagonal 

dominant, this will speed-up the linear solvers. 

• In step 4 we run the simulation and save the log file.  Notice that we are sending the 

job to background.

• In step 5 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly.  As the 

job is running in background, we can launch this utility in the same terminal tab.

• In step 6 we use the gnuplot script scripts0/plot_coeffs to plot the force 

coefficients on-the-fly.  Besides monitoring the residuals, is always a good idea to 

monitor a quantity of interest. Feel free to take a look at the script and to reuse it.

• In step 7 we use the utility postProcess to compute the       value of each saved 

solution (we are going to talk about       when we deal with turbulence modeling).
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Courant Number mean: 0.088931706 max: 0.90251464

deltaT = 0.040145538

Time = 499.97

PIMPLE: iteration 1

DILUPBiCG:  Solving for Ux, Initial residual = 0.0028528538, Final residual = 9.5497298e-11, No Iterations 3

DILUPBiCG:  Solving for Uy, Initial residual = 0.0068876991, Final residual = 7.000938e-10, No Iterations 3

GAMG:  Solving for p, Initial residual = 0.25644342, Final residual = 0.00022585963, No Iterations 7

GAMG:  Solving for p, Initial residual = 0.0073871161, Final residual = 5.2798526e-06, No Iterations 8

time step continuity errors : sum local = 3.2664019e-10, global = -1.3568363e-12, cumulative = -9.8446438e-08

GAMG:  Solving for p, Initial residual = 0.16889316, Final residual = 0.00014947209, No Iterations 7

GAMG:  Solving for p, Initial residual = 0.0051876466, Final residual = 3.7123156e-06, No Iterations 8

time step continuity errors : sum local = 2.2950163e-10, global = -8.0710768e-13, cumulative = -9.8447245e-08

PIMPLE: iteration 2

DILUPBiCG:  Solving for Ux, Initial residual = 0.0013482181, Final residual = 4.1395468e-10, No Iterations 3

DILUPBiCG:  Solving for Uy, Initial residual = 0.0032433196, Final residual = 3.3969121e-09, No Iterations 3

GAMG:  Solving for p, Initial residual = 0.10067317, Final residual = 8.9325549e-05, No Iterations 7

GAMG:  Solving for p, Initial residual = 0.0042844521, Final residual = 3.0190597e-06, No Iterations 8

time step continuity errors : sum local = 1.735023e-10, global = -2.0653335e-13, cumulative = -9.8447452e-08

GAMG:  Solving for p, Initial residual = 0.0050231165, Final residual = 3.2656397e-06, No Iterations 8

DICPCG:  Solving for p, Initial residual = 0.00031459519, Final residual = 9.4260163e-07, No Iterations 36

time step continuity errors : sum local = 5.4344408e-11, global = 4.0060595e-12, cumulative = -9.8443445e-08

DILUPBiCG:  Solving for omega, Initial residual = 0.00060510266, Final residual = 1.5946601e-10, No Iterations 3

DILUPBiCG:  Solving for k, Initial residual = 0.0032163247, Final residual = 6.9350899e-10, No Iterations 3

bounding k, min: -3.6865398e-05 max: 0.055400108 average: 0.0015914926

ExecutionTime = 1689.51 s  ClockTime = 1704 s

fieldAverage fieldAverage output:

Calculating averages

forceCoeffs forceCoeffs_object output:

Cm    = 0.0023218797

Cd    = 1.1832452

Cl    = -1.3927646

Cl(f) = -0.69406044

Cl(r) = -0.6987042

fieldMinMax minmaxdomain output:

min(p) = -1.5466372 at location (-0.040619337 -1.033408 0)

max(p) = 0.54524589 at location (-1.033408 0.040619337 1.4015759e-17)

min(U) = (0.94205232 -1.0407426 -5.0319219e-19) at location (-0.70200781 -0.75945224 -1.3630525e-17)

max(U) = (1.8458167 0.0047368607 4.473279e-19) at location (-0.12989625 -1.0971865 2.4694467e-17)

min(k) = 1e-15 at location (1.0972618 1.3921931 -2.2329889e-17)

max(k) = 0.055400108 at location (2.1464795 0.42727634 0)

min(omega) = 0.2355751 at location (29.403674 19.3304 0)

max(omega) = 21.477072 at location (1.033408 0.040619337 1.3245285e-17)

pimpleFoam output screen

Time step
Courant number

Outer iteration 1 (nOuterCorrectors)

Outer iteration 2 (nOuterCorrectors)

pFinal

kappa and omega residualsMessage letting you know that 

the variable is becoming 
unbounded

Force coefficients

Minimum and 
maximum values
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Time = 500.01

Reading field U

Reading/calculating face flux field phi

Selecting incompressible transport model Newtonian

Selecting RAS turbulence model kOmegaSST

kOmegaSSTCoeffs

{

alphaK1         0.85;

alphaK2         1;

alphaOmega1     0.5;

alphaOmega2     0.856;

gamma1          0.55555556;

gamma2          0.44;

beta1           0.075;

beta2           0.0828;

betaStar        0.09;

a1              0.31;

b1              1;

c1              10;

F3              false;

}

Patch 4 named cylinder y+ : min: 0.94230389 max: 12.696632 average: 7.3497345

Writing yPlus to field yPlus

The output screen

• This is the output screen of the yPlus utility.

Model coefficients

Patch where we are computing y+

Minimum, maximum and average values

Writing the field to the solution directory
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Using a compressible solver

• So far, we have only used incompressible solvers.  

• Let us use the compressible solver rhoPimpleFoam, which is a,

Transient solver for laminar or turbulent flow of compressible fluids for HVAC and 

similar applications. Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-

resolved and pseudo-transient simulations.

• When working with compressible solver we need to define the thermodynamical 

properties of the working fluid and the temperature field (we are also solving the 

energy equation).

• Also remember, compressible solvers use absolute pressure. Conversely, 

incompressible solvers use relative pressure.

• This case is already setup in the directory 

$PTOFC/101OF/vortex_shedding/c24
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• The following dictionaries remain unchanged

• system/blockMeshDict

• constant/polyMesh/boundary

Flow past a cylinder – From laminar to turbulent flow

• Reminder:

• The diameter of the cylinder is 0.002 m.

• The working fluid is air at 20° Celsius and at a sea level.

• Isothermal flow.

• And we are targeting for a Re = 200.
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The constant directory

• In this directory, we will find the following compulsory dictionary files:

• thermophysicalProperties

• momentumTransport

• thermophysicalProperties contains the definition of the physical 

properties of the working fluid.

• momentumTransport contains the definition of the turbulence model to use. 
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• This dictionary file is located in the directory constant. 

Thermophysical models are concerned with energy, heat 

and physical properties.

• In the sub-dictionary thermoType (lines 18-27), we 

define the thermophysical models.

• The transport modeling concerns evaluating dynamic 

viscosity (line 22). In this case the viscosity is constant.

• The thermodynamic models (thermo) are concerned with 

evaluating the specific heat Cp (line 23). In this case Cp 

is constant

• The equationOfState keyword (line 24) concerns to the 

equation of state of the working fluid. In this case

• The form of the energy equation to be used in the 

solution is specified in line 26 (energy). In this case we 

are using enthalpy (sensibleEnthalpy).

The thermophysicalProperties dictionary file

18  thermoType

19  {

20  type            hePsiThermo;

21  mixture         pureMixture;

22  transport       const;

23  thermo          hConst;

24  equationOfState perfectGas;

25  specie          specie;

26  energy          sensibleEnthalpy;

27  }

28  

29  mixture

30  {

31  specie

32  {

33  nMoles      1;

34  molWeight   28.9;

35  }

36  thermodynamics

37  {

38  Cp          1005;

39  Hf          0;

40  }

41  transport

42  {

43  mu          1.84e-05;

44  Pr          0.713;

45  }

46  }

Flow past a cylinder – From laminar to turbulent flow

250



• In the sub-dictionary mixture (lines 29-46), we define the 

thermophysical properties of the working fluid.

• In this case, we are defining the properties for air at 20°

Celsius and at a sea level.

The thermophysicalProperties dictionary file

18  thermoType

19  {

20  type            hePsiThermo;

21  mixture         pureMixture;

22  transport       const;

23  thermo          hConst;

24  equationOfState perfectGas;

25  specie          specie;

26  energy          sensibleEnthalpy;

27  }

28  

29  mixture

30  {

31  specie

32  {

33  nMoles      1;

34  molWeight   28.9;

35  }

36  thermodynamics

37  {

38  Cp          1005;

39  Hf          0;

40  }

41  transport

42  {

43  mu          1.84e-05;

44  Pr          0.713;

45  }

46  }
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• In this dictionary file we select what model we would like to use (laminar or 

turbulent).

• This dictionary is compulsory.

• As we do not want to model turbulence, the dictionary is defined as follows,

The turbulenceProperties dictionary file

17 simulationType    laminar;
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The 0 directory

• In this directory, we will find the dictionary files that contain the boundary and 

initial conditions for all the primitive variables.

• As we are solving the compressible laminar Navier-Stokes equations, we will 

find the following field files:

• p (pressure)

• T (temperature)

• U (velocity field)
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The file 0/p

17  dimensions      [1 -1 -2 0 0 0 0];

18  

19  internalField   uniform 101325;

20  

21  boundaryField

22  {

23  in

24  {

25  type            zeroGradient;

26  }

28  out

29  {

30  type            fixedValue;

31  value           uniform 101325;

32  }

34  cylinder

35  {

36  type            zeroGradient;

37  }

39  sym1

40  {

41  type            symmetryPlane;

42  }

44  sym2

45  {

46  type            symmetryPlane;

47  }

49  back

50  {

51  type            empty;

52  }

54  front

55  {

56  type            empty;

57  }

58  }

• This file contains the boundary and initial conditions 

for the scalar field pressure (p).  We are working 

with absolute pressure.

• Contrary to incompressible flows where we defined 

relative pressure, this is the absolute pressure.

• Also, pay attention to the units (line 17).  The 

pressure is defined in Pascal.

• We are using uniform initial conditions (line 19). 

• For the in patch we are using a zeroGradient

boundary condition.

• For the outlet patch we are using a fixedValue

boundary condition. 

• For the cylinder patch we are using a zeroGradient

boundary condition.

• The rest of the patches are constrained.
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The file 0/T

17  dimensions      [0 0 0 -1 0 0 0];

18  

19  internalField   uniform 293.15;

20  

21  boundaryField

22  {

23  in

24  {

25  type            fixedValue;

26  value           $internalField;

27  }

29  out

30  {

31  type            inletOutlet;

32  value           $internalField;

33  inletValue      $internalField;

34  }

36  cylinder

37  {

38  type            zeroGradient;

39  }

41  sym1

42  {

43  type            symmetryPlane;

44  }

46  sym2

47  {

48  type            symmetryPlane;

49  }

51  back

52  {

53  type            empty;

54  }

56  front

57  {

58  type            empty;

59  }

60  }

• This file contains the boundary and initial conditions 

for the scalar field temperature (T). 

• Also, pay attention to the units (line 17).  The 

temperature is defined in Kelvin. 

• We are using uniform initial conditions (line 19). 

• For the in patch we are using a fixedValue boundary 

condition.

• For the out patch we are using a inletOutlet

boundary condition (in case of backflow). 

• For the cylinder patch we are using a zeroGradient

boundary condition.

• The rest of the patches are constrained.
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The file 0/U

17  dimensions      [0 1 -1 0 0 0 0];

18  

19  internalField   uniform (1.5 0 0);

20  

21  boundaryField

22  {

23  in

24  {

25  type            fixedValue;

26  value           uniform (1.5 0 0);

27  }

29  out

30  {

31  type inletOutlet;

32  phi phi;

33  inletValue uniform (0 0 0);

34  value uniform (0 0 0);

35  }

37  cylinder

38  {

39  type            fixedValue;

40  value           uniform (0 0 0);

41  }

43  sym1

44  {

45  type            symmetryPlane;

46  }

48  sym2

49  {

50  type            symmetryPlane;

51  }

53  back

54  {

55  type            empty;

56  }

58  front

59  {

60  type            empty;

61  }

62  }

• This file contains the boundary and initial conditions 

for the dimensional vector field U. 

• We are using uniform initial conditions and the 

numerical value is (1.5 0 0) (keyword internalField in 

line 19).

• For the in patch we are using a fixedValue boundary 

condition.

• For the out patch we are using a inletOutlet

boundary condition (in case of backflow). 

• For the cylinder patch we are using a zeroGradient

boundary condition.

• The rest of the patches are constrained.
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The system directory

• The system directory consists of the following compulsory dictionary files: 

• controlDict 

• fvSchemes

• fvSolution

• controlDict contains general instructions on how to run the case. 

• fvSchemes contains instructions for the discretization schemes that will be 

used for the different terms in the equations.  

• fvSolution contains instructions on how to solve each discretized linear 

equation system. 
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17  application     rhoPimpleFoam;

18  

19  startFrom       startTime;

20  //startFrom       latestTime;

21  

22  startTime       0;

23  

24  stopAt          endTime;

25  //stopAt writeNow;

26  

27  endTime         0.3;

28  

29  deltaT          0.00001;

30  

31  writeControl    adjustableRunTime;

32  

33  writeInterval   0.0025;

34  

35  purgeWrite      0;

36  

37  writeFormat     ascii;

38  

39  writePrecision  10;

40  

41  writeCompression off;

42  

43  timeFormat      general;

44  

45  timePrecision   6;

46  

47  runTimeModifiable true;

48  

49  adjustTimeStep  yes;

50  maxCo           1;

51  maxDeltaT       1;

The controlDict dictionary

• This case will start from the last saved solution (startFrom).  If there is 

no solution, the case will start from time 0 (startTime).

• It will run up to 0.3 seconds (endTime). 

• The initial time step of the simulation is 0.00001 seconds (deltaT).

• It will write the solution every 0.0025 seconds (writeInterval) of 

simulation time (adjustableRunTime).  The option adjustableRunTime  

will adjust the time-step to save the solution at the precise intervals. This 

may add some oscillations in the solution as the CFL is changing.

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat).

• And as the option runTimeModifiable is on, we can modify all these 

entries while we are running the simulation.

• In line 49 we turn on the option adjustTimeStep. This option will 

automatically adjust the time step to achieve the maximum desired 

courant number (line 50). 

• We also set a maximum time step in line 51.

• Remember, the first time step of the simulation is done using the value 

set in line 28 and then it is automatically scaled to achieve the desired 

maximum values (lines 66-67).

• The feature adjustTimeStep is only present in the PIMPLE family 

solvers, but it can be added to any solver by modifying the source code.
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55  functions

56  {

178 forceCoeffs_object

179 {

188 type forceCoeffs;

189 functionObjectLibs ("libforces.so");

190 patches (cylinder);

191 

192 pName p;

193 Uname U;

194 //rhoName rhoInf;

195 rhoInf 1.205;

196 

197 //// Dump to file

198 log true;

199 

200 CofR (0.0 0 0);

201 liftDir (0 1 0);

202 dragDir (1 0 0);

203 pitchAxis (0 0 1);

204 magUInf 1.5;

205 lRef 0.001;         

206 Aref 0.000002;         

207 

208 outputControl   timeStep;

209 outputInterval  1;

210 }

235

236 };

• As usual, at the bottom of the controlDict dictionary file 

we define the functionObjects (lines 55-236).

• Of special interest is the functionObject 

forceCoeffs_object. 

• As we changed the domain dimensions and the inlet 

velocity, we need to update the reference values (lines 204-

206).

• It is also important to update the reference density (line 

195).

The controlDict dictionary
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17  ddtSchemes

18  {

19  default         Euler;

20  }

21  

22  gradSchemes

23  {

29  default cellLimited leastSquares 1;

34  }

35  

36  divSchemes

37  {

38  default         none;

39  div(phi,U)      Gauss linearUpwindV default;

40  

41  div(phi,K)      Gauss linear;

42  div(phi,h)      Gauss linear;

43  

44  div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

45  }

46  

47  laplacianSchemes

48  {

49  default Gauss linear limited 1;

50  }

51  

52  interpolationSchemes

53  {

54  default         linear;

55  }

56  

57  snGradSchemes

58  {

59  default limited 1;

60  }

• In this case, for time discretization (ddtSchemes) we are 

using the Euler method.

• For gradient discretization (gradSchemes) we are using the 

leastSquares method. 

• For the discretization of the convective terms (divSchemes) 

we are using linearUpwind interpolation with no slope limiters 

for the term div(phi,U).

• For the terms div(phi,K) (kinetic energy) and div(phi,h)

(enthalpy) we are using linear interpolation method with no 

slope limiters. 

• For the term div(((rho*nuEff)*dev2(T(grad(U))))) we are 

using linear interpolation (this term is related to the turbulence 

modeling).

• For the discretization of the Laplacian (laplacianSchemes

and snGradSchemes) we are using the Gauss linear limited 

1 method.

• This method is second order accurate. 

The fvSchemes dictionary
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17  solvers

18  {   

20  p

21  {

22  solver          PCG;

23  preconditioner  DIC;

24  tolerance       1e-06;

25  relTol         0.01;

26  minIter 2;

27  }

46  pFinal

47  {

48  $p;

49  relTol          0;

50  minIter 2;

51  }

53  "U.*"

54  {

55  solver          PBiCGStab;

56  preconditioner  DILU;

57  tolerance       1e-08;

58  relTol          0;

59  minIter 2;

60  }  

74  hFinal

75  {

76  solver          PBiCGStab;

77  preconditioner  DILU;

78  tolerance       1e-08;

79  relTol         0;

80  minIter 2;

81  }

83  "rho.*"

84  {

85  solver diagonal;

86  }

87  }

• To solve the pressure (p) we are using the PCG method with 

an absolute tolerance of 1e-6 and a relative tolerance relTol

of 0.01.

• The entry pFinal refers to the final correction of the PISO

loop. Notice that we are using macro expansion ($p) to copy 

the entries from the sub-dictionary p.

• To solve U and UFinal (U.*) we are using the solver 

PBiCGStab with an absolute tolerance of 1e-8 and a relative 

tolerance relTol of 0.

• To solve hFinal (enthalpy) we are using the solver 

PBiCGStab with an absolute tolerance of 1e-8 and a relative 

tolerance relTol of 0. 

• To solve rho and rhoFinal (rho.*) we are using the diagonal

solver (remember rho is found from the equation of state, so 

this is a back-substitution).

• FYI, solving for the velocity is relative inexpensive, whereas 

solving for the pressure is expensive. 

• Be careful with the enthalpy, it might cause oscillations.

The fvSolution dictionary
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88  

89  PIMPLE

90  {

91  momentumPredictor yes;

92  nOuterCorrectors 1;

93  nCorrectors     2;

94  nNonOrthogonalCorrectors 1;

103  pMinFactor          0.5;

104  pMaxFactor          2.0;

105  }

• The PIMPLE sub-dictionary contains entries related to the 

pressure-velocity coupling (in this case the PIMPLE method).

• Setting the keyword nOuterCorrectors to 1 is equivalent to 

running using the PISO method.

• Hereafter we are doing 2 PISO correctors (nCorrectors) and 

1 non-orthogonal corrections (nNonOrthogonalCorrectors).

• In lines 95-96 we set the minimum and maximum physical 

values of rho (density).

• If we increase the number of nCorrectors and 

nNonOrthogonalCorrectors we gain more stability but at a 

higher computational cost.

• The choice of the number of corrections is driven by the 

quality of the mesh and the physics involve.

• You need to do at least one PISO loop (nCorrectors).

The fvSolution dictionary
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• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c24

• Feel free to use the Fluent mesh or the mesh generated with blockMesh.  In this case we will use 

blockMesh.

• To run this case, in the terminal window type:

1. $> foamCleanTutorials 

2. $> blockMesh 

3. $> transformPoints –scale ‘(0.001 0.001 0.001)’

4. $> renumberMesh -overwrite 

5. $> rhoPimpleFoam | tee log

6.
$> pyFoamPlotWatcher.py log

You will need to launch this script in a different terminal

7.
$> gnuplot scripts0/plot_coeffs

You will need to launch this script in a different terminal

8. $> rhoPimpleFoam –postProcess –func MachNo

9. $> paraFoam 

Running the case – Using a compressible solver
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• In step 3 we scale the mesh.

• In step 4 we use the utility renumberMesh to make the linear system more diagonal 

dominant, this will speed-up the linear solvers. 

• In step 5 we run the simulation and save the log file.  Notice that we are sending the 

job to background.

• In step 6 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly.  As the 

job is running in background, we can launch this utility in the same terminal tab.

• In step 7 we use the gnuplot script scripts0/plot_coeffs to plot the force 

coefficients on-the-fly.  Besides monitoring the residuals, is always a good idea to 

monitor a quantity of interest. Feel free to take a look at the script and to reuse it.

• In step 8 we use the utility MachNo to compute the Mach number.
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Courant Number mean: 0.1280224248 max: 0.9885863338

deltaT = 3.816512052e-05

Time = 0.3

diagonal:  Solving for rho, Initial residual = 0, Final residual = 0, No Iterations 0

PIMPLE: iteration 1

DILUPBiCG:  Solving for Ux, Initial residual = 0.003594731129, Final residual = 3.026673755e-11, No Iterations 5

DILUPBiCG:  Solving for Uy, Initial residual = 0.01296036298, Final residual = 1.223236662e-10, No Iterations 5

DILUPBiCG:  Solving for h, Initial residual = 0.01228951539, Final residual = 2.583236461e-09, No Iterations 4

DICPCG:  Solving for p, Initial residual = 0.01967621449, Final residual = 8.797612158e-07, No Iterations 77

DICPCG:  Solving for p, Initial residual = 0.003109422612, Final residual = 9.943030465e-07, No Iterations 69

diagonal:  Solving for rho, Initial residual = 0, Final residual = 0, No Iterations 0

time step continuity errors : sum local = 6.835363016e-11, global = 4.328592697e-12, cumulative = 2.366774797e-09

rho max/min : 1.201420286 1.201382023

DICPCG:  Solving for p, Initial residual = 0.003160602108, Final residual = 9.794177338e-07, No Iterations 69

DICPCG:  Solving for p, Initial residual = 0.0004558492254, Final residual = 9.278622052e-07, No Iterations 58

diagonal:  Solving for rho, Initial residual = 0, Final residual = 0, No Iterations 0

time step continuity errors : sum local = 6.38639685e-11, global = 1.446434866e-12, cumulative = 2.368221232e-09

rho max/min : 1.201420288 1.201381976

ExecutionTime = 480.88 s  ClockTime = 490 s

faceSource inMassFlow output:

sum(in) of phi = -7.208447027e-05

faceSource outMassFlow output:

sum(out) of phi = 7.208444452e-05

fieldAverage fieldAverage output:

Calculating averages

Writing average fields

forceCoeffs forceCoeffs_object output:

Cm    = -0.001269886395

Cd    = 1.419350733

Cl    = 0.6247248606

Cl(f) = 0.3110925439

Cl(r) = 0.3136323167

fieldMinMax minmaxdomain output:

min(p) = 101322.7878 at location (-0.0001215826043 0.001027092827 0)

max(p) = 101326.4972 at location (-0.001033408037 -4.061934599e-05 0)

min(U) = (-0.526856427 -0.09305459972 -8.110485132e-25) at location (0.002039092041 -0.0004058872656 -3.893823418e-20)

max(U) = (2.184751599 0.2867627526 4.83091257e-25) at location (0.0001663574444 0.001404596295 0)

min(T) = 293.1487423 at location (-5.556854517e-05 0.001412635233 0)

max(T) = 293.1509903 at location (-0.00117685237 -4.627394552e-05 3.016083257e-20)

rhoPimpleFoam output screen

Time step
Courant number

Solving for density (rho)

Max/min density values

pFinal

Force coefficients
Minimum and 
maximum values

Solving for density (rhoFinal)

h residuals
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• In the directory $PTOFC/101OF/vortex_shedding, you will find 29 variations of the cylinder case involving 

different solvers and models.  Feel free to explore all them.

• This is what you will find in each directory,

• c1 = blockMesh – icoFoam – Unsteady solver – Re = 200.

• c2 = fluentMeshToFoam – icoFoam – Unsteady solver – Re = 200.

• c3 = blockMesh – pisoFoam – Unsteady solver – Field initialization – Re = 200.

• c4 = blockMesh – potentialFoam – Re = 200.

• c5 = blockMesh – mapFields – pisoFoam – Unsteady solver – original mesh – Re = 200.

• c6 = blockMesh – mapFields – pisoFoam – Unsteady solver – Finer mesh – Re = 200.

• c7 = blockMesh – pimpleFoam – Unsteady solver – Re = 200 – No turbulent model.

• c8 = blockMesh – pisoFoam – Unsteady solver – Re = 200 – No turbulent model.

• c9 = blockMesh – pisoFoam – Unsteady solver – Re = 200 – K-Omega SST turbulent model.

• c10 = blockMesh – simpleFoam – Steady solver – Re = 200 – No turbulent model.

• c11 = blockMesh – simpleFoam – Steady solver – Re = 40 – No turbulent model.

• c12 = blockMesh – pisoFoam – Unsteady solver – Re = 40 – No turbulent model.

• c14 = blockMesh – pimpleFoam – Unsteady solver – Re = 10000 – K-Omega SST turbulence model with wall functions.

• c15 = blockMesh – pimpleFoam – Unsteady solver – Re = 100000 – K-Omega SST turbulence model with wall functions 

• c16 = blockMesh – simpleFoam – Steady solver – Re = 100000 – K-Omega SST turbulence model no wall functions.

• c17 = blockMesh – simpleFoam – Steady solver – Re = 100000 – K-Omega SST turbulent model with wall functions.

• c18 = blockMesh – pisoFoam – Unsteady solver – Re = 100000, LES Smagorinsky turbulent model.
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• This is what you will find in each directory,

• c19 = blockMesh – pimpleFoam – Unsteady solver – Re = 1000000 – Spalart Allmaras turbulent model no wall functions.

• c20 = blockMesh – rhoPimpleFoam – Unsteady solver – Mach = 2.0 – Compressible – Laminar.

• c21 = blockMesh – rhoPimpleFoam –Unsteady solver – Mach = 2.0 – Unsteady solver – Compressible – K-Omega SST 

turbulent model with wall functions.

• c22 = blockMesh – rhoSimpleFoam – Mach = 2.0 – Steady solver – Compressible – K-Omega SST turbulent model with 

wall functions.

• c23 = blockMesh – rhoPimpleFoam – Mach = 2.0 – LTS Pseudo-transient solver – Compressible – K-Omega SST 

turbulent model with wall functions.

• c24 = blockMesh – pimpleFoam – Unsteady solver – Re = 200 – No turbulent model – Source terms (momentum)

• c25 = blockMesh – pimpleFoam – Unsteady solver – Re = 200 – No turbulent model – Source terms (scalar transport)

• c26 = blockMesh – rhoPimpleFoam – Unsteady solver – Re = 200 – Laminar, isothermal

• c27 = blockMesh – rhoPimpleFoam – Unsteady solver – Re = 20000 – Turbulent, compressible

• c28 = blockMesh – pimpleDyMFoam – Unsteady solver – Re = 200 – Laminar, moving cylinder (oscillating).

• c29 = blockMesh – pimpleDyMFoam/pimpleFoam – Unsteady solver – Re = 200 – Laminar, rotating cylinder using AMI 

patches.

• c30 = blockMesh – interFoam – Unsteady solver – Laminar, multiphase, free surface.

• c31 = blockMesh – pimpleFoam – Unsteady solver – Laminar with source terms and AMR. 
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Module 2
Solid modeling
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1. Solid modeling preliminaries and 

introduction to Onshape

Roadmap
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Solid modeling – Preliminaries

• There is no wrong or right way when doing solid modeling for CFD.  The 

only rule you should keep in mind is that by the end of the day you should 

get a smooth, clean, and watertight geometry.

• A watertight geometry means a close body with no holes or overlapping 

surfaces.

• Have in mind that the quality of the mesh and hence of the solution, greatly 

depends on the geometry.  So always do your best when creating the 

geometry.

• During this solid modeling session we are going to show you how to get 

started with the geometry generation tools.  The rest is on you.

• The best way to learn how to use these tools is by doing.

• The tool of our choice is Onshape (www.onshape.com). However, have in 

mind that all CAD and solid modeling applications have similar capabilities.
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Solid modeling – Preliminaries

• There are always many ways to accomplish a task when creating a 

geometry, this give you the freedom to work in a way that is comfortable to 

you.  Hereafter we are going to show you our way.

• Before starting to create your geometry, think about a strategy to employ to 

create your design, this is what we call design intent.

• Choose one feature over other.

• Dimensioning strategy.

• Order of the operations.

• Parametrization.

• Single or multiple parts.

• Do I need to parametrize my design, or should I use direct 

modeling?

• We are going to work with design intent during the hands-on sessions.
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Solid modeling – Preliminaries

• Many times, it is not necessary to model all the details of the geometry.  In these cases you 

should consider simplifying the geometry (geometry defeaturing).  

• Geometry defeaturing can save you a lot of time when generating the mesh. So be smart, 

and use it whenever is possible.

Geometry defeaturing
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Do we really need to 

capture the fillet details?

Do we need to 

model the flange?

Are the nuts and bolts necessary 

in my simulation?



Solid modeling – Preliminaries

Geometry defeaturing
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Solid modeling using Onshape

• Onshape is a professional CAD/solid modeling application.

• It provides powerful parametric and direct modeling capabilities.

• It is cloud based therefore you do not need to install any software.

• Documents are shareable.

• Multiple users can work in the same document at the same time 

(simultaneous editing).

• It runs in any device with a working web browser.

• Users can implement their own features using Onshape scripting language 

(featureScript).

• Users can access and modify documents in a programmatic way using 

python or nodejs.

• It is freely available for educational use and personal use.

• To start using Onshape register at: https://cad.onshape.com/
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Solid modeling using Onshape

• Even if you have not used a CAD software before, you will find the GUI easy to use.

• You will notice that there is no save button because everything you do is 

automatically saved.

Toolbar

View cube

3D area
Document tabs

Feature list

Versioning, branching, and history menu

Undo/Redo

Enter to sketch mode

Parts list

Help
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Solid modeling using Onshape

Mouse interaction in the 

3D viewer

Selection

Rotate

Pan

Zoom

• Mouse interaction in the 3D area (it can be configured in the preference area).

• To deselect click in an empty region in the 3D area
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Solid modeling using Onshape

• Parametric modeling and feature based modeling are crucial components in the 

design experience.

• In Onshape you will find the following features:

• Remember, sketches are the core of good 3D designs and parametrization.

• This is all we need to know about Onshape.

• Let us work with a simple geometry to understand how Onshape works. 

• We also will show you a few clicks and picks you should be aware of.

Feature toolbar:

Sketch toolbar:
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Solid modeling using Onshape

• Let us create this solid using the dimensions illustrated.

Note: all the dimensions are in meters
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Solid modeling using Onshape

• Enter the document page and create a new design

Create new document
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Solid modeling using Onshape

• In the part studio page, select the top plane and start a new sketch.

1. Select this plane

2. Start a new sketch

Part studio page
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Solid modeling using Onshape

Right click on the 3D 

area and select view 

normal to sketch plane

• In the part studio page, select the top plane and start a new sketch.
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Solid modeling using Onshape

• Using the sketching features, draw the following line.

When you are done sketching 

press the checkmark

Use the dimensions illustrated to 

draw this polyline

In sketch mode:

• Blue  geometry is free to move.

• Black geometry is fully defined.

• Red geometry is over-constrained.
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Solid modeling using Onshape

Select this plane and 

start a new sketch

• Select the right plane and start a new sketch.

• Draw a circle with the center in the origin (the white point).

When you are done sketching 

press the checkmark

Use the dimensions illustrated to 

draw the circle

Origin
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Solid modeling using Onshape

• Use the sweep feature to create a new solid.

Select the circle as the 

face to sweep

Select the lines as the 

sweep patch
Select new solid

Sweep feature

284



Solid modeling using Onshape

• At this point, you should have this solid.

Solid name.

Right click to rename 

or view the properties
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Solid modeling using Onshape

• Let us add the new inlet to the pipe.

• Create a new sketch in the top plane or edit the initial sketch.

• Hereafter we will edit the initial sketch.

Right click and choose 

the option edit

Sketch these new lines using the dimensions illustrated. 

Pay attention to the angle and the offset distance.
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Solid modeling using Onshape

• Create a plane normal to a line and passing through a point

1. Create new plane

Use this line to create 

the new plane

Use this point to create 

the new plane

2. Select point normal, 

and select the line and 

point as illustrated

To get better visibility, you 

can hide the solid or adjust 

the transparency
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Solid modeling using Onshape

• Sketch a circle in the newly created plane.

New plane

Sketch this circle in the newly created plane

To get better visibility, you 

can hide the solid or adjust 

the transparency
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Solid modeling using Onshape

• Using the feature extrude to create a new solid using the previous sketch.

• Extrude the circle until in intercept the solid.

Use this sketch as the 

base for the extrusion

Extrusion. 

You can manually move 

the extrusion using the 

triad manipulator, or 

input a value

Add the new solid to the previous part (boolean operation)

Feature extrusion

Instead of the extrusion feature, you could use 

the sweep feature. You will need to create a 

longer sweep path.
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Solid modeling using Onshape

• At this point you should have the following solid.
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Solid modeling using Onshape

• If you want to know the mass properties of the solid, select it, and then click on the 

mass properties icon.

• To get the inertia, you will need to assign a material.

Select the part.

Right click and select 

assign material.

Mass properties icon
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Solid modeling using Onshape

• To export the solid model, right click on the part name and select the option export.

• Choose the desired format.  In this case choose STL.

Right click and select the 

option export.
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Solid modeling using Onshape

• Parametric modeling and feature-based modeling are two of the most powerful tools 

available in any CAD/solid modeling applications.

• They are crucial components in the design experience, especially when dealing with 

design intent.

• Experimenting with dimension schemes is one of the best ways to improve your 

understanding of design intent.

• To learn more about Onshape, you can visit their learning center:

https://learn.onshape.com/

• Finally, feel free to visit our youtube channel where you will find a few solid modeling 

videos in the context of CFD and OpenFOAM® :

https://www.youtube.com/channel/UCNNBm3KxVS1rGeCVUU1p61g

293

https://learn.onshape.com/
https://www.youtube.com/channel/UCNNBm3KxVS1rGeCVUU1p61g


Solid modeling using Onshape
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• Sailing boat:

https://cad.onshape.com/documents/ad885ed6298e6d95e372f573/w/1cfda457fe3ad410332aad9c/e/8dac4fcaf6e34a43e9676fbc

• Mixing elbow:

https://cad.onshape.com/documents/1cc919d8e75c2e47e8c1d50e/w/0efa002648eb2fb80ec4bec4/e/a742bf4113c626735e1d8f1a

• Static mixer:

https://cad.onshape.com/documents/58f7930861743e1074559ea6/w/96672317c9167265f9d10181/e/e4b6b1baffa90ca207afe974

• Ahmed body:

https://cad.onshape.com/documents/e1ecbacd95be9ed0962aa410/w/f0295899197e2f3d851000fd/e/aa40f8f5d26b7117dd0a5111

• Mixing tank:

https://cad.onshape.com/documents/e00307c191ce168d1d8c2e05/w/fc5d69b18559ec3893a1a80a/e/ba4b5ca5b34ad7335a2915a3

• Onera M6 wing:

https://cad.onshape.com/documents/e176caaa70bfd4719cafe3d7/w/9d8b5771d7382000b0762e65/e/ec4669f8c28761e60e35b32f

• Three element airfoil:

https://cad.onshape.com/documents/590a4195a6145a1089cfb96f/w/838a3095da90d5dd66a3150e/e/5d65878bed975a1a94102846

• At the following links, you can find a few geometries that you can use to setup cases 

from scratch:

https://cad.onshape.com/documents/ad885ed6298e6d95e372f573/w/1cfda457fe3ad410332aad9c/e/8dac4fcaf6e34a43e9676fbc
https://cad.onshape.com/documents/1cc919d8e75c2e47e8c1d50e/w/0efa002648eb2fb80ec4bec4/e/a742bf4113c626735e1d8f1a
https://cad.onshape.com/documents/58f7930861743e1074559ea6/w/96672317c9167265f9d10181/e/e4b6b1baffa90ca207afe974
https://cad.onshape.com/documents/e1ecbacd95be9ed0962aa410/w/f0295899197e2f3d851000fd/e/aa40f8f5d26b7117dd0a5111
https://cad.onshape.com/documents/e00307c191ce168d1d8c2e05/w/fc5d69b18559ec3893a1a80a/e/ba4b5ca5b34ad7335a2915a3
https://cad.onshape.com/documents/e176caaa70bfd4719cafe3d7/w/9d8b5771d7382000b0762e65/e/ec4669f8c28761e60e35b32f
https://cad.onshape.com/documents/590a4195a6145a1089cfb96f/w/838a3095da90d5dd66a3150e/e/5d65878bed975a1a94102846


Module 3
Meshing preliminaries – Mesh quality 

assessment – Meshing in OpenFOAM®
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Before we begin

• OpenFOAM® comes with the following meshing applications:

• blockMesh

• snappyHexMesh

• foamyHexMesh

• foamyQuadMesh

• We are going to work with blockMesh and snappyHexMesh.

• blockMesh is a multi-block mesh generator.

• snappyHexMesh is an automatic split hex mesher, refines and snaps to surface.

• If you are not comfortable using OpenFOAM® meshing applications, you can use an 

external mesher. 

• OpenFOAM® comes with many mesh conversion utilities.  Many popular meshing 

formats are supported.  To name a few: gambit, cfx, fluent, gmsh, ideas, netgen, 

plot3d, starccm, VTK.

• In this module, we are going to address how to mesh using OpenFOAM®

technology, how to convert meshes to OpenFOAM® format, and how to assess 

mesh quality in OpenFOAM®.
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Before we begin

You will use blockMesh to mesh the pyramids

You will use snappyHexMesh to mesh the sphinx

By the end of this module, you will realize that
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Meshing preliminaries

• Mesh generation or domain discretization consist in dividing the physical 

domain into a finite number of discrete regions, called control volumes or 

cells in which the solution is sought

www.wolfdynamics.com/wiki/moving/ani2.gifwww.wolfdynamics.com/wiki/moving/ani1.gif
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Meshing preliminaries

Mesh generation process

• Generally speaking, when generating the mesh we follow these three  

simple steps:

• Geometry generation: we first generate the geometry that we are going 

to feed into the meshing tool.

• Mesh generation: the mesh can be internal or external. We also define 

surface and volume refinement regions. We can also add inflation layers 

to better resolve the boundary layer. During the mesh generation 

process we also check the mesh quality.

• Definition of boundary surfaces:  in this step we define physical 

surfaces where we are going to apply the boundary conditions. If you do 

not define these individual surfaces, you will have one single surface 

and it will not be possible to apply different boundary conditions.
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Meshing preliminaries

Geometry generation - Input geometry

• The geometry must be watertight.

• Remember, the quality of the mesh and hence the quality of the solution greatly depends on the geometry.  So 

always do your best when creating the geometry.
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Meshing preliminaries

Mesh generation

• If we are interested in external aerodynamics, we define a physical domain and we mesh the region around 

the body.

• If we are interested in internal aerodynamics, we simply mesh the internal volume of the geometry.

• To resolve better the flow features, we can add surface and volume refinement.

• Remember to always check the mesh quality.
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Meshing preliminaries

Definition of boundary surfaces (patches)

• In order to assign boundary conditions, we need to create boundary surfaces (patches) where we are going to 

apply the boundary values.

• The boundary surfaces (patches) are created at meshing time.

• In OpenFOAM®, you will find this information in the boundary dictionary file which is located in the directory 

constant/polyMesh.  This dictionary is created automatically at meshing time.

inlet outlet

top

bottom

rightleft

airplane
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Meshing preliminaries

What cell type should I use?

http://www.wolfdynamics.com/wiki/cells/ani_tetra.gif http://www.wolfdynamics.com/wiki/cells/ani_hexa.gif http://www.wolfdynamics.com/wiki/cells/ani_poly.gif

• In the meshing world, there are many cell types. Just to name a few: tetrahedrons, 

pyramids, hexahedrons, prisms, polyhedral.

• Each cell type has its very own properties when it comes to approximate the gradients 

and fluxes, we are going to talk about this later on when we deal with the FVM.

• Generally speaking, hexahedral cells will give more accurate solutions under certain 

conditions.

• However, this does not mean that tetra/poly cells are not good. 

• What cell type do I use? It is up to you; at the end of the day the overall quality of the 

final mesh should be acceptable, and your mesh should resolve the physics
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What is a good mesh?

22rd IMR Meshing Maestro Contest Winner

Travis Carrigan, John Chawner and Carolyn Woeber. Pointwise.

http://imr.sandia.gov/22imr/MeshingContest.html 

• There is no written theory when it comes to mesh generation. 

• Basically, the whole process depends on user experience and good standard 

practices.

• A standard rule of thumb is that the elements shape and distribution should be 

pleasing to the eye.
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What is a good mesh?

• In a more sounded way, the user can rely in mesh metrics. 

• However, no single standard benchmark or metric exists that can effectively 

assess the quality of a mesh, but the user can rely on suggested best 

practices. 

• Hereafter, we will present the most common mesh quality metrics:

• Orthogonality.

• Skewness.

• Aspect Ratio.

• Smoothness.

• After generating the mesh, we measure these quality metrics  to assess the 

mesh quality. 

• Have in mind that there are many more mesh quality metrics out there, and 

some of them are not very easy to interpret (e.g., jacobian matrix, 

determinant, flatness, equivalence, condition number, and so on).

• It seems that it is much easier diagnosing bad meshes than good meshes.
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• Mesh orthogonality is the angular deviation of the vector S (located at the face center

f ) from the vector d connecting the two cell centers P and N.  In this case is       . 

• It mainly affects the Laplacian and gradient terms at the face center f.  

• It adds numerical diffusion to the solution.

Mesh quality metrics.  Mesh orthogonality

What is a good mesh?
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• Skewness (also known as non-conjunctionality) is the deviation of the vector d that 

connects the two cells P and N, from the face center f. 

• The deviation vector is represented with         and        is the point where the vector d

intersects the face f .

• It affects the interpolation of the cell centered quantities at the face center f.  

• It affects the computation of the convective, diffusive, and gradient terms. 

• It adds numerical diffusion and wiggles to the solution.

Mesh quality metrics.  Mesh skewness

What is a good mesh?
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• Mesh aspect ratio AR is the ratio between the longest side           and the shortest 

side         .

• Large AR are ok if gradients in the largest direction are small.

• High AR smear gradients.  

• Large AR can add numerical diffusion to the solution.

Mesh quality metrics.  Mesh aspect ratio AR

What is a good mesh?
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Mesh quality metrics.  Smoothness

What is a good mesh?

Smooth transitionSteep transition

• Smoothness, also known as expansion rate, growth factor or uniformity, defines the 

transition in size between contiguous cells.

• Large transition ratios between cells add diffusion to the solution.

• Ideally, the maximum change in mesh spacing should be less than 20%:
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What is a good mesh?

Mesh quality metrics. Element type close to the walls - Cell/Flow alignment

• Hexes, prisms, and quadrilaterals can be stretched easily to resolve boundary layers 

without losing quality.

• Triangular and tetrahedral meshes have inherently larger truncation error.

• Less truncation error when faces aligned with flow direction and gradients.

Flow direction
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Striving for quality

What is a good mesh?

• For the same cell count, hexahedral meshes will give more accurate solutions, 

especially if the grid lines are aligned with the flow.

• But this does not mean that tetrahedral meshes are not good, by carefully choosing 

the numerical scheme you can get the same level of accuracy as in hexahedral 

meshes.  

• The problem with tetrahedral meshes is mainly related to the way gradients are 

computed.

Year

Q
O
I

Hexa

Tetra
• In the early years of CFD, there was a huge 

gap between the outcome of tetra and hex 

meshes.

• But with time and thanks to developments in 

numerical methods and computer science 

(software and hardware), today all cell types 

give the same results.
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Striving for quality

What is a good mesh?

23rd IMR Meshing Maestro Contest Winner

Zhoufang Xiao , Jianjing Zheng, Dawei Zhao, Lijuan Zeng, Jianjun Chen, Yao Zheng

Center for Engineering & Scientific Computation, Zhejiang University, China.

http://www.sandia.gov/imr/MeshingContest.html

• The mesh density should be high enough to capture all relevant flow features.  

• In areas where the solution change slowly, you can use larger elements.  

• A good mesh does not rely in the fact that the more cells we use the better the 

solution. 
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Striving for quality

What is a good mesh?

• Hexes, prisms, and quadrilaterals can be easily aligned with the flow.

• They can also be stretched to resolve boundary layers without losing much quality.

• Triangular and tetrahedral meshes can easily be adapted to any kind of geometry.  The mesh 

generation process is almost automatic.

• Tetrahedral meshes normally need more computing resources during the solution stage. But 

this can be easily offset by the time saved during the mesh generation stage. 

• Increasing the cells count will likely improve the solution accuracy, but at the cost of a higher 

computational cost. However, a finer mesh does not mean a better mesh.   

• To keep cell count low, use non-uniform meshes to cluster cells only where they are needed. 

Use local refinements and solution adaption to further refine only on selected areas.

• In boundary layers, quads, hexes, and prisms/wedges cells are preferred over triangles, 

tetrahedrons, or pyramids.

• If you are not using wall functions (turbulence modeling), the mesh next to the walls should be 

fine enough to resolve the boundary layer flow.  Have in mind that this will rocket the cell count 

and increase the computing time.
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Striving for quality

What is a good mesh?

• Use hexahedral meshes whenever is possible, specially if high accuracy in predicting forces is 

your goal (drag prediction) or for turbo machinery applications.

• For complex flows without dominant flow direction, quad and hex meshes loose their 

advantages.

• Keep orthogonality, skewness, and aspect ratio to a minimum.

• Change in cell size should be smooth.

• Always check the mesh quality.  Remember, one single cell can cause divergence or give you 

inaccurate results.

• When you strive for quality, you avoid the GIGO syndrome (garbage in, garbage out).

• Just to end for good the mesh quality talk:

• A good mesh is a mesh that serves your project objectives. 

• So, as long as your results are physically realistic, reliable and accurate; your mesh is 

good.

• Know your physics and generate a mesh able to resolve the physics involve, without 

over-doing.
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What is a good mesh?

317

A good mesh might not lead to the ideal solution, but a bad 

mesh will always lead to a bad solution.

P. Baker – Pointwise

Who owns the mesh, owns the solution.

H. Jasak – Wikki Ltd.

Avoid the GIGO syndrome (Garbage In – Garbage Out).  

As I am a really positive guy I prefer to say, 

good mesh – good results.

J. G. – WD
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Mesh quality metrics in OpenFOAM®

Mesh quality assessment in OpenFOAM®

36 Foam::scalar Foam::primitiveMesh::closedThreshold_  = 1.0e-6;

37 Foam::scalar Foam::primitiveMesh::aspectThreshold_  = 1000;

38 Foam::scalar Foam::primitiveMesh::nonOrthThreshold_ = 70;    // deg

39 Foam::scalar Foam::primitiveMesh::skewThreshold_    = 4;

40 Foam::scalar Foam::primitiveMesh::planarCosAngle_   = 1.0e-6;

• In the file primitiveMeshCheck.C located in the directory 

$WM_PROJECT_DIR/src/OpenFOAM/meshes/primitiveMesh/primitiveMeshCheck/ you will find the 

quality metrics hardwired in OpenFOAM®.  Their maximum (or minimum) values are defined as follows:

• You will be able to run simulations with mesh quality errors such as high skewness, high aspect ratio, and high 

non-orthogonality.  But remember, they will affect the solution accuracy, might give you strange results, and 

eventually can made the solver blow-up.

• Have in mind that if you have bad quality meshes, you will need to adapt the numerics to deal with this kind of 

meshes. We will give you our recipe later when we deal with the numerics.

• You should avoid as much as possible non-orthogonality values close to 90. This is an indication that you have 

zero-volume cells.

• In overall, large aspect ratios do not represent a problem.  It is just an indication that you have very fine 

meshes (which is the case when you are resolving the boundary layer).

• The default quality metrics in OpenFOAM® seems to be a little bit conservative. In our experience, we have 

found that you can run simulations with no numerical tricks with a non-orthogonality values up to 80 and 

skewness values up to 8. 319



Checking the mesh quality in OpenFOAM®

Mesh quality assessment in OpenFOAM®

• To check the mesh quality and validity, OpenFOAM® comes with the utility checkMesh.

• To use this utility, just type in the terminal checkMesh, and read the screen output.

• checkMesh will look for/check for:

• Mesh stats and overall number of cells of each type.

• Check topology (boundary conditions definitions).

• Check geometry and mesh quality (bounding box, cell volumes, skewness, orthogonality, aspect 

ratio, and so on).

• If for any reason checkMesh finds errors, it will give you a message and it will tell you what check failed.

• It will also write a set with the faulty cells, faces, and/or points.  

• These sets are saved in the directory constant/polyMesh/sets/

• Mesh topology and patch topology errors must be repaired.

• You will be able to run with mesh quality errors such as skewness, aspect ratio, minimum face area, and non-

orthogonality.  

• But remember, they will severely tamper the solution accuracy, might give you strange results, and eventually 

can made the solver blow-up.

• Unfortunately, checkMesh does not repair these errors.  

• You will need to check the geometry for possible errors and generate a new mesh.

• You can visualize the failed sets directly in paraFoam .

• You can also convert the failed sets into VTK format by using the utility foamToVTK.
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Visualizing the failed sets in OpenFOAM®

Mesh quality assessment in OpenFOAM®

• You can load the failed sets directly within 
paraFoam. 

• Remember, you will need to create the sets.  To 
do so, just run the checkMesh utility.  

• If there are problems in the mesh, checkMesh

will automatically save the sets in the directory 
constant/polyMesh/sets

• In paraFoam, simply select the option Include 

Sets and then select the sets you want to 

visualize.

• This method only works when using the wrapper 
paraFoam.

• If you are using paraview or a different scientific 

visualization application, you will need to convert 

the failed sets to VTK format or an alternative 

format.

• Also, when working with large meshes we prefer 

to convert the faulty sets to VTK format.

• To convert the faulty sets to VTK format you can 
use the utility foamToVTK.
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Visualizing the failed sets in OpenFOAM®

Mesh quality assessment in OpenFOAM®

• To convert the failed faces/cells/points to VTK format, you can proceed as follows:

• $> foamToVTK -set_type name_of_sets

where set_type is the type of sets (faceSet, cellSet, pointSet, surfaceFields) and 

name_of_sets is the name of the set located in the directory 
constant/polyMesh/sets (highAspectRatioCells, nonOrthoFaces, 

wrongOrientedFaces, skewFaces, unusedPoints, and so on).

• At the end, foamToVTK will create a directory named VTK, where you will find the 

failed faces/cells/points in VTK format.  

• At this point you can use paraview/paraFoam or any scientific visualization 

application to open the VTK files and visualize the failed sets.
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Checking mesh quality in OpenFOAM®

Mesh quality assessment in OpenFOAM®

Mesh stats

points:           81812

faces:            902132

internal faces:   871012

cells:            443286

faces per cell:   4

boundary patches: 9

point zones:      0

face zones:       1

cell zones:       1

Overall number of cells of each type:

hexahedra:     0

prisms:        0

wedges:        0

pyramids:      0

tet wedges:    0

tetrahedra:    443286

polyhedra:     0

Checking topology...

Boundary definition OK.

Cell to face addressing OK.

***Unused points found in the mesh, number unused by faces: 16 number unused by cells: 16

<<Writing 16 unused points to set unusedPoints

Upper triangular ordering OK.

Face vertices OK.

Number of regions: 1 (OK).

• Sample checkMesh output,

Mesh stats

Number of each type of cells

Checking mesh topology

Unused points found in the mesh

In this case they do not harm the solution
They can be removed using topoSet and subsetMesh
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Checking mesh quality in OpenFOAM®

Mesh quality assessment in OpenFOAM®

Checking patch topology for multiply connected surfaces...

Patch               Faces    Points   Surface topology                  

FAIRING             1267     727      ok (non-closed singly connected)  

FUSELAGE            3243     1774     ok (non-closed singly connected)  

WING                15313    7706     ok (non-closed singly connected)  

INLET               272      160      ok (non-closed singly connected)  

OUTLET              272      160      ok (non-closed singly connected)  

SYMM                6280     3324     ok (non-closed singly connected)  

FARFIELD            3136     1645     ok (non-closed singly connected)  

NOSE                76       49       ok (non-closed singly connected)  

COCKPIT             1261     670      ok (non-closed singly connected)  

Checking geometry...

Overall domain bounding box (-15000 -7621.0713 -7396.4536) (30048.969 0 7446.8442)

Mesh has 3 geometric (non-empty/wedge) directions (1 1 1)

Mesh has 3 solution (non-empty) directions (1 1 1)

Boundary openness (-4.2298633e-18 8.0240802e-16 4.013988e-16) OK.

Max cell openness = 4.8098963e-16 OK.

Max aspect ratio = 29.575835 OK.

Minimum face area = 0.0066721253. Maximum face area = 1037224.8.  Face area magnitudes OK.

Min volume = 0.00050536842. Max volume = 3.2500889e+08.  Total volume = 5.0960139e+12.  Cell volumes OK.

Mesh non-orthogonality Max: 86.939754 average: 17.939523

*Number of severely non-orthogonal (> 70 degrees) faces: 3168.

Non-orthogonality check OK.

<<Writing 3168 non-orthogonal faces to set nonOrthoFaces

Face pyramids OK.

Max skewness = 2.5719979 OK.

Coupled point location match (average 0) OK.

Failed 1 mesh checks.

End

• Sample checkMesh output,

Boundary patches

Aspect ratio

High non-orthogonality
But we still can run the simulation

Skewness

Mesh bounding box

The fact that one check failed does not mean that you can not run the simulation
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Mesh quality assessment in OpenFOAM®

Non orthogonal faces (green spheres) and unused points (yellow spheres)

Visualization of faulty sets in paraFoam
• You will find this case ready to use in the directory, 

$PTOFC/mesh_quality_manipulation/M1_wingbody

• To run the case, just follow the instructions in the README.FIRST files.
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blockMesh
• “blockMesh is a multi-block mesh generator.”

• For simple geometries, the mesh generation utility blockMesh can be used. 

• The mesh is generated from a dictionary file named blockMeshDict

located in the system directory. 

• This meshing tool generates high quality meshes.

• It is the tool to use for very simple geometries. As the complexity of the 

geometry increases, the effort and time required to setup the dictionary 

increases a lot.

• Usually, the background mesh used with snappyHexMesh consist of a 

single rectangular block; therefore, blockMesh can be used with no 

problem.

• It is highly recommended to create a template of the dictionary 
blockMeshDict that you can change according to the dimensions of your 

domain.

• You can also use m4 or Python scripting to automate the whole process. 327

Mesh generation using blockMesh



blockMesh

328

Mesh generation using blockMesh

• These are a few meshes that you can generate using blockMesh. 

• As you can see, they are not very complex. 

• However, generating the blocking topology requires some effort.



blockMesh workflow

Mesh generation using blockMesh

• To generate a mesh with blockMesh, you will need to define the vertices, block 

connectivity and number of cells in each direction.

• To assign boundary patches, you will need to define the faces connectivity
329



blockMesh guided tutorials

330

• Meshing with blockMesh – Case 1.

• We will use the square cavity case.

• You will find this case in the directory:

$PTOFC/101BLOCKMESH/C1

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this 

way, you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 



blockMesh guided tutorials

What are we going to do?

• We will use this simple case to take a close look at a blockMeshDict dictionary.

• We will study all sections in the blockMeshDict dictionary.

• We will introduce two features useful for parameterization, namely, macro syntax and 

inline calculations.

• You can use this dictionary as a blockMeshDict template that you can change 

automatically according to the dimensions of your domain and the desired cell 

spacing.
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blockMesh guided tutorials

17  convertToMeters 1;

18  

19  xmin 0;

20  xmax 1;

21  ymin 0;

22  ymax 1;

23  zmin 0;

24  zmax 1;

25  

30  deltax 0.05;

31  deltay 0.05;

32  deltaz 0.05;

33  

34  lx #calc "$xmax - $xmin";

35  ly #calc "$ymax - $ymin";

36  lz #calc "$zmax – $zmin";

37  

38  xcells #calc "round(($lx)/($deltax))";

39  ycells #calc "round(($ly)/($deltay))";

40  zcells #calc "round(($lz)/($deltaz))";

41  

44  vertices

45  (

46  //BLOCK 0

47  ($xmin  $ymin  $zmin) //0

48  ($xmax  $ymin  $zmin) //1

49  ($xmax  $ymax  $zmin) //2

50  ($xmin  $ymax  $zmin) //3

51  ($xmin  $ymin  $zmax) //4

52  ($xmax  $ymin  $zmax) //5

53  ($xmax  $ymax  $zmax) //6

54  ($xmin  $ymax  $zmax) //7

66  );

The blockMeshDict dictionary. 

• The keyword convertToMeters (line 17), is a scaling 

factor.  In this case we do not scale the dimensions.

• In lines 19-24 we declare some variables using macro 

syntax notation. With macro syntax, we first declare the 

variables and their values (lines 19-24), and then we can 

use the variables by adding the symbol $ to the variable 

name (lines 47-54).

• In lines 30-32 we use macro syntax to declare another 

set of variables that will be used later.

• Macro syntax is a very convenient way to parameterize 

dictionaries.
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17  convertToMeters 1;

18  

19  xmin 0;

20  xmax 1;

21  ymin 0;

22  ymax 1;

23  zmin 0;

24  zmax 1;

25  

30  deltax 0.05;

31  deltay 0.05;

32  deltaz 0.05;

33  

34  lx #calc "$xmax - $xmin";

35  ly #calc "$ymax - $ymin";

36  lz #calc "$zmax – $zmin";

37  

38  xcells #calc "round(($lx)/($deltax))";

39  ycells #calc "round(($ly)/($deltay))";

40  zcells #calc "round(($lz)/($deltaz))";

41  

44  vertices

45  (

46  //BLOCK 0

47  ($xmin  $ymin  $zmin) //0

48  ($xmax  $ymin  $zmin) //1

49  ($xmax  $ymax  $zmin) //2

50  ($xmin  $ymax  $zmin) //3

51  ($xmin  $ymin  $zmax) //4

52  ($xmax  $ymin  $zmax) //5

53  ($xmax  $ymax  $zmax) //6

54  ($xmin  $ymax  $zmax) //7

66  );

blockMesh guided tutorials

The blockMeshDict dictionary. 

• In lines 34-40 we are doing inline calculations using the 

directive #calc. 

• Basically we are programming directly in the dictionary. 

OpenFOAM® will compile this function as it reads it.

• With inline calculations and codeStream you can access 

many OpenFOAM® functions from the dictionaries. 

• Inline calculations and codeStream are very convenient 

ways to parameterize dictionaries and program directly 

on the dictionaries.
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The blockMeshDict dictionary. 

• To do inline calculations using the directive #calc, we 

proceed as follows (we will use line 35 as example):

ly #calc "$ymax - $ymin";

• We first give a name to the new variable (ly), we then tell 

OpenFOAM® that we want to do an inline calculation 

(#calc), and then we do the inline calculation ("$ymax-

$ymin";).  Notice that the operation must be between 

double quotation marks.
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17  convertToMeters 1;

18  

19  xmin 0;

20  xmax 1;

21  ymin 0;

22  ymax 1;

23  zmin 0;

24  zmax 1;

25  

30  deltax 0.05;

31  deltay 0.05;

32  deltaz 0.05;

33  

34  lx #calc "$xmax - $xmin";

35  ly #calc "$ymax - $ymin";

36  lz #calc "$zmax – $zmin";

37  

38  xcells #calc "round(($lx)/($deltax))";

39  ycells #calc "round(($ly)/($deltay))";

40  zcells #calc "round(($lz)/($deltaz))";

41  

44  vertices

45  (

46  //BLOCK 0

47  ($xmin  $ymin  $zmin) //0

48  ($xmax  $ymin  $zmin) //1

49  ($xmax  $ymax  $zmin) //2

50  ($xmin  $ymax  $zmin) //3

51  ($xmin  $ymin  $zmax) //4

52  ($xmax  $ymin  $zmax) //5

53  ($xmax  $ymax  $zmax) //6

54  ($xmin  $ymax  $zmax) //7

66  );



17  convertToMeters 1;

18  

19  xmin 0;

20  xmax 1;

21  ymin 0;

22  ymax 1;

23  zmin 0;

24  zmax 1;

25  

30  deltax 0.05;

31  deltay 0.05;

32  deltaz 0.05;

33  

34  lx #calc "$xmax - $xmin";

35  ly #calc "$ymax - $ymin";

36  lz #calc "$zmax – $zmin";

37  

38  xcells #calc "round(($lx)/($deltax))";

39  ycells #calc "round(($ly)/($deltay))";

40  zcells #calc "round(($lz)/($deltaz))";

41  

44  vertices

45  (

46  //BLOCK 0

47  ($xmin  $ymin  $zmin) //0

48  ($xmax  $ymin  $zmin) //1

49  ($xmax  $ymax  $zmin) //2

50  ($xmin  $ymax  $zmin) //3

51  ($xmin  $ymin  $zmax) //4

52  ($xmax  $ymin  $zmax) //5

53  ($xmax  $ymax  $zmax) //6

54  ($xmin  $ymax  $zmax) //7

66  );

blockMesh guided tutorials

The blockMeshDict dictionary. 

• In lines lines 34-36, we use inline calculations to 

compute the length in each direction.

• Then we compute the number of cells to be used in each 

direction (lines 38-40).

• To compute the number of cells we use as cell spacing 

the values declared in lines 30-32.

• By proceeding in this way, we can compute automatically 

the number of cells needed in each direction according to 

the desired cell spacing.
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The blockMeshDict dictionary. 

• In the vertices section (lines 44-66), we define the vertex 

coordinates of the geometry. 

• In this case, there are eight vertices defining a 3D block. 

• Remember, OpenFOAM® always uses 3D meshes, even 

if the simulation is 2D. For 2D meshes, you only add one 

cell in the third dimension. 

• Notice that the vertex numbering starts from 0 (as the 

counters in c++). This numbering applies for blocks as 

well.
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17  convertToMeters 1;

18  

19  xmin 0;

20  xmax 1;

21  ymin 0;

22  ymax 1;

23  zmin 0;

24  zmax 1;

25  

30  deltax 0.05;

31  deltay 0.05;

32  deltaz 0.05;

33  

34  lx #calc "$xmax - $xmin";

35  ly #calc "$ymax - $ymin";

36  lz #calc "$zmax – $zmin";

37  

38  xcells #calc "round(($lx)/($deltax))";

39  ycells #calc "round(($ly)/($deltay))";

40  zcells #calc "round(($lz)/($deltaz))";

41  

44  vertices

45  (

46  //BLOCK 0

47  ($xmin  $ymin  $zmin) //0

48  ($xmax  $ymin  $zmin) //1

49  ($xmax  $ymax  $zmin) //2

50  ($xmin  $ymax  $zmin) //3

51  ($xmin  $ymin  $zmax) //4

52  ($xmax  $ymin  $zmax) //5

53  ($xmax  $ymax  $zmax) //6

54  ($xmin  $ymax  $zmax) //7

66  );
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The blockMeshDict dictionary. 

• In lines 68-71, we define the block topology, hex means that it is a structured hexahedral block.  In this case, 

we are generating a rectangular mesh.

• In line 70, (0 1 2 3 4 5 6 7) are the vertices used to define the block (and yes, the order is important).  Each 

hex block is defined by eight vertices, in sequential order.  Where the first vertex in the list represents the 

origin of the coordinate system (vertex 0 in this case).

• ($xcells $ycells $zcells) is the number of mesh cells in each direction (X Y Z).  Notice that we are using 

macro syntax, and we compute the values using inline calculations.

• simpleGrading (1 1 1) is the grading or mesh stretching in each direction (X Y Z), in this case the mesh is 

uniform.  We will deal with mesh grading/stretching in the next case.

337

68  blocks

69  (

70  hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1)

71  );

72  

73  edges

74  (

75  

76  );
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68  blocks

69  (

70  hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1)

71  );

72  

73  edges

74  (

75  

76  );

The blockMeshDict dictionary. 

• Let us talk about the block ordering hex (0 1 2 3 4 5 6 7), which is extremely important.

• hex blocks are defined by eight vertices in sequential order.  Where the first vertex in the list represents the 

origin of the coordinate system (vertex 0 in this case).

• Starting from this vertex, we construct the block topology.  So in this case, the first part of the block is made up 

by vertices 0 1 2 3 and the second part of the block is made up by vertices 4 5 6 7 (notice that we start from 

vertex 4 which is the projection in the Z-direction of vertex 0).

• In this case, the vertices are ordered in such a way that if we look at the screen/paper (-z direction), the 

vertices rotate counter-clockwise.

• If you add a second block, you must identify the first vertex and starting from it, you should construct the block 

topology. In this case, you will need to merges faces, you will find more information about merging face in the 

supplement lectures.
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The blockMeshDict dictionary. 

• Edges, are constructed from the vertices definition.

• Each edge joining two vertices is assumed to be straight by default.

• The user can specify any edge to be curved by entries in the section edges.

• Possible options are Bspline, arc, line, polyline, project, projectCurve, spline.

• For example, to define an arc we first define the vertices to be connected to form an edge and then we give an 

interpolation point.

• To define a polyline we first define the vertices to be connected to form an edge and then we give a list of  the 

coordinates of the interpolation points.

• In this case and as we do not specify anything, all edges are assumed to be straight lines.
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68  blocks

69  (

70  hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1)

71  );

72  

73  edges

74  (

75  

76  );
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78  boundary

79  (

80  top

81  {

82  type wall;

83  faces

84  (

85  (3 7 6 2)

86  );

87  }

88  left

89  {

90  type wall;

91  faces

92  (

93  (0 4 7 3)

94  );

95  }

96  right

97  {

98  type wall;

99  faces

100 (

101 (2 6 5 1)

102 );

103 }

104 bottom

105 {

106 type wall;

107 faces

108 (

109 (0 1 5 4)

110 );

111 }

The blockMeshDict dictionary. 

• In the section boundary, we define all the patches where 

we want to apply boundary conditions.

• This step is of paramount importance, because if we do 

not define the surface patches, we will not be able to 

apply the boundary conditions to individual surface 

patches.
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78  boundary

79  (

80  top

81  {

82  type wall;

83  faces

84  (

85  (3 7 6 2)

86  );

87  }

88  left

89  {

90  type wall;

91  faces

92  (

93  (0 4 7 3)

94  );

95  }

96  right

97  {

98  type wall;

99  faces

100 (

101 (2 6 5 1)

102 );

103 }

104 bottom

105 {

106 type wall;

107 faces

108 (

109 (0 1 5 4)

110 );

111 }

The blockMeshDict dictionary. 

• In lines 80-87 we define a boundary patch.

• In line 80 we define the patch name top (the name is 

given by the user). 

• In line 82 we give a base type to the surface patch. In 

this case wall (do not worry we are going to talk about 

this later). 

• In line 85 we give the connectivity list of the vertices that 

made up the surface patch or face, that is, (3 7 6 2). 

• Have in mind that the vertices need to be neighbors and 

it does not matter if the ordering is clockwise or 

counterclockwise.
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78  boundary

79  (

80  top

81  {

82  type wall;

83  faces

84  (

85  (3 7 6 2)

86  );

87  }

88  left

89  {

90  type wall;

91  faces

92  (

93  (0 4 7 3)

94  );

95  }

96  right

97  {

98  type wall;

99  faces

100 (

101 (2 6 5 1)

102 );

103 }

104 bottom

105 {

106 type wall;

107 faces

108 (

109 (0 1 5 4)

110 );

111 }

The blockMeshDict dictionary. 

• Have in mind that the vertices need to be neighbors and 

it does not matter if the ordering is clockwise or 

counterclockwise.

• Remember, faces are defined by a list of 4 vertex 

numbers, e.g., (3 7 6 2).

• In lines 88-95 we define the patch left.

• In lines 96-103 we define the patch right.

• In lines 104-11 we define the patch bottom.
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112 front

113 {

114 type wall;

115 faces

116 (

117 (4 5 6 7)

118 );

119 }

120 back

121 {

122 type wall;

123 faces

124 (

125 (0 3 2 1)

126 );

127 }

128 );

129 

130 mergePatchPairs

131 (

132 

133 );

The blockMeshDict dictionary. 

• In lines 112-119 we define the patch front.

• In lines 120-127 we define the patch back.

• You can also group many faces into one patch, for 

example, instead of creating the patches front and back, 

you can group them into a single patch named 

backAndFront, as follows,

backAndFront

{

type wall;

faces

(

(4 5 6 7)

(0 3 2 1)

);

}
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112 front

113 {

114 type wall;

115 faces

116 (

117 (4 5 6 7)

118 );

119 }

120 back

121 {

122 type wall;

123 faces

124 (

125 (0 3 2 1)

126 );

127 }

128 );

129 

130 mergePatchPairs

131 (

132 

133 );

The blockMeshDict dictionary. 

• We can merge blocks in the section mergePatchPairs 

(lines 130-133).  

• The block patches to be merged must be first defined in 
the boundary list, blockMesh then connect the two 

blocks.

• In this case, as we have one single block there is no 

need to merge patches.
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The blockMeshDict dictionary. 

• To sum up, the blockMeshDict dictionary 

generates a single block with: 

• X/Y/Z dimensions: 1.0/1.0/1.0

• As the cell spacing in all directions is 

defined as 0.05, it will use the following 

number of cells in the X, Y and Z directions: 

20 x 20 x 20 cells. 

• One single hex block with straight lines.

• Six patches of base type wall, namely, left, 

right, top, bottom, front and back.

• The information regarding the patch base type 
and patch name is saved in the file boundary. 

Feel free to modify this file to fit your needs.

• Remember to use the utility checkMesh to check 

the quality of the mesh and look for topological 

errors. 

• Topological errors must be repaired.
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The constant/polyMesh/boundary dictionary
18    6

19 (

20 top 

21 { 

22 type wall;

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 22800;

26 }

27 left

28 { 

29 type wall;

30 inGroups 1(wall);

31 nFaces 400;

32 startFace 23200;

33 }

34 right

35 { 

36 type empty;

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 23600;

40 }

41 bottom

42 { 

43 type wall;

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 24000;

47 }

48 front

49 { 

50 type wall;

51 inGroups 1(wall);

52 nFaces 400;

53 startFace 24400;

54 }

55 back

56 { 

57 type empty;

58 inGroups 1(wall);

59 nFaces 400;

60 startFace 24800;

61 }

62 )

• First of all, this file is automatically generated after you 

create the mesh or you convert it from a third-party format. 

• In this file, the geometrical information related to the base 

type patch of each boundary of the domain is specified.

• The base type boundary condition is the actual surface 

patch where we are going to apply a primitive type 

boundary condition (or numerical boundary condition).

• The primitive type boundary condition assign a field value 

to the surface patch.

• You define the numerical type patch (or the value of the 
boundary condition), in the directory 0 or time directories.

• The name and base type of the patches was defined in the 
dictionary blockMeshDict in the section boundary.

• You can change the name if you do not like it.  Do not use 

strange symbols or white spaces.

• You can also change the base type.  For instance, you can 

change the type of the patch top from wall to patch.
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The constant/polyMesh/boundary dictionary
18    6

19 (

20 top 

21 { 

22 type wall;

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 22800;

26 }

27 left

28 { 

29 type wall;

30 inGroups 1(wall);

31 nFaces 400;

32 startFace 23200;

33 }

34 right

35 { 

36 type empty;

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 23600;

40 }

41 bottom

42 { 

43 type wall;

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 24000;

47 }

48 front

49 { 

50 type wall;

51 inGroups 1(wall);

52 nFaces 400;

53 startFace 24400;

54 }

55 back

56 { 

57 type empty;

58 inGroups 1(wall);

59 nFaces 400;

60 startFace 24800;

61 }

62 )

• If you do not define the boundary patches in the dictionary 
blockMeshDict, they are grouped automatically in a default 

group named defaultFaces of type empty.

• For instance, if you do not assign a base type to the patch 

front, it will be grouped as follows:

defaultFaces

{ 

type empty;

inGroups 1(empty);

nFaces 400;

startFace 24800;

}

• Remember, you can manually change the name and type.
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The constant/polyMesh/boundary dictionary
18    6

19 (

20 top 

21 { 

22 type wall;

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 22800;

26 }

27 left

28 { 

29 type wall;

30 inGroups 1(wall);

31 nFaces 400;

32 startFace 23200;

33 }

34 right

35 { 

36 type empty;

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 23600;

40 }

41 bottom

42 { 

43 type wall;

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 24000;

47 }

48 front

49 { 

50 type wall;

51 inGroups 1(wall);

52 nFaces 400;

53 startFace 24400;

54 }

55 back

56 { 

57 type empty;

58 inGroups 1(wall);

59 nFaces 400;

60 startFace 24800;

61 }

62 )

Number of surface patches

In the list bellow there must be 6 patches 

definition.

bottom

left

back

top

right

front
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The constant/polyMesh/boundary dictionary
18    6

19 (

20 top 

21 { 

22 type wall;

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 22800;

26 }

27 left

28 { 

29 type wall;

30 inGroups 1(wall);

31 nFaces 400;

32 startFace 23200;

33 }

34 right

35 { 

36 type wall;

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 23600;

40 }

41 bottom

42 { 

43 type wall;

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 24000;

47 }

48 front

49 { 

50 type wall;

51 inGroups 1(wall);

52 nFaces 400;

53 startFace 24400;

54 }

55 back

56 { 

57 type wall;

58 inGroups 1(wall);

59 nFaces 400;

60 startFace 24800;

61 }

62 )

Name and type of the surface patches

• The name and base type of the patch is given 

by the user.

• In this case the name and base type was 
assigned in the dictionary blockMeshDict.

• You can change the name if you do not like it.  

Do not use strange symbols or white spaces.

• You can also change the base type.  For 

instance, you can change the type of the 

patch top from wall to patch.
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The constant/polyMesh/boundary dictionary
18    6

19 (

20 top 

21 { 

22 type wall;

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 22800;

26 }

27 left

28 { 

29 type wall;

30 inGroups 1(wall);

31 nFaces 400;

32 startFace 23200;

33 }

34 right

35 { 

36 type wall;

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 23600;

40 }

41 bottom

42 { 

43 type wall;

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 24000;

47 }

48 front

49 { 

50 type wall;

51 inGroups 1(wall);

52 nFaces 400;

53 startFace 24400;

54 }

55 back

56 { 

57 type wall;

58 inGroups 1(wall);

59 nFaces 400;

60 startFace 24800;

61 }

62 )

inGroups keyword

• This is optional. 

• You can erase this information safely.

• It is used to group patches during visualization 

in ParaView/paraFoam.  If you open this mesh 

in paraFoam you will see that there are two 

groups, namely: wall and empty.

• As usual, you can change the name.

• If you want to put  a surface patch in two 

groups, you can proceed as follows: 

2(wall wall1)

In this case the surface patch belongs to the 

group wall (which can have another patch) 

and the group wall1
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The constant/polyMesh/boundary dictionary
18    6

19 (

20 top 

21 { 

22 type wall;

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 22800;

26 }

27 left

28 { 

29 type wall;

30 inGroups 1(wall);

31 nFaces 400;

32 startFace 23200;

33 }

34 right

35 { 

36 type wall;

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 23600;

40 }

41 bottom

42 { 

43 type wall;

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 24000;

47 }

48 front

49 { 

50 type wall;

51 inGroups 1(wall);

52 nFaces 400;

53 startFace 24400;

54 }

55 back

56 { 

57 type wall;

58 inGroups 1(wall);

59 nFaces 400;

60 startFace 24800;

61 }

62 )

nFaces and startFace keywords

• Unless you know what are you doing,  you do 

not need to change this information.

• Basically, this is telling you the starting face 

and ending face of the patch.

• This information is created automatically when 

generating the mesh or converting the mesh.
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Running the case

• To generate the mesh, in the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> checkMesh

4. $> paraFoam 

• You can run the rest of the cases following the same steps.

• If you want to visualize the blocking topology, type in the terminal

1. $> paraFoam -block
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353

Final remarks on blockMesh

• For the moment, we will limit the use of blockMesh to single-block mesh topologies, which are 

used to run some simple cases and are the starting point for snappyHexMesh.

• But have in mind that you can do more elaborated meshes, however, it requires careful setup of 

the input dictionary. 

• Have in mind that it can be really tricky to generate multi-block meshes with curve edges.

• With the training material, you will find a set of supplement slides where we explain how to 

create multi-block meshes, add stretching, and how to define curve edges.

Single-block mesh with multi-stretching Multi-block mesh with curved edges and 

multi-stretching
Multi-block mesh with face merging



Roadmap

1. Meshing preliminaries

2. What is a good mesh?

3. Mesh quality assessment in OpenFOAM®

4. Mesh generation using blockMesh.

5. Mesh generation using snappyHexMesh.

6. snappyHexMesh guided tutorials.

7. Mesh conversion 

8. Geometry and mesh manipulation utilities
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snappyHexMesh
• “Automatic split hex mesher. Refines and snaps to surface.”

• For complex geometries, the mesh generation utility snappyHexMesh can be used. 

• The snappyHexMesh utility generates 3D meshes containing hexahedra and split-

hexahedra from a triangulated surface geometry in Stereolithography (STL) format.  

• The mesh is generated from a dictionary file named snappyHexMeshDict located in 

the system directory and a triangulated surface geometry file located in the directory 
constant/triSurface.

Mesh generation using snappyHexMesh
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snappyHexMesh workflow

Mesh generation using snappyHexMesh

• To generate a mesh with snappyHexMesh we proceed as follows:

• Generation of a background or base mesh.

• Geometry definition.

• Generation of a castellated mesh or cartesian mesh.

• Generation of a snapped mesh or body fitted mesh.

• Addition of layers close to the surfaces or boundary layer meshing.

• Check/enforce mesh quality.

blockMesh or external mesher

OpenFOAM mesh

snappyHexMesh

Background mesh Geometry (STL file)
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snappyHexMesh workflow – Background mesh

• The background or base mesh can be generated using blockMesh or an 

external mesher.

• The following criteria must be observed when creating the background 

mesh:

• The mesh must consist purely of hexes.

• The cell aspect ratio should be approximately 1, at least near the 

STL surface.

• There must be at least one intersection of a cell edge with the 

STL surface.

Mesh generation using snappyHexMesh

blockMesh or external mesher

OpenFOAM mesh

snappyHexMesh

Background mesh Geometry (STL file)
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snappyHexMesh workflow – Geometry (STL file)

• The STL geometry can be obtained from any geometry modeling tool.

• The STL file can be made up of a single surface describing the geometry, or 

multiple surfaces that describe the geometry.

• In the case of a STL file with multiple surfaces, we can use local refinement 

in each individual surface.  This gives us more control when generating the 

mesh.

• The STL geometry is always located in the directory 
constant/triSurface

Mesh generation using snappyHexMesh

blockMesh or external mesher

OpenFOAM mesh

snappyHexMesh

Background mesh Geometry (STL file)
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snappyHexMesh workflow

• The meshing utility snappyHexMesh reads the dictionary 

snappyHexMeshDict located in the directory system.

• The castellation, snapping, and boundary layer meshing steps are controlled 
by the dictionary snappyHexMeshDict.

• The final mesh is always located in the directory
constant/polyMesh

Mesh generation using snappyHexMesh

blockMesh or external mesher

OpenFOAM mesh

snappyHexMesh

Background mesh Geometry (STL file)
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snappyHexMesh workflow

• All the volume and surface refinement is done in reference to the 

background or base mesh.

Base cell – RL 0 RL 1 RL 2

* RL = refinement level

and so on …

Mesh generation using snappyHexMesh

Note:

• In 2D each quad is subdivided in 4 

quads. 

• In 3D each hex is subdivided in 8 

hexes.
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snappyHexMesh workflow

• The process of generating a mesh using snappyHexMesh will be described using this figure. 

• The objective is to mesh a rectangular shaped region (shaded grey in the figure) surrounding an object 

described by a STL surface (shaded green in the figure).

• This is an external mesh (e.g. for external aerodynamics). 

• You can also generate an internal mesh (e.g. flow inside a pipe).

Mesh generation using snappyHexMesh
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Step 1.  Creating the background hexahedral mesh

• Before snappyHexMesh is executed the user must create a background mesh of hexahedral cells that fills the entire region as 

shown in the figure. This can be done by using blockMesh or any other mesher.

• The following criteria must be observed when creating the background mesh:

• The mesh must consist purely of hexes.

• The cell aspect ratio should be approximately 1, at least near the STL surface.

• There must be at least one intersection of a cell edge with the STL surface.

snappyHexMesh workflow

Mesh generation using snappyHexMesh
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Step 2.  Cell splitting at feature edges 

• Cell splitting is performed according to the specification supplied by the user in the castellatedMeshControls sub-dictionary in 
the snappyHexMeshDict dictionary. 

• The splitting process begins with cells being selected according to specified edge features as illustrated in the figure.
• The feature edges can be extracted from the STL geometry file using the utility surfaceFeatures.

snappyHexMesh workflow

Mesh generation using snappyHexMesh
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Step 3.  Cell splitting at surfaces

• Following feature edges refinement, cells are selected for splitting in the locality of specified surfaces as illustrated in the figure. 

• The surface refinement (splitting) is performed according to the specification supplied by the user in the 
refinementMeshControls in the castellatedMeshControls sub-dictionary in the snappyHexMeshDict dictionary.

• Notice that we added additional internal cells splitting. This new cell region can be used to define a source term, or it can be put 

into motion.

snappyHexMesh workflow

Mesh generation using snappyHexMesh

Additional internal cells 

splitting
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Step 4.  Cell removal

• Once the feature edges and surface splitting is complete, a process of cell removal begins. 

• The region in which cells are retained are simply identified by a location point within the region, specified by the locationInMesh
keyword in the castellatedMeshControls sub-dictionary in the snappyHexMeshDict dictionary.

• Cells are retained if, approximately speaking, 50% or more of their volume lies within the region.

snappyHexMesh workflow

Mesh generation using snappyHexMesh

Additional internal cells 

splitting
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snappyHexMesh workflow

Mesh generation using snappyHexMesh

Step 5.  Cell splitting in specified regions

• Those cells that lie within one or more specified volume regions can be further split by a region (in the figure, the rectangular 

region within the red rectangle). 

• The information  related to the refinement of the volume regions is supplied by the user in the refinementRegions block in the 
castellatedMeshControls sub-dictionary in the snappyHexMeshDict dictionary.

• This is a valid castellated or cartesian mesh that can be used for a simulation.

Additional internal cells 

splitting
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Step 6.  Snapping to surfaces

• After deleting the cells in the region specified and refining the volume mesh, the points are snapped on the surface to create a

conforming mesh.
• The snapping is controlled by the user supplied information in the snapControls sub-dictionary in snappyHexMeshDict.

• Sometimes, the default snapControls options are not enough, so you will need to adjust the values to get a better mesh (not 
guarantee). It is advisable to save the intermediate steps with a high writing precision (controlDict).

• This is a valid snapped or body fitted mesh that can be used for a simulation.

snappyHexMesh workflow

Mesh generation using snappyHexMesh

Additional internal cells 

splitting
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Step 7.  Mesh layers

• The mesh output from the snapping stage it is suitable for simulation, although it can produce some irregular cells along 

boundary surfaces. 

• There is an optional stage of the meshing process which introduces boundary layer meshing in selected parts of the mesh. 
• This information is supplied by the user in the addLayersControls sub-dictionary in the snappyHexMeshDict dictionary.

• This is the final step of the mesh generation process using snappyHexMesh.

• This is a valid body fitted mesh with boundary layer meshing, that can be used for a simulation.

snappyHexMesh workflow

Mesh generation using snappyHexMesh

Additional internal cells 

splitting
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Mesh generation using snappyHexMesh

snappyHexMesh in action
www.wolfdynamics.com/wiki/shm/ani.gif
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• Let us study the snappyHexMesh dictionary in 

details.

• We are going to work with the case we just saw in 

action.

• You will find this case in the directory:

Mesh generation using snappyHexMesh

$PTOFC/101SHM/M101_WD
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castellatedMesh true; //or false

snap true; //or false

addLayers true; //or false

geometry

{

...

...

}

castellatedMeshControls

{

...

...

}

snapControls

{

...

...

}

addLayersControls

{

...

...

}

meshQualityControls

{

...

...

}

Let us explore the snappyHexMeshDict dictionary. 

• Open the dictionary snappyHexMeshDict with your favorite text 

editor (we will use gedit).

• The snappyHexMesh dictionary is made up of five sections, namely: 

geometry, castellatedMeshControls, snapControls, 

addLayersControls and meshQualityControls.  Each section 

controls a step of the meshing process.

• In the first three lines we can turn off and turn on the different 

meshing steps.  For example, if we want to generate a body fitted 

mesh with no boundary layer we should proceed as follows:

castellatedMesh true;

snap true;

addLayers false; 

Mesh generation using snappyHexMesh

Definition of geometry entities 

to be used for meshing

Definition of feature, surface 

and volume mesh refinement

Definition of surface mesh 

snapping and advanced 

parameters

Definition of boundary layer 

meshing and advanced 

parameters

Definition of mesh quality 

metrics
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castellatedMesh true; //or false

snap true; //or false

addLayers true; //or false

geometry

{

...

...

}

castellatedMeshControls

{

...

...

}

snapControls

{

...

...

}

addLayersControls

{

...

...

}

meshQualityControls

{

...

...

}

Let us explore the snappyHexMeshDict dictionary. 

• Have in mind that there are more than 70 

parameters to control in 
snappyHexMeshDict dictionary.

• Adding the fact that there is no native GUI, it 

can be quite tricky to control the mesh 

generation process.

• Nevertheless, snappyHexMesh generates 

very good hexa dominant meshes.

• Hereafter, we will only comment on the most 

important parameters.

• The parameters that you will find in the 
snappyHexMeshDict dictionaries distributed 

with the tutorials, in our opinion are robust and 

will work most of the times.

It can be located In a separated file

Mesh generation using snappyHexMesh
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geometry

{

wolfExtruded.stl

{

type triSurfaceMesh;

name wolf;

regions

{

wolflocal

{

name wolf_wall;

}                   

}

}

box

{

type searchableBox;

min (-100.0 -120.0 -50.0 );

max (100.0 120.0 150.0 );

}

sphere

{

type searchableSphere;

centre (120.0 -100.0 50.0 );

radius 40.0;

}

}

Let us explore the snappyHexMeshDict dictionary. 

• In this section we read in the STL geometry.  Remember, the input 
geometry is always located in the directory constant/triSurface

• We can also define geometrical entities that can be used to refine the 

mesh, create regions, or generate baffles.

• You can add multiple STL files.

• If you do not give a name to the surface, it will take the name of the 

STL file.

• The geometrical entities are created inside snappyHexMesh.

Note 1:

If you want to know what geometrical entities are available, just 

misspelled something in the type keyword.

Note 1

Mesh generation using snappyHexMesh

STL file to read

Name of the surface inside snappyHexMesh

Use this option if you have a STL with multiple patches defined

This is the name of the region or surface patch in the STL 

User-defined patch name.  This is the final name of the patch

Name of geometrical entity

Name of geometrical entity

Geometry controls section
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castellatedMeshControls

{

//Refinement parameters

maxLocalCells  100000;

maxGlobalCells 2000000;

nCellsBetweenLevels 3;

...

...

//Explicit feature edge refinement

features

(

...

...

);

//Surface based refinement

refinementSurfaces

{

...

...

}

//Region-wise refinement

refinementRegions

{

...

...

}

//Mesh selection

locationInMesh (-100.0 0.0 50.0 );

}

Let us explore the snappyHexMeshDict dictionary. 

• In the castellatedMeshControls section, we define the global 

refinement parameters, explicit feature edge refinement, 

surface-based refinement, region-wise refinement and the 

material point. 

• In this step, we are generating the castellated mesh.

Note 1:

Maximum number of cells in the domain. If the mesher reach this 

number, it will not add more cells.

Note 2:

The material point indicates where we want to create the mesh, 

that is, inside or outside the body to be meshed.

Dictionary block

Dictionary block

Dictionary block

Note 2

Mesh generation using snappyHexMesh

Castellated mesh controls section

Note 1
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castellatedMeshControls

{

// Refinement parameters

maxLocalCells  100000;

maxGlobalCells 2000000;

minRefinementCells 0;

maxLoadUnbalance 0.10;

nCellsBetweenLevels 3;

//Local curvature and 

//feature angle refinement

resolveFeatureAngle 30;

planarAngle 30;

allowFreeStandingZoneFaces true;

//Explicit feature edge refinement

features

(

{

file "wolfExtruded.eMesh";                

level 2;

}

);

...

...

...

}

Note 1:

This parameter controls the transition between cell 

refinement levels.

Note 2:

This parameter controls the local curvature refinement.  The 

higher the value, the less features it captures.  For example, 

if you use a value of 100 it will not add refinement in high 

curvature areas. It also controls edge feature snapping; high 

values will not resolve sharp angles in surface intersections.

Note 3:

This file is automatically created when you use the utility 
surfaceFeatures. The file is located in the directory 

constant/triSurface

Note 2

Let us explore the snappyHexMeshDict dictionary. 

Note 1

Dictionary block

Mesh generation using snappyHexMesh

Castellated mesh controls section

Note 3
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castellatedMeshControls

{

...

...

...

//Surface based refinement

refinementSurfaces

{

//wolf was defined in the geometry section

wolf   

{

level (1 1); //Global refinement

regions

{

wolflocal

{

level (2 4);

patchInfo

{

type wall;

}                  

}

}

}

...

...

}

Note 1:

The surface wolf was defined in the geometry section.

Note 2:

The region wolflocal was defined in the geometry section.

Note 3:

Named region in the STL file. This refinement is local.

To use the surface refinement in the regions, the local

regions must exist in STL file.  We created a pointer to this 

region in the geometry section.

Note 4:

You can only define patches of type wall or patch.

Let us explore the snappyHexMeshDict dictionary. 

Note 3

Note 4

Local refinement

Dictionary block

Note 2

Mesh generation using snappyHexMesh

Castellated mesh controls section

Note 1
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castellatedMeshControls

{

//Surface based refinement

refinementSurfaces

{

...

...

...

//This surface or geometrical entity

//was defined in geometry section

sphere   

{

level (1 1);

faceZone face_inner;

cellZone cell_inner;

cellZoneInside inside;

//faceType internal;

}

}

...

...

}

Let us explore the snappyHexMeshDict dictionary. 

Note 1:

Optional specification of what to do with faceZone faces:

internal: keep them as internal faces (default)

baffle: create baffles from them. This gives more freedom in mesh

motion

boundary: create free-standing boundary faces (baffles but

without the shared points)

e.g., faceType internal;

Dictionary block

Mesh generation using snappyHexMesh

Castellated mesh controls section

Note 1

Name of faceZone

Create internal faces from faceZone

Uncomment to create the internal faceZone

Create inner cellZone

Name of cellZone
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castellatedMeshControls

{

...

...

...

//Region-wise refinement

refinementRegions

{

//This region or geometrical entity

//was defined in the geometry section

box  

{

mode inside;

levels  (( 1 1 ));

}

}

//Mesh selection

locationInMesh (-100.0 0.0 50.0 );

}

Let us explore the snappyHexMeshDict dictionary. 

Dictionary block

Note 1

Note 1:

This region or geometrical entity was created in the geometry section.

Mesh generation using snappyHexMesh

Castellated mesh controls section
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castellatedMeshControls

{

...

...

...

//Region-wise refinement

refinementRegions

{

//This region or geometrical entity

//was defined in the geometry section

box  

{

mode inside;

levels  (( 1 1 ));

}

}

//Mesh selection

locationInMesh (-100.0 0.0 50.0 );

}

This point defines where do you want the mesh.

Can be internal mesh or external mesh.

• If the point is inside the STL it is an internal mesh.

• If the point is inside the background mesh and outside the 

STL it is an external mesh.

Let us explore the snappyHexMeshDict dictionary. 

Dictionary block

Mesh generation using snappyHexMesh

Castellated mesh controls section

At this point we have a valid mesh (cartesian)
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snapControls

{

//Number of patch smoothing iterations 

//before finding correspondence to surface

nSmoothPatch 3;

tolerance 2.0;

//- Number of mesh displacement relaxation 

//iterations.

nSolveIter 100;

//- Maximum number of snapping relaxation 

//iterations. Should stop before upon 

//reaching a correct mesh.

nRelaxIter 10;

// Feature snapping

//Number of feature edge snapping iterations.

nFeatureSnapIter 10;

//Detect (geometric only) features by

//sampling the surface (default=false).

implicitFeatureSnap false;

// Use castellatedMeshControls::features

// (default = true)

explicitFeatureSnap true;

multiRegionFeatureSnap false;

}

Let us explore the snappyHexMeshDict dictionary. 

Note 1

Note 2

Mesh generation using snappyHexMesh

Snap mesh controls section

Note 1:

The higher the value the better the body fitted mesh. The default value 

is 30.  If you are having problems with the mesh quality (related to the 

snapping step), try to increase this value to 300. Have in mind that this 

will increase the meshing time.

Note 2:

Increase this value to improve the quality of the body fitted mesh.

Note 3:

Increase this value to improve the quality of the edge features.

• In this step, we are generating the body fitted mesh.

Note 3
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addLayersControls

{

//Global parameters

relativeSizes true;

expansionRatio 1.2;

finalLayerThickness 0.5;

minThickness 0.01;

layers

{

wolf_wall

{

nSurfaceLayers 3;

//Local parameters

//expansionRatio      1.3;

//finalLayerThickness 0.3;

//minThickness        0.1;

}

}

// Advanced settings

nGrow 0;

featureAngle 130;

maxFaceThicknessRatio 0.5;

nSmoothSurfaceNormals 1;

nSmoothThickness 10;

minMedianAxisAngle 90;

maxThicknessToMedialRatio 0.3;

nSmoothNormals 3;

slipFeatureAngle 30;

nRelaxIter 5;

nBufferCellsNoExtrude 0;

nLayerIter 50;

nRelaxedIter 20;

}

Let us explore the snappyHexMeshDict dictionary. 

Note 1:

In this section we select the patches where we want to add the 

layers.  We can add multiple patches (if they exist).

Note 2:

This patch was created in the geometry section.

Note 3:

Specification of feature angle above which layers are collapsed 

automatically.

• In this step, we are generating the boundary layer mesh.

Mesh generation using snappyHexMesh

Boundary layer mesh controls section

Note 1

Note 2

Note 3
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meshQualityControls

{

maxNonOrtho 75;

maxBoundarySkewness 20;

maxInternalSkewness 4;

maxConcave 80;

minVol 1E-13;

//minTetQuality  1e-15;

minTetQuality -1e+30;

minArea -1;

minTwist 0.02;

minDeterminant 0.001;

minFaceWeight 0.05;

minVolRatio 0.01;

minTriangleTwist -1;

minFlatness 0.5;

nSmoothScale 4;

errorReduction 0.75;

}

Let us explore the snappyHexMeshDict dictionary. 

Note 1:

Maximum non-orthogonality angle.

Note 2:

Maximum skewness angle.

• During the mesh generation process, the mesh quality is continuously 

monitored. 
• The mesher snappyHexMesh will try to generate a mesh using the 

mesh quality parameters defined by the user.

• If a mesh motion or topology change introduces a poor quality cell or 

face the motion or topology change is undone to revert the mesh back 

to a previously valid error free state.

Note 1

Note 2

Mesh generation using snappyHexMesh

Mesh quality controls section
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debugFlags

(

// write intermediate meshes

mesh 

// write current mesh intersections as .obj files

intersections

// write information about explicit feature edge

// refinement

featureSeeds 

// write attraction as .obj files

attraction

// write information about layers

layerInfo

);

writeFlags

(

// write volScalarField with cellLevel for 

// postprocessing

scalarLevels

// write cellSets, faceSets of faces in layer

layerSets 

// write volScalarField for layer coverage

layerFields

);

Let us explore the snappyHexMeshDict dictionary. 

• At the end of the dictionary you will find the sections: debugFlags 

and writeFlags

• By default they are commented.  If you uncomment them you will 

enable debug information.

• debugFlags and writeFlags will produce a lot of outputs that you 

can use to post process and troubleshoot the different steps of 

the meshing process.

Mesh generation using snappyHexMesh

Mesh debug and write controls sections
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Let us generate the mesh of the wolf dynamics logo. 

• This tutorial is located in the directory:

• $PTOFC/101SHM/M101_WD

• In this case we are going to generate a body fitted mesh with boundary layer.  This is an 

external mesh.

• Before generating the mesh take a look at the dictionaries and files that will be used.

• These are the dictionaries and files that will be used.

• system/snappyHexMeshDict

• system/surfaceFeaturesDict

• system/meshQualityDict

• system/blockMeshDict

• constant/triSurface/wolfExtruded.stl

• constant/triSurface/wolfExtruded.eMesh

• The file wolfExtruded.eMesh is generated after using the utility surfaceFeatures, which 

reads the dictionary surfaceFeaturesDict.

Mesh generation using snappyHexMesh
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• To generate the mesh, in the terminal window type:

Let us generate the mesh of the wolf dynamics logo. 

Mesh generation using snappyHexMesh

• To visualize the mesh, in the terminal window type:

• $> paraFoam

• Remember to use the VCR controls in paraView/paraFoam to visualize the 

mesh intermediate steps.

1. $> foamCleanTutorials

2. $> blockMesh

3. $> surfaceFeatures

4. $> snappyHexMesh 

5. $> checkMesh –latestTime
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Let us generate the mesh of the wolf dynamics logo. 

• In the case directory you will find the time folders 1, 2, and 3, which contain 

the castellated mesh, snapped mesh and boundary layer mesh respectively. 
In this case, snappyHexMesh automatically saved the intermediate steps.

• Before running the simulation, remember to transfer the solution from the 
latest mesh to the directory constant/polyMesh, in the terminal type:

Mesh generation using snappyHexMesh

1. $> cp 3/polyMesh/* constant/polyMesh

2. $> rm –rf 1

3. $> rm –rf 2

4. $> rm –rf 3

5. $> checkMesh –latestTime
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• If you want to avoid the additional steps of transferring the final mesh to the 
directory constant/polyMesh by not saving the intermediate steps, you 

can proceed as follows:

• $> snappyHexMesh –overwrite

• When you proceed in this way, snappyHexMesh automatically saves the 

final mesh in the directory constant/polyMesh. 

• Have in mind that you will not be able to visualize the intermediate steps.

• Also, you will not be able to restart the meshing process from a saved state 

(castellated or snapped mesh).

• Unless it is strictly necessary, from this point on we will not save the 

intermediate steps. 

Let us generate the mesh of the wolf dynamics logo. 

Mesh generation using snappyHexMesh
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The constant/polyMesh/boundary file

Mesh generation using snappyHexMesh

• At this point, we have a valid mesh to run a simulation. 

• Have in mind that before running the simulation you will need to set the boundary and initial 
conditions in the directory 0.

• Let us talk about the constant/polyMesh/boundary file,

• First of all, this file is automatically generated after you create the mesh or you convert it 

from a third-party format. 

• In this file, the geometrical information related to the base type patch of each boundary of 

the domain is specified.

• The base type boundary condition is the actual surface patch where we are going to apply 

a numerical type boundary condition.

• The numerical type boundary condition assign a field value to the surface patch (base 

type).

• You define the numerical type patch (or the value of the boundary condition), in the 
directory 0 or time directories.

• The name and base type of the patches was defined in the dictionaries blockMeshDict

and snappyHexMeshDict.

• You can change the name if you do not like it.  Do not use strange symbols or white 

spaces.

• You can also change the base type.  For instance, you can change the type of the patch 

maxY from wall to patch. 388
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18    9

19 (

20 minX 

21 { 

22 type wall;

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 466399;

26 }

27 maxX

28 { 

29 type wall;

30 inGroups 1(wall);

31 nFaces 400;

32 startFace 466799;

33 }

34 minY

35 { 

36 type empty;

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 467199;

40 }

41 maxY

42 { 

43 type wall;

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 467599;

47 }

48 minZ

49 { 

50 type wall;

51 inGroups 1(wall);

52 nFaces 400;

53 startFace 467999;

54 }

minY

minX

minZ

maxY

maxX

maxZ

wolf_wall

sphere

sphere_slave

Number of surface patches

In the list bellow there must be 9 patches 

definition.

The constant/polyMesh/boundary file
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18    9

19 (

20 minX 

21 { 

22 type wall;

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 466399;

26 }

27 maxX

28 { 

29 type wall;

30 inGroups 1(wall);

31 nFaces 400;

32 startFace 466799;

33 }

34 minY

35 { 

36 type empty;

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 467199;

40 }

41 maxY

42 { 

43 type wall;

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 467599;

47 }

48 minZ

49 { 

50 type wall;

51 inGroups 1(wall);

52 nFaces 400;

53 startFace 467999;

54 }

Name and type of the surface patches

• The name and base type of the patch is given by the user.

• In this case the name and base type was assigned in the 
dictionaries blockMeshDict and snappyHexMeshDict. 

• You can change the name if you do not like it.  Do not use 

strange symbols or white spaces.

• You can also change the base type.  For instance, you can 

change the type of the patch maxY from wall to patch.

nFaces and startFace keywords

• Unless you know what are you doing,  you do not            

need to change this information.

• Basically, this is telling you the starting face and ending face 

of the patch.

• This information is created automatically when generating 

the mesh or converting the mesh.

Name

Type

nFaces

startFace

The constant/polyMesh/boundary file
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55 maxZ

56 { 

57 type wall;

58 inGroups 1(wall);

59 nFaces 400;

60 startFace 466399;

61 }

62 wolf_wall

63 { 

64 type wall;

65 inGroups 1(wall);

66 nFaces 400;

67 startFace 466799;

68 }

69 sphere

70 { 

71 type empty;

72 inGroups 1(wall);

73 nFaces 400;

74 startFace 467199;

75 }

76 sphere_slave

77 { 

78 type wall;

79 inGroups 1(wall);

80 nFaces 400;

81 startFace 467599;

82 }

83 )

Name and type of the surface patches

• The name and base type of the patch is given by the user.

• In this case the name and base type was assigned in the 
dictionaries blockMeshDict and snappyHexMeshDict. 

• You can change the name if you do not like it.  Do not use 

strange symbols or white spaces.

• You can also change the base type.  For instance, you can 

change the type of the patch maxY from wall to patch.

nFaces and startFace keywords

• Unless you know what are you doing,  you do not            

need to change this information.

• Basically, this is telling you the starting face and ending face 

of the patch.

• This information is created automatically when generating 

the mesh or converting the mesh.

nFaces

startFace

Name

Type

The constant/polyMesh/boundary file
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• When generating the mesh using OpenFOAM®, it is extremely important to 

start from a clean case directory.

• To clean all the case directory, in the terminal type:

• $> foamCleanTutorials

• To only erase the mesh information, in the terminal type:

• $> foamCleanPolyMesh

• If you are planning to start the meshing from a previous saved state, you do 

not need to clean the case directory.

• Before proceeding to compute the solution, remember to always check the 

quality of the mesh.

Cleaning the case directory

Mesh generation using snappyHexMesh
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Roadmap

1. Meshing preliminaries

2. What is a good mesh?

3. Mesh quality assessment in OpenFOAM®

4. Mesh generation using blockMesh.

5. Mesh generation using snappyHexMesh.

6. snappyHexMesh guided tutorials.

7. Mesh conversion 

8. Geometry and mesh manipulation utilities

393



snappyHexMesh guided tutorials

• Our first case will be a mesh around a cylinder.

• This is a simple geometry, but we will use it to study all the meshing steps 

and introduce a few advanced features.

• This case is located in the directory $PTOFC/101SHM/M1cyl
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snappyHexMesh guided tutorials

• Meshing with snappyHexMesh – Case 1.

• 3D cylinder with feature edge refinement (external mesh).

• You will find this case in the directory:

$PTOFC/101SHM/M1_cyl/C1

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this 

way, you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

395



3D Cylinder with edge refinement.

Sphere with no edge refinement

snappyHexMesh guided tutorials

• If the geometry has sharp angles and you want to resolve those edges, you should use edge 

refinement.

• In the left figure there is no need to use edge refinement as there are no sharp angles.

• In the mid figure we used edge refinement to resolve the sharp angles.

• In the right figure we did not use edge refinement, therefore we did not resolve well the sharp 

angles.

Cylinder with edge refinement Cylinder with no edge refinement
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3D Cylinder with edge refinement.

• How do we control curvature refinement and enable edge refinement?

• In the file snappyHexMeshDict, look for the following entry:

castellatedMeshControls

{

...

...

...

//Local curvature and 

//feature angle refinement

resolveFeatureAngle 30;

...

...

...

//Explicit feature edge refinement

features

(

{

file “surfacemesh.eMesh";                

level 0;

}

);

...

...

...

}

To control curvature refinement

To enable and 

control edge 

refinement level

snappyHexMesh guided tutorials
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3D Cylinder with edge refinement.

angle

0: mark the whole surface for refinement

180: do not mark any STL face for refinement

resolveFeatureAngle

If angle is more than resolveFeatureAngle 

the adjacent STL faces will be marked for 

refinement

How resolveFeatureAngle works?

angle < resolveFeatureAngle

No curvature refinement 

snappyHexMesh guided tutorials

STL
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3D Cylinder with edge refinement.

STL

angle

0: mark the whole surface for refinement

180: do not mark any STL face for refinement

resolveFeatureAngle

If angle is more than resolveFeatureAngle 

the adjacent STL faces will be marked for 

refinement

How resolveFeatureAngle works?

angle > resolveFeatureAngle

Curvature refinement 

snappyHexMesh guided tutorials
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3D Cylinder with edge refinement.

• How do we control surface refinement?

• In the file snappyHexMeshDict, look for the following entry:

castellatedMeshControls

{

...

...

...

//Surface based refinement

refinementSurfaces

{

banana_stlSurface

{

level (2 4);

}

}

...

...

...

}

To control surface refinement.

The first digit controls the global 

surface refinement level and the second 

digit controls the curvature refinement 

level, according to the angle set in the 

entry resolveFeatureAngle

snappyHexMesh guided tutorials
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3D Cylinder with edge refinement.

snappyHexMesh guided tutorials

• How do we create refinement regions?

• In the file snappyHexMeshDict, look for the following entry:

geometry

{

...

...

...

refinementBox

{

type searchableBox;

min  ( -2 -2 -2);

max (  2   2  2);

}

...

...

...

};

Name of refinement region

Geometrical entity type. 

This is the zone where we

want to apply the refinement

Dimensions of geometrical entity
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3D Cylinder with edge refinement.

snappyHexMesh guided tutorials

• How do we create refinement regions?

• In the file snappyHexMeshDict, look for the following entry:

castellatedMeshControls

{

...

...

...

refinementRegions

{

refinementBox

{

mode inside;

levels ((1e15   1));

}

}

...

...

...

}

Name of the region

created in the geometry section

Type of refinement (inside, 

outside, or distance mode)

Distance from the surface

A large value covers the whole region

Refinement level
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Explicit feature edge refinement level 0

resolveFeatureAngle 110

Surface based refinement level (2 2)

Explicit feature edge refinement level 0

resolveFeatureAngle 60

Surface based refinement level (2 2)

Effect of various parameters on edge capturing and surface refinement

• To control edges capturing you can decrease the value of resolveFeatureAngle. 

• Be careful, this parameter also controls curvature refinement, so if you choose a low 

value you also will be adding a lot of refinement on the surface.

3D Cylinder with edge refinement.

snappyHexMesh guided tutorials
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Explicit feature edge refinement level 0

resolveFeatureAngle 60

Surface based refinement level (2 2)

Explicit feature edge refinement level 4

resolveFeatureAngle 60

Surface based refinement level (2 2)

3D Cylinder with edge refinement.

Effect of various parameters on edge capturing and surface refinement

• To control edges refinement level, you can change the value of the explicit feature 

edge refinement level. 

snappyHexMesh guided tutorials
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Explicit feature edge refinement level 6

resolveFeatureAngle 5

Surface based refinement level (2 4)

Explicit feature edge refinement level 0

resolveFeatureAngle 5

Surface based refinement level (2 4)

3D Cylinder with edge refinement.

Effect of various parameters on edge capturing and surface refinement

• To control edges refinement level, you can change the value of the explicit feature 

edge refinement level. 

snappyHexMesh guided tutorials
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Explicit feature edge refinement level 0

resolveFeatureAngle 60

Surface based refinement level (2 4)

Explicit feature edge refinement level 4

resolveFeatureAngle 60

Surface based refinement level (2 2)

3D Cylinder with edge refinement.

Effect of various parameters on edge capturing and surface refinement

• To control surface refinement level, you can change the value of the surface based 

refinement level.

• The first digit controls the global surface refinement level and the second digit 

controls the curvature refinement level.

snappyHexMesh guided tutorials
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Explicit feature edge refinement level 0

resolveFeatureAngle 60

Surface based refinement level (2 4)

Explicit feature edge refinement level 0

resolveFeatureAngle 5

Surface based refinement level (2 4)

3D Cylinder with edge refinement.

Effect of various parameters on edge capturing and surface refinement

• To control surface refinement due to curvature together with control based surface 

refinement level, you can change the value of resolveFeatureAngle, and surface 

based refinement level 

snappyHexMesh guided tutorials
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3D Cylinder with edge refinement.

surfaces (“surfacemesh.stl”)

includedAngle 150;

subsetFeatures

{

nonManifoldEdges yes;

openEdges yes;

}

writeObj yes;

• Let us explore the dictionary surfaceFeaturesDict used by the utility 

surfaceFeatures.

• This utility will extract surface features (sharp angles) according to an angle 

criterion (includedAngle).

Name of the STL.  

The STL file is located 

in constant/triSurface

Angle criterion 

to extract features

If you want to save 

the .obj files

Features edges

Features edges

snappyHexMesh guided tutorials
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Keep non-manifold edges

(edges with more that 2 

connected faces)

Keep open edges

(edges with 1 connected face)



3D Cylinder with edge refinement.

• Let us explore the dictionary surfaceFeaturesDict used by the utility 

surfaceFeatures.

• This utility will extract surface features (sharp angles) according to an angle 

criterion (includedAngle).

STL

angle

Mark edges whose adjacent surface normals 

are at an angle less than includedAngle

0: selects no edges

180: selects all edge

includedAngle

If angle is less than includedAngle 

this feature will be marked

snappyHexMesh guided tutorials
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surfaces (“surfacemesh.stl”)

includedAngle 150;

subsetFeatures

{

nonManifoldEdges yes;

openEdges yes;

}

writeObj yes;

Name of the STL.  

The STL file is located 

in constant/triSurface

Angle criterion 

to extract features

If you want to save 

the .obj files

Keep non-manifold edges

(edges with more that 2 

connected faces)

Keep open edges

(edges with 1 connected face)



3D Cylinder with edge refinement.

• If you want to have a visual representation of the feature edges, you can use 

paraview/paraFoam.

• Just look for the filter Feature Edges.

• Have in mind that the angle you need to define in paraview/paraFoam is the complement of the 
angle you define in the dictionary surfaceFeaturesDict

snappyHexMesh guided tutorials
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• In this case we are going to generate a body fitted mesh with edge refinement.  This is an 

external mesh.

• These are the dictionaries and files that will be used.

• system/snappyHexMeshDict

• system/surfaceFeaturesDict

• system/meshQualityDict

• system/blockMeshDict

• constant/triSurface/surfacemesh.stl

• constant/triSurface/surfacemesh.eMesh

• The file surfacemesh.eMesh is generated after using the utility surfaceFeatures, which 

reads the dictionary surfaceFeaturesDict.

• The utility surfaceFeatures, will save a set of *.obj files with the captured edges.  These files 

are located in the directory constant/extendedFeatureEdgeMesh.  You can use paraview 

to visualize the *.obj files.

3D Cylinder with edge refinement.

snappyHexMesh guided tutorials
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• Let us generate the mesh, in the terminal window type:

3D Cylinder with edge refinement.

snappyHexMesh guided tutorials

1. $> foamCleanTutorials

2. $> surfaceFeatures

3. $> blockMesh

4. $> snappyHexMesh –overwrite

5. $> checkMesh –latestTime

6. $> paraFoam 

• In step 2 we extract the sharp angles from the geometry. 

• In step 3 we generate the background mesh.

• In step 4 we generate the body fitted mesh.  Have in mind that as we use the 
option –overwrite, we are not saving the intermediate steps.

• In step 5 we check the mesh quality.
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snappyHexMesh guided tutorials

$PTOFC/101SHM/M1_cyl/C2

• Meshing with snappyHexMesh – Case 2.

• 3D cylinder with feature edge refinement and boundary layer (external 

mesh).

• You will find this case in the directory:

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this 

way, you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 
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Your final mesh should looks like this one

3D Cylinder with edge refinement and boundary layer.

snappyHexMesh guided tutorials
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• How do we enable boundary layer?

• In the file snappyHexMeshDict, look for the following entry:

3D Cylinder with edge refinement and boundary layer.

castellatedMesh true; //or false

snap true; //or false

addLayers true; //or false

...

...

...

Set this parameter to 

true if you want to 

enable boundary layer 

meshing

snappyHexMesh guided tutorials
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• How do we enable boundary layer?

• In the file snappyHexMeshDict, look for the section addLayersControls:

3D Cylinder with edge refinement and boundary layer.

addLayersControls

{

//Global parameters

relativeSizes true;

expansionRatio 1.2;

finalLayerThickness 0.5;

minThickness 0.1;

layers

{

banana_stlSurface

{

nSurfaceLayers 3;

}

}

// Advanced settings

...

...

...

}

Name of the surface or user-defined 

patch where you want to add the 

boundary layer mesh. 

snappyHexMesh guided tutorials
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• How do we control boundary layer collapsing?

• In the file snappyHexMeshDict, look for the section addLayersControls:

3D Cylinder with edge refinement and boundary layer.

addLayersControls

{

...

...

...

// Advanced settings

nGrow 0;

featureAngle 130;

...

...

...

}

Increase this value to avoid BL 

collapsing

snappyHexMesh guided tutorials

417



3D Cylinder with edge refinement and boundary layer.

relativeSizes true

expansionRatio 1.2

finalLayerThickness 0.5

minThickness 0.1

featureAngle 130

nSurfaceLayers 3

Surface based refinement level (2 4)

relativeSizes false

expansionRatio 1.2

firstLayerThickness 0.025

minThickness 0.01

featureAngle 130

nSurfaceLayers 3

Surface based refinement level (2 4)

Effect of different parameters on the boundary layer meshing

snappyHexMesh guided tutorials
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3D Cylinder with edge refinement and boundary layer.

Effect of different parameters on the boundary layer meshing

• When the option relativeSizes is true, the boundary layer meshing is done relative to the size 

of the cells next to the surface.

• This option requires less user intervention but can not guarantee a uniform boundary layer.

• Also, it is quite difficult to set a desired thickness of the first layer.

snappyHexMesh guided tutorials
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3D Cylinder with edge refinement and boundary layer.

Effect of different parameters on the boundary layer meshing

• When the option relativeSizes is false, we give the actual thickness of the layers.

• This option requires a lot user intervention but it guarantees a uniform boundary layer and the 

desired layer thickness.

snappyHexMesh guided tutorials
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3D Cylinder with edge refinement and boundary layer.

relativeSizes true

expansionRatio 1.2

finalLayerThickness 0.5

minThickness 0.1

featureAngle 130

nSurfaceLayers 3

Surface based refinement level (2 4)

relativeSizes true

expansionRatio 1.2

finalLayerThickness 0.5

minThickness 0.1

featureAngle 130

nSurfaceLayers 3

Surface based refinement level (2 2)

Effect of different parameters on the boundary layer meshing

• When the option relativeSizes is true and in order to have a uniform boundary layer, we need 

to have a uniform surface refinement.

• Nevertheless, we still do not have control on the desired thickness of the first layer.

snappyHexMesh guided tutorials
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3D Cylinder with edge refinement and boundary layer.

relativeSizes true

expansionRatio 1.2

finalLayerThickness 0.5

minThickness 0.1

featureAngle 130

nSurfaceLayers 3

Surface based refinement level (2 2)

relativeSizes true

expansionRatio 1.2

finalLayerThickness 0.5

minThickness 0.1

featureAngle 30

nSurfaceLayers 3

Surface based refinement level (2 2)

Effect of different parameters on the boundary layer meshing

• To avoid boundary layer collapsing close to the corners, we can increase the value of the 

boundary layer parameter featureAngle.

snappyHexMesh guided tutorials
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3D Cylinder with edge refinement and boundary layer.

Effect of different parameters on the boundary layer meshing

• The disadvantage of setting relativeSizes to false, is that it is difficult to control the expansion 

ratio from the boundary layer meshing to the far mesh.

• To control this transition, we can add a refinement region at the surface with distance mode.

relativeSizes false

nSurfaceLayers 6

relativeSizes false

nSurfaceLayers 6

Refinement region at the stl surface:

mode distance;

levels ((0.05 4))

snappyHexMesh guided tutorials

423



• To generate the mesh, in the terminal window type:

3D Cylinder with edge refinement and boundary layer.

snappyHexMesh guided tutorials

1. $> foamCleanTutorials

2. $> surfaceFeatures

3. $> blockMesh

4. $> snappyHexMesh -overwrite

5. $> checkMesh –latestTime

6. $> paraFoam 
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• At the end of the meshing process you will get the following information 

regarding the boundary layer meshing:

3D Cylinder with edge refinement and boundary layer.

patch faces layers overall thickness

[m] [%]

----- ----- ------ --- ---

banana_stlSurface 4696 3 0.0569 95.9

Layer mesh : cells:48577 faces:157942     points:61552

• This is a general summary of the boundary layer meshing.

• Pay particular attention to the overall and thickness information.

• Overall is roughly speaking the thickness of the whole boundary layer.

• Thickness is the percentage of the patch that has been covered with the boundary layer mesh. A thickness of 

100% means that the whole patch has been covered (a perfect BL mesh).

snappyHexMesh guided tutorials
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• If you want to visualize the boundary layer thickness, you can enable 
writeFlags in the snappyhexMeshDict dictionary,

3D Cylinder with edge refinement and boundary layer.

...

...

...

writeFlags

(

scalarLevels; // write volScalarField with cellLevel for postprocessing

layerSets; // write cellSets, faceSets of faces in layer

layerFields; // write volScalarField for layer coverage

);

...

...

...

snappyHexMesh guided tutorials
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• Then you can use paraview/paraFoam to visualize the boundary layer 

coverage.

3D Cylinder with edge refinement and boundary layer.

Boundary layer thickness and number of layers

snappyHexMesh guided tutorials

The yellow surface represent the BL coverage
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• After creating the mesh and if you do not like the inflation layer or you want to 

try different layer parameters, you do not need to start the meshing process 

from scratch. 

• To restart the meshing process from a saved state you need to save the 

intermediate steps (castellation and snapping), and then create the inflation 

layers starting from the snapped mesh. 

• That is, do not use the option snappyHexMesh -overwrite.

• Also, in the dictionary controlDict remember to set the entry startFrom

to latestTime or the time directory where the snapped mesh is saved (in 

this case 2). 

• Before restarting the meshing, you will need to turn off the castellation and 

snapping options and turn on the boundary layer options in the 
snappyHexMeshDict dictionary.

3D Cylinder with edge refinement and boundary layer.

snappyHexMesh guided tutorials
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3D Cylinder with edge refinement and boundary layer.

snappyHexMesh guided tutorials

• Remember, before restarting the meshing you will need to modify the 
snappyHexMeshDict dictionary as follows:

• At this point, you can restart the meshing process by typing in the terminal,

• $> snappyHexMesh

• By the way, you can restart the boundary layer mesh from a previous mesh 

with a boundary layer.  

• So in theory, you an add one layer at a time, this will give you more control 

but it will require more manual work and some scripting.

castellatedMesh false; 

snap false; 

addLayers true; 
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snappyHexMesh guided tutorials

• Meshing with snappyHexMesh – Case 3.

• 3D cylinder with feature edge refinement and boundary layer using a STL 

with multiple surfaces (external mesh).

• You will find this case in the directory:

$PTOFC/101SHM/M1_cyl/C3

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this 

way, you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 
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3D Cylinder with edge refinement and boundary layer, using a STL file 

with multiple surfaces.

snappyHexMesh guided tutorials

STL visualization with a single surface using paraview (the 

single surface in represented with a single color)

STL visualization with multiple surfaces using paraview (each 

color corresponds to a different surface)

• When you use a STL with multiple surfaces, you have more control over the meshing process.

• By default, STL files are made up of one single surface. 

• If you want to create the multiple surfaces you will need to do it in the solid modeler.

• Alternatively, you can split the STL manually or using the utility surfaceAutoPatch.

• Loading multiple STLs is equivalent to using a STL with multiple surfaces.
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• When you use a STL with multiple surfaces, you have more control over the meshing process.

• In this case, we were able to use different refinement parameters in the lateral and central 

surface patches of the cylinder.

3D Cylinder with edge refinement and boundary layer, using a STL file 

with multiple surfaces.

snappyHexMesh guided tutorials
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• How do we assign different names to different surface patches?

• In the file snappyHexMeshDict, look for the following entry:

3D Cylinder with edge refinement and boundary layer, using a STL file 

with multiple surfaces.

geometry

{

surfacemesh.stl

{

type triSurfaceMesh;

name stlSurface;

regions

{

patch0             Named region in the STL file

{

name surface0; 

}

patch1             

{

name surface1; 

} 

patch2             

{

name surface2; 

} 

}

}

...

...

...

}

snappyHexMesh guided tutorials
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User-defined patch name

This is the name you need to use when setting the 

boundary layer meshing



• How do we refine user defined surface patches?

• In the file snappyHexMeshDict, look for the following entry:

3D Cylinder with edge refinement and boundary layer, using a STL file 

with multiple surfaces.

castellatedMeshControls

{

...

...

...

refinementSurfaces

{

level (2 2);

regions

{

patch0             

{

level (2 2);

patchInfo

{

type wall;

}

}

...

...

...

}

}

...

...

...

}

snappyHexMesh guided tutorials

Local refinement level

Global refinement level

Local surface patch

Type of the patch.  

This information is optional
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• How do we control curvature refinement on surface patches?

• In the file snappyHexMeshDict, look for the following entry:

3D Cylinder with edge refinement and boundary layer, using a STL file 

with multiple surfaces.

castellatedMeshControls

{

...

...

...

refinementSurfaces

{

level (2 2);

regions

{

patch0             

{

level (2 4);

patchInfo

{

type wall;

}

}

...

...

...

}

}

...

...

...

}

snappyHexMesh guided tutorials

Local curvature refinement (in red)

Global refinement level

Local surface patch
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• How do we control curvature refinement on surface patches?

• In the file snappyHexMeshDict, look for the following entry:

3D Cylinder with edge refinement and boundary layer, using a STL file 

with multiple surfaces.

castellatedMeshControls

{

...

...

...

//Local curvature and 

//feature angle refinement

resolveFeatureAngle 60;

...

...

...

}

snappyHexMesh guided tutorials

The default value is 30.

Using a higher value will capture 

less features.
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• How do we control boundary layer meshing on the surface patches?

• In the file snappyHexMeshDict, look for the following entry:

3D Cylinder with edge refinement and boundary layer, using a STL file 

with multiple surfaces.

addLayersControls

{

//Global parameters

relativeSizes true;

expansionRatio 1.2;

finalLayerThickness 0.5;

minThickness 0.1;

layers

{

“surface.*”

{

nSurfaceLayers 5;

}

surface0

{

nSurfaceLayers 3;

expansionRatio 1.0;

finalLayerThickness 0.25;

minThickness 0.1;

}

}

//Advanced settings

...

...

...

}

Global BL parameters

Local surface patch

Local BL parameters

POSIX wildcards are permitted

snappyHexMesh guided tutorials
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• Let us first create the STL file with multiple surfaces.

• In the directory geo, you will find the original STL file.

• In the terminal type:

3D Cylinder with edge refinement and boundary layer, using a STL file 

with multiple surfaces.

snappyHexMesh guided tutorials

1. $> cd geo

2. $> surfaceAutoPatch geo.stl output.stl 130

3. $> cp output.stl ../constant/triSurface/surfacemesh.stl

4. $> cd ..

5. $> paraview

• The utility surfaceAutoPatch will read the original STL file (geo.stl), and it will find the 

patches using an angle criterion of 130 (similar to the angle criterion used with the utility 
surfaceFeatures).   It writes the new STL geometry in the file output.stl.  

• By the way, it is better to create the STL file with multiple surfaces directly in the solid modeler.

• FYI, there is an equivalent utility for meshes, autoPatch. So if you forgot to define the 

patches, this utility will automatically find the patches according to an angle criterion.
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• If you open the file output.stl, you will notice that there are three 

surfaces defined in the STL file.  The different surfaces are defined in by the 

following sections:

3D Cylinder with edge refinement and boundary layer, using a STL file 

with multiple surfaces.

solid patch0

…

endsolid patch0

solid patch1

…

endsolid patch1

solid patch2

…

endsolid patch2

• The name of the solid sections are 

automatically given by the utility 
surfaceAutoPatch.

• The convention is as follows: patch0, 

patch1, patch2, … patchN.

• If you do not like the names, you can 

change them directly in the STL file.

Surface patch 3

Surface patch 2

Surface patch 1

snappyHexMesh guided tutorials
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• The new STL file is already in the constant/triSurface directory.

• To generate the mesh, in the terminal window type:

3D Cylinder with edge refinement and boundary layer, using a STL file 

with multiple surfaces.

snappyHexMesh guided tutorials

1. $> foamCleanTutorials

2. $> surfaceFeatures

3. $> blockMesh

4. $> snappyHexMesh -overwrite

5. $> checkMesh –latestTime

• To visualize the mesh, in the terminal window type:

6. $> paraFoam 
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• This case is ready to run using the solver simpleFoam.  But before running, 

you will need to set the boundary and initial conditions.

• You will need to manually modify the file constant/polyMesh/boundary

• Remember:

• Base type boundary conditions are defined in the file boundary located 

in the directory constant/polyMesh.

• Numerical type boundary conditions are defined in the field variables 
files located in the directory 0 or the time directory from which you want 

to start the simulation (e.g. U, p).

• The name of the base type boundary conditions and numerical type 

boundary conditions needs to be the same.

• Also, the base type boundary condition needs to be compatible with the 

numerical type boundary condition.

3D Cylinder with edge refinement and boundary layer, using a STL file 

with multiple surfaces.

snappyHexMesh guided tutorials
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• This case is ready to run with simpleFoam.

• To run the case (mesh and simulation), type in the terminal,

3D Cylinder with edge refinement and boundary layer, using a STL file 

with multiple surfaces.

snappyHexMesh guided tutorials

1. $> sh run_all.sh
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• Feel free to open the files run_mesh.sh (meshing steps) and

run_solver.sh (simulation steps) to get an idea of all steps used.

• The most critical step is to give the right name and type to the boundary 
patches, this is done in the file boundary and the input files located in the 

directory 0 (boundary conditions and initial conditions).



snappyHexMesh guided tutorials

• Meshing with snappyHexMesh – Case 4.

• 2D cylinder (external mesh)

• You will find this case in the directory:

$PTOFC/101SHM/M1_cyl/C4

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this 

way, you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 
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From 3D To 2D

• To generate a 2D mesh using snappyHexMesh, we need to start from a 3D.  After all, 

snappyHexMesh is a 3D mesher.

• To generate a 2D mesh (and after generating the 3D mesh), we use the utility
extrudeMesh.

• The utility extrudeMesh works by projecting a face into a mirror face.  Therefore, 

the faces need to parallel.
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• At most, the input geometry and the background mesh need to have the same width.

• If the input geometry is larger than the background mesh, it will be automatically cut by the faces 

of the background mesh.

• In this case, the input geometry will be cut by the two lateral patches of the background mesh.

• If you want to take advantage of symmetry in 3D, you can cut the geometry in half using one of 

the faces of the background mesh.

• When dealing with 2D

• Extracting the features edges is optional for the 2D geometry extremes, but it is recommended if 

there are internal edges that you want to resolve.

Geometry width

Background mesh width

FACE 1

FACE 2

The utility extrudeMesh works by 

projecting FACE 1 into FACE 2.  

Therefore, the faces need to be 

parallel.
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• How do we create the 2D mesh?

• After generating the 3D mesh, we use the utility extrudeMesh.

• This utility reads the extrudeMeshDict,

constructFrom patch;

sourceCase “.”

sourcePatches (minZ);

exposedPatchName maxZ;

extrudeModel linearNormal

nLayers 1;

linearNormalCoeffs

{

thickness 1;

}

mergeFaces false;

Name of source patch

Name of the mirror patch

Number of layers to use in the linear extrusion.

As this is a 2D case we must  use 1 layer

Thickness of the extrusion.

It is highly recommended to use a value of 1

446



2D Cylinder
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• To generate the mesh, in the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> snappyHexMesh –overwrite 

4. $> extrudeMesh

5. $> checkMesh –latestTime

6. $> paraFoam

• Remember, the utility extrudeMesh (step 4) reads the dictionary 

extrudeMeshDict, which is located in the directory system.

• Also remember to set the empty patches in the dictionary boundary and in the 

boundary conditions.

447



snappyHexMesh guided tutorials

Exercises

• To get a feeling of the surface refinement, try to change the value of the surface refinement in the dictionary 
snappyHexMeshDict.

• In the dictionary snappyHexMeshDict, change the value of nCellsBetweenLevels and 

resolveFeatureAngle. What difference do you see in the output?

• Use paraview to get a visual representation of the feature angles.

• In the dictionary snappyHexMeshDict, try to add curvature based refinement.

• In the dictionary snappyHexMeshDict, in the section addLayersControls change the value of 

featureAngle.  Use a value of 60 and 160 and compare the boundary layer meshing.

• To control the boundary layer collapsing, try to use a uniform surface refinement.  For this you have two 

options, set surface level refinement  to a uniform value or adding distance region refinement at the wall.

• To control the boundary layer collapsing, try to use absolute sizes when creating the boundary layer mesh.

• To get a feeling of region refinement, try to change the value of the local refinement in the dictionary 
snappyHexMeshDict.  What difference do you see in the output?

• Try to use local inflation layers in the regions defined.

• In the dictionary extrudeMeshDict, change the value of nLayers and thickness.

• In the dictionary extrudeMeshDict, try to change the extrudeModel.
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• Meshing with snappyHexMesh – Case 5.

• Mixing elbow (internal mesh)

• You will find this case in the directory:

$PTOFC/101SHM/M2_mixing_elbow

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this 

way, you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 
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Your final mesh should looks like this one

Mixing elbow.

snappyHexMesh guided tutorials
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Mixing elbow.

castellatedMeshControls

{

...

...

...

refinementRegions

{
mixing_elbow

{

mode distance;

levels ((1e-4 1));

}

}

...

...

...

}

• How do we control surface refinement using region refinement?

• In the file snappyHexMeshDict, look for the following entry:

Distance from 

the surface patch

Refinement level

Refinement using distance mode

Name of surface

snappyHexMesh guided tutorials
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• In this case we are going to generate a body fitted mesh with edge 

refinement and boundary layer meshing.  

• This is an internal mesh.

• These are the dictionaries and files that will be used.

• system/snappyHexMeshDict

• system/surfaceFeaturesDict

• system/meshQualityDict

• system/blockMeshDict

• constant/triSurface/surfacemesh_multi.stl

• constant/triSurface/surfacemesh_multi.eMesh

• The file surfacemesh_multi.eMesh is generated after using the utility 

surfaceFeatures, which reads the dictionary surfaceFeaturesDict.

Mixing elbow.

snappyHexMesh guided tutorials
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• At this point, we are going to work in parallel (but you can work in serial as 

well).

• To generate the mesh, in the terminal window type:

Mixing elbow.

snappyHexMesh guided tutorials

1. $> foamCleanTutorials

2. $> surfaceFeatures

3. $> blockMesh

4. $> decomposePar 

5. $> mpirun -np 4 snappyHexMesh –parallel –overwrite

6. $> mpirun -np 4 checkMesh –parallel –latestTime

7. $> reconstructParMesh -constant

8. $> paraFoam
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Mixing elbow.

snappyHexMesh guided tutorials

• So what did we do?

• Step 4: we distribute the mesh among the processors we want to use.

• Step 5 and 6: we run in parallel.

• Step 7: we put back together the decomposed mesh.

• Step 8: we visualize the reconstructed mesh. 

• Notice that the utility blockMesh does not run in parallel.

• Remember to set the keyword numberOfSubdomains in the dictionary decomposeParDict

equal to the number of processors you want to use.

• In this case, as we are using 4 processors with mpirun, numberOfSubdomains needs to be 

equal to 4.

• To run the simulation and after reconstructing the mesh, you will need to transfer the boundary 

and initial conditions information to the decomposed mesh, 

• $> decomposePar –fields

• Or you can force to decompose everything as follows, 

• $> decomposePar –force
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• After running checkMesh, you will get the following information regarding the patch 

names:

Mixing elbow.

snappyHexMesh guided tutorials

Patch    Faces   Points                  Surface topology

mixing_elbow_inlet1     1264     1297  ok (non-closed singly connected)

pipe    38884    41118  ok (non-closed singly connected)

mixing_elbow_inlet2      314      337  ok (non-closed singly connected)

mixing_elbow_outlet     1264     1297  ok (non-closed singly connected)

• Sometimes you can get empty patches. 

Patch    Faces   Points                  Surface topology

minX        0        0                        ok (empty)

maxX        0        0                        ok (empty)

minY        0        0                        ok (empty)

maxY        0        0                        ok (empty)

minZ        0        0                        ok (empty)

maxZ        0        0                        ok (empty)

mixing_elbow_inlet1     1264     1297  ok (non-closed singly connected)

pipe    38884    41118  ok (non-closed singly connected)

mixing_elbow_inlet2      314      337  ok (non-closed singly connected)

mixing_elbow_outlet     1264     1297  ok (non-closed singly connected)
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• Empty patches are no problem, they remain from the background mesh.

• To erase the empty patches, you can do it manually (you will need to modify the file 
boundary), or you can use the utility createPatch as follows (the utility runs in 

parallel):

• $> createPatch -overwrite 

• The surface patch pipe was created in the geometry section of the dictionary 
snappyHexMeshDict.

• The patches mixing_elbow_outlet, mixing_elbow_inlet1 and 
mixing_elbow_inlet2 were created automatically by snappyHexMesh.

• You have the choice of giving the names of the patches yourself or letting 
snappyHexMesh assign the names automatically.

• Remember, when creating the boundary layer mesh, these are the names you need 

to use to assign the layers.

Mixing elbow.

snappyHexMesh guided tutorials
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• The mesh used in the previous case was a STL with multiple surfaces.

• In you do not create the regions in the geometry section of the dictionary 
snappyHexMeshDict, snappyHexMesh will automatically assign the names of the 

surface patches as follows:

• mixing_elbow_outlet

• mixing_elbow_inlet1

• mixing_elbow_inlet2

Mixing elbow.

…

…

geometry

{

surfacemesh.stl

{

type triSurfaceMesh;

name mixing_elbow;

regions 

{

pipe

{

name pipe;

}                                 

}

}

};

…

…

system/surfaceFeaturesDict

NOTE 1: 

This is the name of the region or surface patch in the STL file 

NOTE 2: 

User-defined patch name.  This is the final name of the patch.

NOTE 1

NOTE 2

snappyHexMesh guided tutorials
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• The mesh used in the previous case was a STL with multiple surfaces.

• In you do not create the regions in the geometry section of the dictionary 
snappyHexMeshDict, snappyHexMesh will automatically assign the names of the 

surface patches as follows:

• mixing_elbow_outlet

• mixing_elbow_inlet1

• mixing_elbow_inlet2

Mixing elbow.

constant/triSurface/surfacemesh.stl

solid outlet

…

…

…

solid outlet

solid inlet1

…

…

…

solid inlet1

solid inlet2

…

…

…

solid inlet2

snappyHexMesh guided tutorials
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• The mesh used in the previous case was a STL with multiple surfaces.

• In the directory geometry, you fill find the file allss.stl, this STL has one 

single surface.

• Try to use this STL file to generate the mesh.  

• You will notice that the final mesh has only one patch, namely 

mixing_elbow (or whatever name you chose).

• Also, it is not possible to have local control on the mesh refinement and 

boundary layer meshing.

• You will also face the conundrum that as there is only one surface patch, it is 

not possible to assign boundary conditions.

Mixing elbow.

snappyHexMesh guided tutorials
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• To solve the problem of the single surface patch, you can use the utility autoPatch.  

To do so, you can proceed as follows:

• $> autoPatch 60 -overwrite

• The option -overwrite, will copy the new mesh in the directory 

constant/polyMesh.

• The utility autoPatch will use an angle criterion to find the patches, and will assign 

the name auto0, auto1, auto2 and auto3 to the new patches.

• The angle criterion is similar to that of the utility surfaceFeatures. 

• The only difference is that it uses the complement of the angle. So, the smaller the 

angle the more patches it will find.

• The naming convention is autoN, where N is the patch number.

• Remember, autoPatch will manipulate the mesh located in the directory 

constant/polyMesh.

• FYI, autoPatch does not un in parallel.

Mixing elbow.

snappyHexMesh guided tutorials
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Exercises

• To get a feeling of the includedAngle value, try to change the value in the dictionary 
surfaceFeaturesDict.

• Remember the higher the includedAngle value, the more features you will capture.

• In the dictionary snappyHexMeshDict, change the value of resolveFeatureAngle (try to use a lower value), 

and check the mesh quality in the intersection between both pipes.

• In the castellatedMeshControls section, try to disable or modify the distance refinement of the 

mixing_elbow region (refinementRegions).

• What difference do you see in the output?

• Starting from the body fitted mesh, add 3 inflation layers at the walls (save the intermediate step).

• Try to add local surface refinement at the surface patch inlet2 (look at the STL file 
constant/triSurface/surfacemesh_multi.stl).

• Using paraview, extract the feature edge at the joint section of the pipes. Then, try to add local refinement at 

this feature edge.

• Try to add curvature refinement at the feature edge extracted from the surface patch inlet1.
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Exercises

• Use the STL file with a single surface (surfacemesh_single.stl) and generate the same mesh, do not 

add inflation layers.

• Use the utility autopatch to split the mesh in different surface patches. To get a feeling on how to use 

this utility, use different angle values. Try to get four surface patches.

• After splitting the mesh in four surface patches, rename the boundary patches using the utility 
createPatch.

• After renaming the boundary patches, change the type of each one using the utility foamDictionary.

• Starting from the body fitted mesh, add 3 inflation layers at the walls (do not save the intermediate step).

• Hints: if you do not know how to use the utilities createPatch and foamDictionary, look at the 

script file run_mesh_single_surface.sh

• After generating the mesh, setup a simple incompressible simulation (with no turbulence model). 

• Set the inlet velocity to 1 at both inlet patches and use a dynamic viscosity value equal to 0.01. Run the 

simulation in steady and unsteady mode.
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$PTOFC/101SHM/M4_ahmed

• Meshing with snappyHexMesh – Case 6.

• Ahmed body (external mesh).

• You will find this case in the directory:

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this 

way, you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 
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Ahmed body

• At this point, we all have a clear idea of how snappyHexMesh works.  

• If not, please raise your hand. 

• So let us go free styling and let us play around with this case.
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Ahmed body

• In our YouTube channel you will find a playlist with many videos for this case. The playlist is 

titled: CFD workflow tutorial using open-source tools. 

• You can find our YouTube channel in the following link: 

https://www.youtube.com/channel/UCNNBm3KxVS1rGeCVUU1p61g

• In these videos, we show a few extra features and some tips and tricks to take the most out of 
snappyHexMesh.

• If you get lost, read the REAME.FIRST file that you will find in the working directory.

• The dictionaries  snappyHexMeshDict and blockMeshDict used in this case are very 

clean and ready to use. So feel free to use them as your templates.

• Our best advice is not to get lost in all the options available in the dictionary 
snappyHexMeshDict. Most of the times the default options will work fine.

• That being said, you only need to read in the geometries, set the feature edges and surface 

refinement levels, choose in which surfaces you want to add the boundary layers, and choose 

how many layers you want to add.

• Final advices:

• If you are working with a complicated geometry, add one layer at a time.

• Use paraFoam/paraview to get visual references.

• Always check the quality of your mesh.
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3. Mesh quality assessment in OpenFOAM®
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5. Mesh generation using snappyHexMesh.

6. snappyHexMesh guided tutorials.

7. Mesh conversion 

8. Geometry and mesh manipulation utilities
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Mesh conversion

• OpenFOAM® gives users a lot of flexibility when it comes to meshing.

• You are not constrained to use OpenFOAM® meshing tools.

• To convert a mesh generated with a third-party software to OpenFOAM® format, you can use 

the OpenFOAM® mesh conversion utilities.

• If your format is not supported, you can write your own conversion tool.

• By the way, many of the commercially available meshers can save the mesh in OpenFOAM® 

format or in a compatible format.

• In the directory $PTOFC/mesh_conversion_sandbox you will find a few meshes generated 

using the most popular third-party mesh generation applications.

• Feel free to play with these meshes. 

• In the README.FIRST file of each case, you will find the instructions of how to convert the 

mesh.
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• Remember to always check the file boundary after converting the mesh. You 

will need to change the name and type of the surface patches according to what 

you would intent to do.

• Also, to convert the mesh you need to be in the top level of the case directory, 

and you need to give to the conversion utility the path (absolute or relative) of 

the mesh to be converted.



• In the directory $FOAM_UTILITIES/mesh/conversion you will find the source 

code for the mesh conversion utilities:

• ansysToFoam • kivaToFoam

• cfx4ToFoam • mshToFoam

• datToFoam • netgenNeutralToFoam

• fluent3DMeshToFoam • Optional/ccm26ToFoam

• fluentMeshToFoam • plot3dToFoam

• foamMeshToFluent • sammToFoam

• foamToStarMesh • star3ToFoam

• foamToSurface • star4ToFoam

• gambitToFoam • tetgenToFoam

• gmshToFoam • vtkUnstructuredToFoam

• ideasUnvToFoam • writeMeshObj

Mesh conversion
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• Take your time and read the instructions/comments contained in the source code of 

the mesh conversion utilities so you can understand how to use these powerful tools.



Mesh conversion
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$PTOFC/mesh_conversion_sandbox/M1_mixing_elbow_salome

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend to open the README.FIRST file and type the commands in the terminal, in this way 

you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

• Let us convert to OpenFOAM® format a mesh generated using Salome.

• You will find this case in the directory:



Case 1. Mixing elbow (internal mesh).

Mesh conversion

• Remember to export the mesh in UNV format in Salome.  

• Then use the utility ideasUnvToFoam to convert the mesh to OpenFOAM® native 

format.

• In the terminal window type:

1. $> foamCleanTutorials 

2. $> foamCleanPolyMesh

3. $> ideasUnvToFoam ../../meshes_and_geometries/salome_elbow3d/Mesh_1.unv

4. $> checkMesh

5. $> paraFoam

• Remember to always check the file boundary after converting the mesh.

• To convert the mesh, you need to be in the top level of the case directory, and you 

need to give the path (absolute or relative) of the mesh to be converted.
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Case 1. Mixing elbow (internal mesh).

Mesh conversion

• ideasUnvToFoam output.  

Create time

Processing tag:2411

Starting reading points at line 3.

Read 31136 points.

Processing tag:2412

Starting reading cells at line 62278.

First occurrence of element type 11 for cell 1 at line 62279

First occurrence of element type 41 for cell 361 at line 63359

First occurrence of element type 111 for cell 20933 at line 104503

Read 151064 cells and 20572 boundary faces.

Processing tag:2467

Starting reading patches at line 406633.

For group 1 named pipe trying to read 19778 patch face indices.

For group 2 named inlet1 trying to read 358 patch face indices.

For group 3 named inlet2 trying to read 78 patch face indices.

For group 4 named outlet trying to read 358 patch face indices.

Sorting boundary faces according to group (patch)

0: pipe is patch

1: inlet1 is patch

2: inlet2 is patch

3: outlet is patch

Constructing mesh with non-default patches of size:

pipe 19778

inlet1 358

inlet2 78

outlet 358

End

Boundary patches detected

Internal cells and boundary faces read
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Case 1. Mixing elbow (internal mesh).

Mesh conversion

• checkMesh output.  

Mesh stats

points:           31136

faces:            312414

internal faces:   291842

cells:            151064

faces per cell:   4

boundary patches: 4

point zones:      0

face zones:       0

cell zones:       0

Overall number of cells of each type:

hexahedra:     0

prisms:        0

wedges:        0

pyramids:      0

tet wedges:    0

tetrahedra:    151064

polyhedra:     0

Checking topology...

Boundary definition OK.

Cell to face addressing OK.

Point usage OK.

Upper triangular ordering OK.

Face vertices OK.

Number of regions: 1 (OK).
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Case 1. Mixing elbow (internal mesh).

Mesh conversion

• checkMesh output.  

Checking patch topology for multiply connected surfaces...

Patch               Faces    Points   Surface topology                  

pipe                19778    9938     ok (non-closed singly connected)  

inlet1              358      200      ok (non-closed singly connected)  

inlet2              78       50       ok (non-closed singly connected)  

outlet              358      200      ok (non-closed singly connected)  

Checking geometry...

Overall domain bounding box (0 -0.414214 -0.5) (5 5 0.5)

Mesh has 3 geometric (non-empty/wedge) directions (1 1 1)

Mesh has 3 solution (non-empty) directions (1 1 1)

Boundary openness (-1.0302e-17 -6.17232e-17 -1.77089e-16) OK.

Max cell openness = 2.32045e-16 OK.

Max aspect ratio = 4.67245 OK.

Minimum face area = 0.000286852. Maximum face area = 0.010949.  Face area magnitudes OK.

Min volume = 2.74496e-06. Max volume = 0.00035228.  Total volume = 6.75221.  Cell volumes OK.

Mesh non-orthogonality Max: 54.2178 average: 15.1295

Non-orthogonality check OK.

Face pyramids OK.

Max skewness = 0.649359 OK.

Coupled point location match (average 0) OK.

Mesh OK.

End

Everything is OK
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Case 1. Mixing elbow (internal mesh).

Mesh conversion

• The boundary file.

4

(

pipe

{

type            patch;

nFaces          19778;

startFace       291842;

}

inlet1

{

type            patch;

nFaces          358;

startFace       311620;

}

inlet2

{

type            patch;

nFaces          78;

startFace       311978;

}

outlet

{

type            patch;

nFaces          358;

startFace       312056;

}

)

Name of the boundary patches

• In this case, the utility recognized the 

name of the boundary patches.

• If you do not like the names feel free to 

change them.

• Remember, do not use spaces of 

strange symbols.

Number of boundary patches
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Case 1. Mixing elbow (internal mesh).

Mesh conversion

• The boundary file.

4

(

pipe

{

type            patch;

nFaces          19778;

startFace       291842;

}

inlet1

{

type            patch;

nFaces          358;

startFace       311620;

}

inlet2

{

type            patch;

nFaces          78;

startFace       311978;

}

outlet

{

type            patch;

nFaces          358;

startFace       312056;

}

)

Base type of the boundary patches

• In this case, the utility automatically 

assigned the base type patch to all 

boundary patches.

• Feel free to change the base type 

according to your needs.

• In this case, it will be wise to change 

the base type of patch pipe to wall.
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Mesh conversion

Exercises

• Remember, you can change the name and type of the boundary patches manually, but as we want to do 
things automatically, we will use the utilities createPatch and foamDictionary

• After converting the mesh to OpenFOAM® format, rename the boundary patches using the utility 
createPatch.

• After converting the mesh to OpenFOAM® format, change the type of each boundary patch using the 
utility foamDictionary.

• After converting the mesh to OpenFOAM® format, add 5 inflation layers at the walls (do not save the 

intermediate step).

• Check the mesh quality before and after adding the inflation layers.

• After generating the mesh, setup a simple incompressible simulation (with no turbulence model). 

• Set the inlet velocity to 1 at both inlet patches and use a dynamic viscosity value equal to 0.01. Run the 

simulation in steady and unsteady mode.
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• First of all, by mesh manipulation we mean modifying a valid OpenFOAM® 

mesh.

• These modifications can be scaling, rotation, translation, mirroring, 

topological changes, mesh refinement and so on.

• In the directory $FOAM_UTILITIES/mesh/manipulation you will find the 

mesh manipulation utilities. Just to name a few:

Geometry and mesh manipulation utilities
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• autoPatch • rotateMesh

• checkMesh • setSet

• createBaffles • splitMesh

• mergeMeshes • splitMeshRegions

• mergerOrSplitBaffles • stitchMesh

• mirrorMesh • subsetMesh

• polyDualMesh • topoSet

• refineMesh • transformPoints

• renumberMesh



• In the directory $FOAM_UTILITIES/mesh/manipulation you will find the 

following mesh manipulation utilities.

• Inside each utility directory you will find a *.C file with the same name as the 

directory. This is the main file, where you will find the top-level source code and a 

short description of the utility. 

• For instance, in the directory checkMesh, you will find the file checkMesh.C, which 

is the source code of the utility checkMesh.  In the source code you will find the 

following description:

Geometry and mesh manipulation utilities

Checks validity of a mesh.

Usage

- checkMesh [OPTION]

\param -allGeometry \n

Checks all (including non finite-volume specific) geometry

\param -allTopology \n

Checks all (including non finite-volume specific) addressing

\param -meshQuality \n

Checks against user defined (in \a system/meshQualityDict) quality settings

\param -region \<name\> \n

Specify an alternative mesh region.
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• In OpenFOAM® it is also possible to manipulate the geometries in STL 

format.

• These modifications can be scaling, rotation, translation, mirroring, 

topological changes, normal orientation, and so on.

• In the directory $FOAM_UTILITIES/surface you will find the mesh 

manipulation utilities. Just to name a few:

Geometry and mesh manipulation utilities
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• surfaceAdd • surfaceMeshConvert

• surfaceAutoPatch • surfaceMeshExport

• surfaceBooleanFeatures • surfaceMeshTriangulate

• surfaceCheck • surfaceOrient

• surfaceConvert • surfaceSplitByPatch

• surfaceFeatureConvert • surfaceSubset

• surfaceFeatures • surfaceToPatch

• surfaceInertia • surfaceTransformPoints



• In the directory $FOAM_UTILITIES/surface you will find the following surface 

manipulation utilities.

• Inside each utility directory you will find a *.C file with the same name as the 

directory. This is the main file, where you will find the top-level source code and a 

short description of the utility. 

• For instance, in the directory surfaceTransformPoints, you will find the file 

surfaceTransformPoints.C, which is the source code of the utility 

surfaceTransformPoints.  In the source code you will find the following 

description:

Geometry and mesh manipulation utilities

Transform (scale/rotate) a surface.

Like transformPoints but for surfaces.

The rollPitchYaw option takes three angles (degrees):

- roll (rotation about x) followed by

- pitch (rotation about y) followed by 

- yaw (rotation about z)

The yawPitchRoll does yaw followed by pitch followed by roll.    
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$PTOFC/mesh_quality_manipulation/M5_ahmed_body_transform

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend to open the README.FIRST file and type the commands in the terminal, in this way 

you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

• Let us do some surface manipulation.

• For this we will use the ahmed body tutorial.

• You will find this case in the directory:



Geometry manipulation in OpenFOAM®

Geometry and mesh manipulation utilities

1. $> foamCleanTutorials 

2. $> surfaceMeshInfo ./constant/triSurface/ahmed_body.stl

3. $> surfaceCheck ./constant/triSurface/ahmed_body.stl

4.
$> surfaceTransformPoints -rollPitchYaw '(0 0 15)’ 

./constant/triSurface/ahmed_body.stl rotated.stl

5.
$> surfaceTransformPoints -translate '(0 0.12 0)'  

./constant/triSurface/ahmed_body.stl   translated.stl 

6.
$> surfaceTransformPoints -scale '(0.9 1.1 1.3)'  

./constant/triSurface/ahmed_body.stl   scaled.stl 

7.
$> surfaceInertia -density 2700 –noFunctionObjects 

./constant/triSurface/ahmed_body.stl

8.
$> surfaceOrient ./constant/triSurface/ahmed_body_wrong_normals.stl

out.stl ‘(1e10 1e10 1e10)’

• We will now manipulate a STL geometry. In the terminal type:
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Geometry and mesh manipulation utilities

Geometry manipulation in OpenFOAM®
• In step 2 we use the utility surfaceMeshInfo to get general information about the STL (such 

as number of faces and so on).

• In step 3 we use the utility surfaceCheck to check the STL file.

• In step 4 we use the utility surfaceTransformPoints to rotate the STL.  We read in the STL 

./constant/triSurface/ahmed_body.stl and we write out the STL rotated.stl

• In step 5 we use the utility surfaceTransformPoints to translate the STL.  We read in the 

STL ./constant/triSurface/ahmed_body.stl and we write out the STL 

translated.stl

• In step 6 we use the utility surfaceTransformPoints to scale the STL.  We read in the STL 

./constant/triSurface/ahmed_body.stl and we write out the STL scaled.stl

• In step 7 we use the utility surfaceInertia to compute the inertia of the STL.  We read in the 

STL ./constant/triSurface/ahmed_body.stl. Notice that we need to give a reference 

density value.

• In step 8 we use the utility surfaceOrient to orient the normals of the STL in the same way.  

We read in the STL ./constant/triSurface/ahmed_body_wrong_normals.stl and we 

write out the STL out.stl. Notice that we give an outside point or ‘(1e10 1e10 1e10)’, if 

this point is outside the STL all normals will be oriented outwards, if the point is inside the STL 

all normals will be oriented inwards.
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Geometry and mesh manipulation utilities

Geometry manipulation in OpenFOAM®
• Pay particular attention to step 8. 

• We already have seen that snappyHexMesh computes surface angles using the surface 

normals as a reference, so it is extremely important to have the normals oriented in the same 

way and preferably outwards.

ahmed_body_wrong_normals.stl STL after orienting all normals in the same 

direction. 
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Geometry manipulation in OpenFOAM®
• To plot the normals in paraview/paraFoam you can use the filter Normal Glyphs

Apply the Normal Glyphs 

filter to the STL

Uncheck this option

Scale the vectors to fit the screen

Select the Normal Glyphs from the filter menu
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$PTOFC/mesh_quality_manipulation/M7_cylinder_transform

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend to open the README.FIRST file and type the commands in the terminal, in this way 

you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

• Let us do some mesh manipulation.

• For this we will use the 2D cylinder tutorial.

• You will find this case in the directory:



Mesh manipulation in OpenFOAM®

Geometry and mesh manipulation utilities

1. $> foamCleanTutorials 

2. $> blockMesh

3. $> transformPoints -rollPitchYaw '(0 0 90)' 

4. $> transformPoints -scale '(0.01 0.01 0.01)' 

5. $> transformPoints -translate '(0 0 1)' 

6. $> createPatch -noFunctionObjects –overwrite 

7. $> checkMesh

8. $> paraFoam

• We will now manipulate a mesh. In the terminal type:
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• In step 3 we use the utility transformPoints to rotate the mesh.  We rotate the mesh by 90° about the Z

axis.

• In step 4 we use the utility transformPoints to scale the mesh. We scale the mesh by a factor of '(0.01 

0.01 0.01)'.

• In step 5 we use the utility transformPoints to translate the mesh.  We translate the mesh by the vector 

'(0 0 1)'.

• In step 6 we use the utility createPatch to rename the patches of the mesh. This utility reads the dictionary 

system/createPatchDict. Instead of using the utility createPatch we could have modified the 

boundary file directly.

• This case is ready to run using the solver buoyantBoussinesqPimpleFoam.



Geometry and mesh manipulation utilities

Mesh manipulation in OpenFOAM®
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Original mesh

Transformed mesh

After renaming the patches and transforming the mesh, we can 

use it to conduct this buoyant flow simulation
www.wolfdynamics.com/wiki/heated_cyl/ani1.gif
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Running in parallel
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1. Running in parallel
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Running in parallel

• First of all, to know how many processors/cores you have available in your computer, type in the 

terminal:

• $> lscpu

• The output for this particular workstation is the following:

Architecture:          x86_64

CPU op-mode(s):        32-bit, 64-bit

Byte Order:            Little Endian

CPU(s):                24

On-line CPU(s) list:   0-23

Thread(s) per core:    2

Core(s) per socket:    6

Socket(s):             2

NUMA node(s):          2

Vendor ID:             GenuineIntel

CPU family:            6

Model:                 44

Model name:            Intel(R) Xeon(R) CPU           X5670  @ 2.93GHz

Stepping:              2

CPU MHz:               1600.000

CPU max MHz:           2934.0000

CPU min MHz:           1600.0000

BogoMIPS:              5851.91

Virtualization:        VT-x

L1d cache:             32K

L1i cache:             32K

L2 cache:              256K

L3 cache:              12288K

NUMA node0 CPU(s): 0-5,12-17

NUMA node1 CPU(s):  6-11,18-23

Number of sockets (physical processors)

Number of cores per socket or physical 

processor

Number of threads per core (hyper threading)

Total number of cores available after 

hyper threading (virtual cores)

Total number of physical cores

= 

Number of cores per socket   X   Number of sockets 

Total number of physical cores = 6 X 2 = 12 cores

This is what makes a processor expensive
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Running in parallel

• OpenFOAM® does not take advantage of hyper threading technology (HT).

• HT is basically used by the OS to improve multitasking performance.

• This is what we have in the workstation of the previous example:

• 24 virtual cores (hyper threaded) 

• 12 physical cores

• To take full advantage of the hardware, we use the maximum number of physical 

cores (12 physical cores in this case) when running in parallel.

• If you use the maximum number of virtual cores, OpenFOAM® will run but it will be 

slower in comparison to running with the maximum number of physical cores (or even 

less cores).

• Same rule applies when running in clusters/super computers, so always read the 

hardware specifications to know the limitations.
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Running in parallel

Why use parallel computing?

494

• Solve larger and more complex problems (scale-up): 

Thanks to parallel computing we can solve bigger problems (scalability). A single computer has limited 

physical memory, many computers interconnected have access to more memory (distributed memory).

• Provide concurrency (scale-out): 

A single computer or processor can only do one thing at a time. Multiple processors or computing 

resources can do many things simultaneously.

• Save time (speed-up): 

Run faster (speed-up) and increase your productivity, with the potential of saving money in the design 

process. 

• Save money: 

In theory, throwing more resources at a task will shorten its time to completion, with potential cost 

savings. Parallel computers can be built from cheap, commodity components. 

• Limits to serial computing:

Both physical and practical reasons pose significant constraints to simply building ever faster serial 

computers (e.g, transmission speed, CPU clock rate, limits to miniaturization, hardware cooling).



Running in parallel

Speed-up and scalability example

• In the context of high-performance computing (HPC), there are two common metrics that measure the 

scalability of the application:

• Strong scaling (Amdahl’s law): which is defined as how the solution time varies with the number of 

processors for a fixed problem size (number of cells in CFD)

• Weak scaling (Gustafson’s law): which is defined as how the solution time varies with the number of 

processors for a fixed problem size per processor (or increasing the problem size with a fix number of 

processors).

• In this example, when we reach 12 cores inter-processor communication slow-downs the computation. But if we 

increase the problem size for a fix number of processors, we will increase the speed-up.

• The parallel case with 1 processor runs slower than the serial case due to the extra overhead when calling the 

MPI library. 495



Running in parallel

• The method of parallel computing used by OpenFOAM® is known as domain 

decomposition, in which the geometry and associated fields are broken into pieces 

and distributed among different processors.

Shared memory architectures – Workstations and portable computers

Distributed memory architectures – Clusters and super computers

496



Running in parallel

Some facts about running OpenFOAM®  in parallel:

• Applications generally do not require parallel-specific coding.  The parallel 

programming implementation is hidden from the user.

• In order to run in parallel you will need an MPI library installation in your system.

• Most of the applications and utilities run in parallel.

• If you write a new solver, it will be in parallel (most of the times).

• We have been able to run in parallel up to 15000 processors. 

• We have been able to run OpenFOAM® using single GPU and multiple GPUs.

• Do not ask about scalability, that is problem/hardware specific.

• If you want to learn more about MPI and GPU programming, do not look in my 

direction.  

• And of course, to run in parallel you need the hardware.
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Running in parallel

To run OpenFOAM® in parallel you will need to:

• Decompose the domain. 

To do so we use the decomposePar utility.  You also need the dictionary 

decomposeParDict which is located in the system directory.

• Distribute the jobs among the processors or computing nodes. 

To do so, OpenFOAM® uses the standard message passing interface (MPI). 

By using MPI, each processor runs a copy of the solver on a separate part 

of the decomposed domain.

• Additionally, you might want to reconstruct (put back together) the 

decomposed domain.  

This is done by using the reconstrucPar utility. You do not need a 

dictionary to use this utility.
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Running in parallel

Domain Decomposition in OpenFOAM®

• The mesh and fields are decomposed using the decomposePar utility.  

• They are broken up according to a set of parameters specified in a dictionary named 
decomposeParDict that is located in the system directory of the case.

• In the decomposeParDict dictionary the user must set the number of domains in which the 

case should be decomposed (using the keyword numberOfSubdomains). The value used 

should correspond to the number of physical cores available.

numberOfSubdomains 128;

method  scotch;

Number of subdomains

Decomposition method

• In this example, we are subdividing the domain in 128 subdomains, therefore we should have 

128 physical cores available.

• The main goal of domain decomposition is to minimize the inter-processors communication and 

the processor workload.
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• These are the decomposition methods available in OpenFOAM® 8. To name a few: 

• hierarchical

• manual

• metis

• multiLevel

• none

• scotch

• simple

• structured

Domain Decomposition Methods 

Running in parallel

We highly recommend you to use this method.

The only input that requires from the user is 

the number of subdomains/cores. This method 

attempts to minimize the number of processor 

boundaries.  

• If you want more information about each decomposition method, just read the source code:

• $WM_PROJECT_DIR/src/parallel/decompose/
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Running in parallel

processor0 processor1 processor2 processor3

• Inside each processorN directory you will have the mesh information, boundary conditions, 

initial conditions, and the solution for that processor.

Running in parallel – Gathering all together

The information inside the 
directories polyMesh/ and 

0/ is decomposed using the 

utility decomposePar

decomposePar
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Running in parallel

$> mpirun –np <NPROCS> <application/utility> –parallel

• The number of processors to use or <NPROCS>, needs to be the same as the  number of 

partitions (numberOfSubdomains).

• Do not forget to use the flag –parallel.

• After decomposing the mesh, we can run in parallel using MPI.

Running in parallel – Gathering all together
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• The interface between each region, is know 

as halo zone.

• The inter-processor communication in the 

halo zone is managed by the MPI library.

• Remember, the main goal is to minimize the 

halo zone, therefore, the inter-processor 

communication.



Running in parallel

reconstructPar

• In the decomposed case, you will find the mesh 

information, boundary conditions, initial conditions, and 

the solution for every processor.  

• The information is inside the directory processorN

(where N is the processor number).

• When you reconstruct the case, you glue together all the 

information contained in the decomposed case.

• All the information (mesh, boundary conditions, initial 

conditions, and the solution), is transfer to the original 
case folder (polyMesh and time solution directories).

Running in parallel – Gathering all together
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Running in parallel

• Summarizing, to run in parallel we proceed in the following way:

1. $> decomposePar

2. $> mpirun –np <NPROCS> <application/utility> –parallel

3. $> reconstructPar 

• You can do the post-processing and visualization on the decomposed case or reconstructed 

case.  We are going to address this later on.

• If you are dealing with moving bodies where the mesh topology is changed or if you are using 
AMR, you will need to use reconstructParMesh before reconstrucPar.

Running in parallel – Gathering all together
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• When running in parallel, do not forget to add this flag.

• If you do not add this flag, the application will run, but                         

it will execute <NPROCS> duplicates of the same job                        

(it will be slower).



Running in parallel

Kelvin Helmholtz instability in a coarse mesh

Processors Clock time (seconds)
Mesh size 

in x, y,  and z directions

1 955 800 X 160 X 1

2 564 800 X 160 X 1

4 333 800 X 160 X 1

8 234 800 X 160 X 1

12 244 800 X 160 X 1

Volume fraction
www.wolfdynamics.com/wiki/kelvin_helmholtz/ani1.gif

You will find this case in the directory: $PTOFC/parallel/kelvin_helmholtz 505
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Running in parallel

• The traditional way is to first reconstruct the case and then do the post-processing and 

visualization on the reconstructed case.  

• To do so, we type in the terminal:

1. $> reconstructPar 

2. $> paraFoam

• Step 1 reconstruct the case.  Remember, you can choose to reconstruct all the time steps, the 

last time step or a range of time steps.

• In step 2, we use paraFoam to visualize the reconstructed case.

Visualization of a parallel case
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Running in parallel

• An alternative way to visualize the solution, is by proceeding in the following way

• $> paraFoam –builtin

• The option –builtin let us post-process the decomposed case directly.

• Remember, you will need to select on the object inspector the Decomposed Case option. 

Visualization of a parallel case
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Running in parallel

• Both of the previous methods are valid.

• When we use the option –builtin with paraFoam, we have the option to work on the 

decomposed case directly. In other words, we do not need to reconstruct the case.

• This option is also faster than running paraFoam with no flags.

• But wait, there is a third option. 

• The third option consist in post-processing each decomposed domain individually. 

• To load all processor directories, you will need to manually create the file 
processorN.OpenFOAM (where N is the processor number) in each processor folder.

• After creating all processorN.OpenFOAM files, you can launch paraFoam and load each file 

(the processorN.OpenFOAM files).

• As you can see, this option requires more input from the user.

Visualization of a parallel case

508



Running in parallel

Decomposing big meshes

509

• One final word, the utility decomposePar does not run in parallel.  

• So, it is not possible to distribute the mesh among different computing nodes to do the 

partitioning in parallel.

• If you need to partition big meshes, you will need a computing node with enough memory to 

handle the mesh.  

• We have been able to decompose meshes with up to 500 000 000 elements, but we used a 

computing node with 512 gigs of memory.

• For example, in a computing node with 16 gigs of memory, it is not possible to decompose a 

mesh with 30 000 000. You will need to use a computing node with at least 32 gigs of memory.

• Same applies for the utility reconstructPar.



Running in parallel

Do all utilities run in parallel?

• At this point, you might be wondering if all solvers/utilities run in parallel.  

• To know what solvers/utilities do not run in parallel, in the terminal type:

• $> find $WM_PROJECT_DIR -type f | xargs grep –sl ‘noParallel’

• Paradoxically, the utilities used to decompose the domain and reconstruct the domain do not 

run in parallel.  

• Another important utility that does not run in parallel is blockMesh. So to generate big meshes 

with blockMesh you need to use a big fat computing node.

• Another important utility that does not run in parallel by default is paraFoam.

• To compile paraFoam with MPI support, in the file makeParaView (located in the directory 

$WM_THIRD_PARTY_DIR), set the option withMPI to true,

• withMPI = true

• While you are working with the file makeParaView, you might consider enabling Python 

support,

• withPYTHON = true
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Exercises

• Choose any tutorial or design your own case and do a scalability test.  Scale your case with two different 

meshes (a coarse and a fine mesh).

• Run the same case using different partitioning methods.  Which method scales better? Do you get the same 

results? 

• Do you think that the best partitioning method is problem dependent?

• Compare the wall time of a test case using the maximum number of cores and the maximum number of virtual 

cores.  Which scenario is faster and why?

• Run a parallel case without using the –parallel option. Does it run? Is it faster of slower? How many 

outputs do you see on the screen?

• Do you get any speed-up by using renumberMesh?

• What applications do not run in parallel?
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Module 5
The postprocess utility – Sampling – Probing 

– On-the-fly postprocessing – Field 

manipulation – Data conversion



Roadmap
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1. On-the-fly postprocessing – functionObjects and the 

postProcess utility

2. Sampling with the postProcess utility

3. Field manipulation  

4. Data conversion



On-the-fly postprocessing – functionObjects

• It is possible to perform data extraction/manipulation operations while the simulation 

is running by using functionObjects.

• functionObjects are small pieces of code executed at a regular interval without 

explicitly being linked to the application.

• When using functionObjects, files of sampled data can be written for plotting and 

post processing.

• functionObjects are specified in the controlDict dictionary and executed at pre-

defined intervals.

• All functionObjects are runtime modifiable.

• Depending of the functionObject you are using, its output is saved in the directory 
postProcessing or in the solution directory (time directories).

• It is also possible to execute functionObject after the simulation is over, we will call 

this running functionObject a-posteriori. 

• For example, you can use functionObjects to compute the Mach number, the 

vorticity field, and to sample the velocity at given points or along a line, and 

everything while the simulation is running.
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On-the-fly postprocessing – functionObjects
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• In the directory $FOAM_SRC/functionObjects you will find the source code for the 

functionObjects. 

• There are many functionObjects, and according to what they do, they are located in different 
sub-directories, namely, field, forces, lagrangian, solvers, and utilities. Just to 

name a few functionObjects:

• courantNo • forceCoeffs

• div • forces

• fieldAverage • icoUncoupledKinematicCloud

• fieldMinMax • scalarTransport

• grad • codedFunctionObject

• MachNo • residuals

• Q • systemCall

• vorticity • timeActivatedFileUpdate

• yPlus • writeObjects

• In addition to the functionObjects located in the directory $FOAM_SRC/functionObjects, 

you can also run the sampling and co-processing utilities on-the-fly.

• You will find the source code for the sampling and co-processing utilities in the directory 
$FOAM_SRC/sampling. 



• functionObjects are defined in the controlDict dictionary. 

• To execute a functionObject you need to at least define the following entries:

On-the-fly postprocessing – functionObjects

516

function_object_name

type    function_object_to_use;

functionObjectLibs ("function_object_library.so");

enabled   true;

writeControl    outputTime;

timeStart        0;

timeEnd          20;

// ...

// functionObject

// keywords and sub-dictionaries

// ...

log    true;

User given name

Library to use

functionObject to use

Turn on/off functionObject

Show on screen the output of 

the functionObject

Output frequency

Keywords and sub-dictionaries 

specific to the functionObject



On-the-fly postprocessing – functionObjects

517

• There are many functionObjects implemented in OpenFOAM®, and sometimes is 

not very straightforward how to use a specific functionObject. 

• Also, functionObjects can have many options and some limitations.

• Our best advice is to read the doxygen documentation or the source code to learn 

how to use functionObjects.

• Remember, the source code of the functionObjects is located in the directory:

$WM_PROJECT_DIR/src/postProcessing/functionObjects

• The source code of the sampling and co-processing utilities is located in the directory:

$WM_PROJECT_DIR/src/sampling

• The source code of the database entries required for the functionObjects is located 

in the directory:

$FOAM_SRC/OpenFOAM/db/functionObjects

• Here after we are going to study a few commonly used functionObjects.



On-the-fly postprocessing – functionObjects
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• Let us do some on-the-fly postprocessing.  

• For this we will use the multi-element airfoil 2D case. 

• You will find this case in the directory:

$PTOFC/101postprocessing/MDA_30P30N

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this 

way, you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 



On-the-fly postprocessing – functionObjects
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At the end of the day, you should get something like this

cd cl

Experimental values 0.0332 2.167

Numerical values 0.0346 2.238

Additionally, by using functionObjects we will 

compute many derived quantities, such as,

• yPlus.

• Voriticity.

• Mean values of the field variables (notice 

that we will compute the average of a 

steady solution).

• Forces.

• Force coefficients.

• Minimum and maximum values of the field 

variables.

• Sampling at given points.

• Mass flow at inlets and outlets.

Qualitative post-processing Quantitative post-processing



On-the-fly postprocessing – functionObjects
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At the end of the day, you should get something like this

Quantitative post-processing



On-the-fly postprocessing – functionObjects
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At the end of the day, you should get something like this

Quantitative post-processing – Assessing residuals

Should I stop here? Or should I stop here?



On-the-fly postprocessing – functionObjects
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• Do not erase the solution as we are going to use it in the next section.

Running the case

• Let us run this case using the automatic scripts distributed with the tutorial. In the 

terminal type:

1. $> sh run_all.sh

• After the simulation is finish, you will find the decomposed directories (processor0, 

processor1, processor2 and processor3), the postProcessing directory, 

and the 2000 directory. The solution, and output of the functionObjects, is saved in 

these directories.

• Remember, to visualize the decomposed solution you will need to launch paraFoam

as follows,

1. $> paraFoam -builtin
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51  functions

52  {

name_of_the_functionObject_dictionary

{

Sub-dictionary with functionObject entries

}

206 #include "externalFunctionObject"

211 }

• Let us take a look at the bottom of the controlDict 

dictionary file. In this dictionary is where we define all 

functionObjects.

• Within this dictionary, functionObjects are defined in 

the sub-dictionary functions, i.e.,

The controlDict dictionary

• In this case, the functionObjects are defined in lines 

51-211 (the sub-dictionary functions). 

• Each defined functionObject has its own name and its 

compulsory keywords and entries.

• Notice that in line 206 we use the directive include to call 

an external dictionary with the functionObjects 

definition.

• If you do not give the path of the external dictionary, the 
solver will look for it in the directory system.

• If you use the include directive, you will need to update 
the controlDict dictionary in order to read any 

modification done in the included dictionary files.

functions

{

functionObjects definition

};
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51  functions

52  {

56 forces_object

57 {

58 type forces;

59 functionObjectLibs ("libforces.so");

60

61

62 writeControl   timeStep;

63 writetInterval  1;

64

65 enabled true;

66

67 //// Patches to sample

68 patches ("wall_slat" "wall_airfoil" "wall_flap");

70 //// Name of fields

71 pName p;

72 Uname U;

74 //only for incompressible flows

75 rho rhoInf;

76 rhoInf 1.0;

78 //// Centre of rotation

79 CofR (0 0 0);

80 }

211 }

The controlDict dictionary

• Let us explain in detail how to setup a functionObject.

• As the names implies, this functionObject is used to 

compute the forces on a given body or set of bodies 

(line 56).

• You can add as many forces functionObjects (or any 

other one) as you like, but you should assign them 

different identifiers (line 56). Remember not to use 

white spaces when naming functionObjects.

• The output of this functionObject is saved in the 
directory postProcessing/forces_object,

where the directory name is taken from line 56.

• Inside this directory, you will find the subdirectory 0, 

which means that you started to sample data from time 
0. If you start from a different time, you will find a 

different subdirectory, e.g., 86.05

• Remember, different functionObjects will have 

different entries, to know the entries just refer to the 

online documentation or skim the source code, which 

is located in the directory,

• $WM_PROJECT_DIR/src/postProcessing/f

unctionObjects

functionObject identifier 

(user given)
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51  functions

52  {

56 forces_object

57 {

58 type forces;

59 functionObjectLibs ("libforces.so");

60

61

62 writeControl   timeStep;

63 writetInterval  1;

64

65 enabled true;

66

67 //// Patches to sample

68 patches ("wall_slat" "wall_airfoil" "wall_flap");

70 //// Name of fields

71 pName p;

72 Uname U;

74 //only for incompressible flows

75 rho rhoInf;

76 rhoInf 1.0;

78 //// Centre of rotation

79 CofR (0 0 0);

80 }

211 }

The controlDict dictionary

functionObject to use

functionObject library to use

Controls for saving frequency

Turn on/off functionObject

Compute the forces on these patches

Name of the velocity and pressure fields. If you use 

different fields, e.g., pMean and Umean, they need to be 

computed before this functionObject

Reference density value.  It only needs to be defined for 

incompressible flows.  For compressible flows, the 

computed density is used instead (you will need to define 

a dummy value, though)

Reference center of rotation to compute moments

functionObject identifier (user given)

• Let us study all entries of the forces functionObject

Note:

• The source code of this functionObject is located in the directory 
$FOAM_SRC/functionObjects/forces/forces

• Use the banana method to know all the options available for each entry.
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51  functions

52  {

86 forceCoeffs_object

87 {

88 type forceCoeffs;

89 functionObjectLibs ("libforces.so");

90

91 enabled true;

92

93 patches ("wall_slat" "wall_airfoil" "wall_flap");

94

95 pName p;

96 Uname U;

97

99 rho rhoInf;

100 rhoInf 1.0;

101

103 log true;

104

105 CofR (0.0 0 0);

106

107 pitchAxis (0 0 1);

108 magUInf 1.0;

109 lRef 1;

110 Aref 1;

111

115 writeControl   timeStep;

116 writeInterval  1;

117

119 liftDir     (0 1 0);

120 dragDir     (1 0 0);   

121

125 }

211 }

The controlDict dictionary

• This functionObject computes the force coefficients.  

• These entries are similar to those of the force      

functionObject

This option will output the values to a text file located in the 
directory postProcessing/forceCoeffs_object

Reference values used to compute coefficients

Controls for saving frequency

Reference axes to compute the lift and drag coefficients.  

Reference center of rotation to compute moments

• Let us study now the functionObject used to 

compute the force coefficients.functionObject 

identifier (user given)
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51  functions

52  {

86 forceCoeffs_object

87 {

88 type forceCoeffs;

89 functionObjectLibs ("libforces.so");

90

91 enabled true;

92

93 patches ("wall_slat" "wall_airfoil" "wall_flap");

94

95 pName p;

96 Uname U;

97

99 rho rhoInf;

100 rhoInf 1.0;

101

103 log true;

104

105 CofR (0.0 0 0);

106

107 pitchAxis (0 0 1);

108 magUInf 1.0;

109 lRef 1;

110 Aref 1;

111

115 writeControl   timeStep;

116 writeInterval  1;

117

119 liftDir     (0 1 0);

120 dragDir     (1 0 0);   

121

125 }

211 }

The controlDict dictionary

functionObject 

identifier (user given)

• Reference axes to compute the lift and drag coefficients.

• Remember, lift and drag are perpendicular and parallel 

to the incoming flow, respectively. 

• So if the inlet velocity is entering at a given angle, you 

should adjust the vectors liftDir and dragDir so they are 

aligned with the incoming flow (rotation matrix).

• Let us study now the functionObject used to 

compute the force coefficients.
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51  functions

52  {

131 minmaxdomain

132 {

133 type fieldMinMax;

134

135 functionObjectLibs ("libfieldFunctionObjects.so");

136

137 enabled true;

138

139 mode component;

140

141 writeControl timeStep;

142 writeInterval 1;

143

144 log true;

145

146 fields (p U nuTilda nut k omega);

147 }

148

149

150

151

152

153 yplus

154 {

155 type yPlus;

156 functionObjectLibs ("libfieldFunctionObjects.so");

157 enabled true;

158 log true;

159 writeControl outputTime;   

160 }

211 }

The controlDict dictionary

• fieldMinMax functionObject

• This functionObject is used to compute the minimum 

and maximum values of the field variables.

• The output of this functionObject is saved in ascii format 
in the file fieldMinMax.dat located in the directory 

postProcessing/minmaxdomain/0

• Remember, the name of the directory where the output 

data is saved is the same as the name of the 

functionObject (line 131).

• yPlus functionObject

• This functionObject is used to compute the yPlus field.

• This functionObject has two outputs, one output saved 
in the solution directories (1, 2, 3, and so on).  You can 

visualize this output using paraview/paraFoam. 

• The second output is located in the directory

postProcessing/yplus/0. 

• In this file you will find the minimum, maximum and 

average values of yPlus in all patches defined as walls.

• Remember, the name of the directory where the output 

data (descriptive statistics) is saved is the same as the 

name of the functionObject (line 153).



On-the-fly postprocessing – functionObjects

529

51  functions

52  {

166 fieldAverage1

167 {

168 type            fieldAverage;

169 libs ( "libfieldFunctionObjects.so" );

170 writeControl    writeTime;

177 fields

178 (

179 U

180 {

181 mean        on;

182 prime2Mean  on;

183 base        time;

184 }

185

186 p

187 {

188 mean        on;

189 prime2Mean  on;

190 base        time;

191 }

192

193 nut

194 {

195 mean        on;

196 prime2Mean  on;

197 base        time;

198 }

199 );

200 }

206 #include "externalFunctionObject"

211 }

The controlDict dictionary

• fieldAverage functionObject

• This functionObject is used to compute the average 

values of the field variables.

• The output of this functionObject is saved in the time 

solution directories.

• In this case, we are computing the field averages of 

velocity (U), pressure (p), and turbulent viscosity (nut).

• In this functionObject, prime2Mean is the average of the 

product of the fluctuations of the variable,

• In line 206 we add a functionObject definition using an external 

file. 

• In this case, the functionObject is located in the directory 
system

• If you want to run this functionObject online, do not add 

lines 51, 52, and 211 in the file 
externalFunctionObject.

• To run this functionObject a-posteriori (after the simulation 

is over by using the saved solution); add lines 51, 52, and 
211 to the file externalFunctionObject. We explain 

how to run functionObjects a posteriori later.
User given file name
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24 probes_online

25 {

26 type            probes;

27 functionObjectLibs ("libfieldFunctionObjects.so");

28 enabled         true;

29 writeControl timeStep;

30 writeInterval 1;

31

32 probeLocations  

33 ( 

34 (1  0 0)

35 (2  0 0)

36 (2  0.25 0)

37 (2 -0.25 0)

38 );

39

40 fields

41 (   

42 U 

43 p

44 );

45

46 }

52 vorticity

53 {

54 type vorticity;

55 functionObjectLibs ("libfieldFunctionObjects.so");

56 enabled true;

57 log true;

58 writeControl outputTime;   

59 }

The externalFunctionObject dictionary

• probes functionObject

• This functionObject is used to probe field data at the 

given locations.

• In this case, we are sampling the fields U and p (lines 35-

39)

• The output of this functionObject is saved in ascii format 
in the files p and U located in the directory 

postProcessing/probes_online/0

• Remember, the name of the directory where the output 

data is saved is the same as the name of the 

functionObject (line 19).

• vorticity functionObject

• This functionObject is used to compute the vorticity field.

• The output of this functionObject is saved in the solution 
directories (1, 2, 3, and so on).  You can visualize this 

output using paraview/paraFoam. 
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• A functionObject that is very useful, but we did not use in this case:

inlet_massflow

{

type            surfaceRegion;

functionObjectLibs ("libfieldFunctionObjects.so");

writeControl   timeStep;

writesInterval  1;

log             true;

writeFields     false;

regionType      patch;

name            inlet;

operation       sum;

fields (phi);

}

• This functionObject is used to computed the mass flow across a boundary patch.

• Remember, the method is conservative so what is going in, is going out (unless you have 

source terms).

• So if you want to measure the mass imbalance, setup this function object for each boundary 

patch where you have flow entering or going out of the domain.

Final remarks on functionObjects

Compute functionObject in a boundary patch

Compute functionObject in this boundary patch
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• As you can see, there are many functionObjects implemented in OpenFOAM®.

• We just explained the most common functionObjects. 

• You can use the banana method to know all the options available for each entry, 

search in the documentation, or read the source code located in the directory 
$FOAM_SRC/functionObjects

• In the supplement slides you will find more examples of more complex 

functionObjects.

• You will also find a deck of slides with a detailed explanation of advanced paraview 

features and some basic instructions for data plotting and analysis using gnuplot.

• Remember, you can also do the same postprocessing using paraview/paraFoam, but 

you will only work on the saved fields.

• A great advice before running your simulation, setup all your functionObjects and 

gather as much as possible quantitative data.

Final remarks on functionObjects
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• Sometimes it can happen that you forget to use a functionObject or you want to execute a 

functionObject a-posteriori (when the simulation is over).

• The solution to this problem is to use the solver with the option -postProcess.  This will only 

compute the new functionObject, it will not rerun the simulation.

• For instance, let us say that you forgot to use a given functionObject. Open the dictionary 
controlDict, add the new functionObject, and type in the terminal,

• $> name_of_the_solver -postProcess –dict dictionary_location

• You also have the option of adding the new functionObject in an external file. If you chose this 

option, do not forget to add the functionOption within the function sub-dictionary block:

Running functionObjects a-posteriori 

• By proceeding in this way you do not need to rerun the simulation, you just compute the new 

functionObject.

function 

{

//functionObject definitions here

};
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• In the directory system, you will find the following functionObject external 

dictionaries: externalFunctionObject

• To run this functionObject a-posteriori, type in the terminal:

1. $> simpleFoam -postProcess -dict system/externalFunctionObject –noZero

2. $> simpleFoam -postProcess -dict system/externalFunctionObject –time 500:2000

3. $> simpleFoam -postProcess -dict system/functionObject3 –latestTime

• In step 1, we are reading the dictionary system/externalFunctionObject and 

we are doing the computation for all the saved solutions, except time zero.

• In step 2, we are reading the dictionary system/externalFunctionObject and 

we are doing the computation for the time range 500 to 2000 

• In step 3, we are reading the dictionary functionObject3 and we are doing the 

computation only for he latest saved solution.

• If you do not give any time manipulator, the computation will be carried out on every 

saved solution.

Running functionObjects a-posteriori 
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• Where is located the source code of the functionObjects? 

• Try to run in parallel? Do all functionObjects work properly? 

• Compute the Courant number using functionObjects.

• Compute the total pressure and velocity gradient using functionObjects (on-the-fly and a-posteriori).

• Sample data (points, lines and surfaces) using functionObjects (a-posteriori).

• Is it possible to do system calls using functionObjects? If so what functionObject will you use and how do 

you use it? Setup a sample case.

• Is it possible to update dictionaries using functionObjects? If so what functionObjects will you use and how 

do you use it? Setup a sample case.

• What are the compulsory entries of the functionObjects?

Exercises
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1. On-the-fly postprocessing – functionObjects and the 

postProcess utility

2. Sampling with the postProcess utility

3. Field manipulation  

4. Data conversion
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• OpenFOAM® provides the postProcess utility to sample field data for plotting. 

• The sampling parameters are specified in a dictionary located in the case system

directory.  

• You can give any name to the input dictionary, hereafter we are going to name them 
sampleDict (to sample along a line) and probesDict (to sample in a set of 

probes).

• During the sampling, and inside the case directory, a new directory named 
postProcessing will be created.  In this directory, the sampled values are stored in 

a sub-directory with the name of the input dictionary, in this case, sampleDict and 

probesDict.

• This utility can sample points, lines, and surfaces.

• Data can be written in a range of formats including well-known plotting packages 

such as: grace/xmgr, gnuplot and jPlot.

• The sampling can be executed by running the utility postProcess in the case 

directory and according to the application syntax.

• A final word, this utility does not do the sampling while the solver is running. It does 

the sampling after you finish the simulation. 
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• To do sampling, we will use the solution from the previous case. 

• If you do not have the solution, follow the instructions given in the previous slides.

• Hereafter, we will sample along a line and in a few probe locations, as illustrated in 

the figure below.
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• In step 1, we do some sampling using the dictionary sampleDict. We also do the 

sampling only for time 2000 

• In step 2, we do some sampling using the dictionary probesDict. We also do the 

sampling only for time 2000.

• Remember, you can use different time manipulators.

• If you do not give any time manipulator option, the sampling will be computed for all 

saved solutions (including time directory 0).

Running the case

• Let us do the sampling,

1. $> postProcess -func sampleDict –time 2000

2. $> postProcess -func probesDict –time 2000
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The sampleDict and probesDict dictionaries

• These dictionaries are located in the directory system.

• In this case, the sampleDict dictionary is used to sample along a line. This file 

contains several entries to be set according to the user needs.  The following entries 

can be set,

• The choice of the interpolationScheme.

• The format of the line data output. 

• The format of the surface data output. 

• The fields to be sample.

• The sub-dictionaries that controls each sampling operation. 

• In these sub-dictionaries you can set the name, type and geometrical 

information of the sampling operation.

• In this case, the probesDict is used to sample in a set of points. This file contains 

several entries to be set according to the user needs.  The following entries,

• The fields to be sample.

• Location of the probes.

• The following functionObjects type can be used to do sampling: patchProbes, 

probes, sets, or surfaces.
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The sampleDict dictionary

17 type sets;

18 libs ("libsampling.so");

22 interpolationScheme cellPoint;

25 setFormat       raw;

27 surfaceFormat raw;

30 fields

31 (

32 U

33 wallShearStress

34 );

36 sets

37 (

39 profile0

40 {

42 type lineCellFace;

44 axis distance;

46 start ( 0.75150 0.04767 0  );

47 end     ( 0.76168 0.14715 0  );

48 }

66 );

Fields to sample. No need to mention that they must exist.

Name of the set and output file

Note:

Use the banana method to know all the options available.

Sample sets (points and lines).

Interpolation method at the solution level (location of the 
interpolation points).

Format of the output file, raw format is a generic format that can be 

read by many applications.  The file is human readable (ascii 
format).

Interpolation method (from the solution to the line).

Sample method definition

Location of the sample line. Definition if the start and end point

Use sampling library

Sub-dictionary where we define all sampling objects (sets)
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The sampleDict dictionary

• Remember, the sampled data is always saved in the 
directory postProcessing

• Then, in the sub-directory sampleDict (whose name 

corresponds to the name of the input file), you will find the 

data sampled in a directory corresponding to the sampled 

time.

• For example, in this case you fill find the data in the 
directory postProcessing/sampleDict/2000

• Then, in the file profile0_U_wallShearStress.xy 

you will find the data. 

• The name of the output file corresponds to the name of the 

sampled set, appended by the name of the sampled fields.

• Different files will be created for tensor, vector and scalar 

fields.

• Feel free to open the output files using your favorite text 

editor.

Name of 
sampled set

17 type sets;

18 libs ("libsampling.so");

22 interpolationScheme cellPoint;

25 setFormat       raw;

27 surfaceFormat raw;

30 fields

31 (

32 U

33 wallShearStress

34 );

36 sets

37 (

39 profile0

40 {

42 type lineCellFace;

44 axis distance;

46 start ( 0.75150 0.04767 0  );

47 end     ( 0.76168 0.14715 0  );

48 }

66 );
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The probesDict dictionary

17 type probes;

20 (

21 p

22 U

23 );

27 probeLocations

28 (

29 (1.0   0 0)

30 (1.25  0 0)

31 (1.5  0 0)

32 (1.75  0 0)

33 (2.0   0 0)

34 (2.0 -.25 0)

35 (2.0 -.5 0)

36 (2.0  .25 0)

37 (2.0  .5 0)

38 );

Note:

Use the banana method to know all the options available.

Sample points.

Fields to sample. No need to mention that they must exist.

Location of the points.
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The probesDict dictionary

17 type probes;

20 (

21 p

22 U

23 );

27 probeLocations

28 (

29 (1.0   0 0)

30 (1.25  0 0)

31 (1.5  0 0)

32 (1.75  0 0)

33 (2.0   0 0)

34 (2.0 -.25 0)

35 (2.0 -.5 0)

36 (2.0  .25 0)

37 (2.0  .5 0)

38 );

• Remember, the sampled data is always saved in the 
directory postProcessing

• Then, in the sub-directory probesDict (whose name 

corresponds to the name of the input file), you will find the 

data sampled in a directory corresponding to the sampled 

time.

• For example, in this case you fill find the data in the 
directory postProcessing/probesDict/2000

• Then, inside this directory, you will find several files 

containing the sampled data.

• The name of the output file corresponds to the name of the 
sampled fields, in this case, U and p.

• Feel free to open the output files using your favorite text 

editor.
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The output files – functionObject type sets or surfaces

• The output format of the point sampling (cloud) is as follows:

#POINT_COORDINATES (X Y Z) SCALAR_VALUE

0 0 0.05 13.310995

0 0 0.1 19.293817

…

Scalars

#POINT_COORDINATES (X Y Z) VECTOR_COMPONENTS (X Y Z)

0 0 0.05 0 0 2.807395

0 0 0.1 0 0 2.826176

…

Vectors
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The output files – functionObject type sets or surfaces

• The output format of the line sampling is as follows:

#AXIS_COORDINATE SCALAR_VALUE

0 18.594038

0.0015 18.249091

…

Scalars

#AXIS_COORDINATE VECTOR_COMPONENTS (X Y Z)

0 0 0 1.6152966

0.0015 0 0 1.8067536

…

Vectors
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The output files – functionObject type sets or surfaces

• The output format of the surface sampling is as follows:

#POINT_COORDINATES (X Y Z) SCALAR_VALUE

0 0 0.05 13.310995

0 0 0.1 19.293817

…

Scalars

#POINT_COORDINATES (X Y Z) VECTOR_COMPONENTS (X Y Z)

0 0 0.05 0 0 2.807395

0 0 0.1 0 0 2.826176

…

Vectors
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The output files – functionObject type probes

• The output format of the probing is as follows:

# Probe 0 (0 0 0.025)

# Probe 1 (0 0 0.05)

# Probe 2 (0 0 0.075)

# Probe 3 (0 0 0.1)

# Probe 0 1 2 3

# Time

0 0 0 0 0

0.005 19.1928 16.9497 14.2011 11.7580

0.01 16.6152 14.5294 12.1733 10.0789

…

…

…

Scalars
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The output files – functionObject type probes

• The output format of the probing is as follows:

# Probe 0 (0 0 0.025)

# Probe 1 (0 0 0.05)

# Probe 2 (0 0 0.075)

# Probe 3 (0 0 0.1)

# Probe 0 1 2 3

# Time

0 (0 0 0) (0 0 0) (0 0 0) (0 0 0)

0.005 (0 0 2.1927) (0 0 2.1927) (0 0 2.1927) (0 0 2.1927) 

0.01 (0 0 2.5334) (0 0 2.5334) (0 0 2.5334) (0 0 2.5334) 

…

…

…

Vectors
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• Where is located the source code of the utility postProcess? 

• Try to do the sampling in parallel? Does it run? What about the output file?

• How many options are there available to do sampling in a line?

• Do point, line, and surface sampling using paraFoam/ParaView and compare with the output of the 
postProcess utility. Do you get the same results?

• Compute the descriptive statistics of each column of the output files using gnuplot. Be careful with the 

parentheses of the vector files.

(Hint: you can use sed within gnuplot)

Exercises
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1. On-the-fly postprocessing – functionObjects and the 

postProcess utility

2. Sampling with the postProcess utility

3. Field manipulation  

4. Data conversion



• Hereafter we are going to deal with field manipulation

• Field manipulation  means modifying a field variable or deriving a new field 

variable using the primitive variables computed during the solution stage.

• We will do the post-processing using the command line interface (CLI), or 

non-GUI mode.

• The utility postProcess can be used as a single application, e.g.,

• $> postProcess –func vorticity 

• Or it can be used with a solver using the option –postprocess, e.g.,

• $> simpleFoam -postprocess –func vorticity 

• Running the solver with the option –postprocess will only execute the 

post-processing and it will let you access data available on the database for 

the particular solver (such as physical properties or turbulence model).

Field manipulation
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• To get a list of what can be computed using the postProcess utility, type in 

the terminal:

• $> postProcess –list

• The utility postProcess can take many options. To get more information 

on how to use the utility, type in the terminal:

• $> postProcess –help

• $> simpleFoam -postProcess –help

• The options of the solver using the –postProcess flag are the same as the 

options of the utility postProcess.

• In the sub-directory $FOAM_UTILITIES/postProcessing/postProcess

you will find the utility postProcess.

• In the directory $FOAM_SRC/functionObjects, you will find the source 

code of the objects that can be used to compute a new field.

Field manipulation
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• We will now do some field manipulation using the cylinder case.  

• For this we will use the supersonic wedge tutorial located in the 

directory: 

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this 

way, you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

$PTOFC/101postprocessing/supersonic_wedge/ 
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After computing the solution, we can compute derived fields (e.g., Mach number, density, 

Courant number, vorticity, and so on), using the primitive fields (U, p, T)

Mach number Total pressure

Divergence of U Divergence of density gradient (numerical shadowgraph)



What are we going to do?

Field manipulation

• We will use this case to introduce the postProcess utility for field manipulation.

• We will also show how to run the solver with the option -postProcess.  This will let us do only 

the post-processing after the solution has been computed, and it will let us access the database 

of the solver.

• To find the numerical solution we will use the solver rhoPimpleFoam.

• rhoPimpleFoam is a transient solver for laminar or turbulent flow of compressible gas.
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1. $> sh run_solver.sh

2. $> paraFoam

Running the case

• Let us run this case using the automatic script, in the terminal type,

• Fell free to open the file run_solver.sh to know all the steps.



• After finding the solution, we can compute the new field variables using the 

primitive variables computed during the solution stage. In the terminal type:

1. $> rhoPimpleFoam -postProcess -func MachNo

2. $> rhoPimpleFoam -postProcess -func CourantNo

3. $> rhoPimpleFoam -postProcess -func wallShearStress

4. $> rhoPimpleFoam -postProcess -func 'writeObjects(rho)' -time 0

5. $> rhoPimpleFoam -postProcess -func vorticity

6. $> postProcess -func vorticity

7. $> rhoPimpleFoam -postProcess -dict system/externalFunctionObject -latestTime

• If the new field variables require information of the simulation database 

(fluxes, turbulence properties, transport properties), you will need to process 

as in steps 1-5.

• If the new field variable only requires to use a variable that already exist in 

the solution folder, you can proceed as in step 6. 

Field manipulation
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• In step 1 we compute the Mach number. To compute this value, the postProcess

utility needs to access the thermophysicalProperties dictionary.

• In step 2 we compute the Courant number. To compute this value, the postProcess

utility needs to access the face fluxes (phi).

• In step 3 we compute the wall shear stress. To compute this value, the postProcess

utility needs to access the transport and turbulence properties.

• In step 4 we compute the density (rho) for the initial time (time = 0). To compute this 
value, the postProcess utility needs to access the simulation database.

• In steps 5 and 6 we compute the vorticity field, this field is derived from the velocity 
field. The postProcess utility does not need to access any particular solver 

information. Both options will give the same output.

• In step 7 we use an external file to compute the derived fields. In this case we are 

computing the density gradient (grad(rho)) and the divergence of the density gradient 

(div(grad(rho)).

• Remember, in order to compute the derived field div(grad(rho), you need to compute 

first grad(rho).

Field manipulation
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• After finding the solution, we can compute new field variables using the primitive 

variables computed during the solution stage. In the terminal type:

1. $> postProcess -func 'grad(U)'

2. $> postProcess -func 'components(U)'

3. $> postProcess -func 'mag(U)'

4. $> postProcess -func 'magSqr(U)'

5. $> postProcess -func 'totalPressureCompressible(rho,U,p)' -noZero

6. $> postProcess -func 'div(U)' -time 500:1000

7. $> postProcess -func 'mag(grad(U))' -latestTime

Field manipulation
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8. $> postProcess -func 'patchAverage(name=inlet,p)' –latestTime

9. $> postProcess -func 'patchAverage(name=outlet,U)' –latestTime

10. $> postProcess -func 'patchIntegrate(name=inlet,p)' –latestTime

11. $> postProcess -func 'patchIntegrate(name=outlet,U)' -latestTime

• We can also use the utility postProcess to compute the average and integral of a 

specified field over a patch. In the terminal type:
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• In steps 1-11, all the fields are derived from pre-existing fields. The postProcess utility does 

not need to access any particular solver information.

• In step 1 we compute the gradient of the velocity vector U.  The field is saved as grad(U).

• In step 2 we compute the components of the velocity vector U.  The components are saved as 

Ux, Uy and Uz.

• In step 3 we compute the magnitude of the velocity vector U.  The output is saved as mag(U).

• In step 4 we compute the magnitude squared of the velocity vector U.  The output is saved as 

magSqr(U).

• In step 5 we compute the total pressure.  The output is saved as total(p). The option –noZero 

means do not compute the value for time zero.

• In step 6 we compute the divergence of the velocity vector U.  The output is saved as div(U). 
You will need to define how to interpolate div(U) in the fvSchemes dictionary. The option –time 

500:1000 means save the values between the given range (500-1000).

• In step 7 we compute the magnitude of the gradient of the velocity vector U.  The output is 

saved as mag(Grad(U)). The option –latestTime will compute the value only for the latest 

saved solution.

• In step 8 we compute the average of p over the patch inlet.

• In step 9 we compute the average of U over the patch outlet.

• In step 10 we compute the integral of p over the patch inlet.

• In step 11 we compute the integral of U over the patch outlet.
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1. On-the-fly postprocessing – functionObjects and the 

postProcess utility

2. Sampling and probing with the postProcess utility

3. Field manipulation  

4. Data conversion



• OpenFOAM® gives users a lot of flexibility when it comes to scientific visualization.

• You are not obliged to use OpenFOAM® visualization tools (paraFoam or paraview).

• You can convert the solution obtained with OpenFOAM®  to many third-party formats 

by using OpenFOAM® data conversion utilities.

• If you are looking for a specific format and it is not supported, you can write your own 

conversion tool.

• In the directory $FOAM_UTILITIES/postProcessing/dataConversion, you will 

find the source code of the following data conversion utilities:

Data conversion

• foamDataToFluent • foamToTecplot360  

• foamToEnsight • foamToTetDualMesh

• foamToEnsightParts • foamToVTK 

• foamToGMV • smapToFoam

• To get more information on how to use a data conversion utility, you can read the 

source code or type in the terminal:

• $> name_of_data_conversion_utility -help
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Data conversion

• Another utility that might come in handy, specially when dealing with 
large meshes is foamFormatConvert.

• This utility converts the mesh and field variables into ascii or binary 

format.

• In order to manually edit the boundary file and the field variables 

dictionaries (initial and boundary conditions), they must be in ascii 

format.

• After editing these files, we can convert them into binary format.

• Working in binary format can significantly reduce data parsing and 

dimension of the files (specially for large meshes).

• The drawback is that the files are not human readable anymore.

• To convert ascii files into binary files, just type in the terminal:

• $> foamFormatConvert

• Remember you will need to set the keyword writeFormat to binary 
in the controlDict dictionary.

• In the same way, if you want to convert from binary to ascii, set the 
keyword writeFormat to ascii in the controlDict dictionary and 

type in the terminal:

• $> foamFormatConvert

17 application     icoFoam;

18

19 startFrom       startTime;

20

21 startTime       0;

22

23 stopAt          endTime;

24

25 endTime         50;

26

27 deltaT          0.01;

28

29 writeControl    runTime;

30

31 writeInterval   1;

32

33 purgeWrite      0;

34

35 writeFormat     binary;

36

37 writePrecision  8;

38

39 writeCompression off;

40

41 timeFormat      general;

42

43 timePrecision   6;

44

45 runTimeModifiable true;

ASCII ↔ Binary conversion
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Module 6
Finite volume method overview
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Roadmap

1. Finite Volume Method: A Crash Introduction

2. On the CFL number

3. Linear solvers in OpenFOAM®

4. Pressure-Velocity coupling in OpenFOAM®

5. Unsteady and steady simulations

6. Understanding residuals

7. Boundary and initial conditions

8. Numerical playground
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Finite Volume Method: A Crash introduction

• This a brief introduction to the FVM to illustrate some basic concepts.

• There is much more under the hood.

• We will use the general transport equation as the starting point to explain the FVM,

• Starting from this equation, we can write down the Navier-Stokes equations (NSE).

• So everything we are going to address also applies to the NSE or any set of 

equations that can be derived form the general transport equation.
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Problem statement

• Find the approximate solution to the general transport equation for the transported 

quantity        in a given domain, with given boundary conditions (BC) and initial 

conditions (IC).  

• It is an initial boundary value problem (IBVP).

• This is a second order equation.  Therefore, for good accuracy, it is necessary that 

the order of the discretization is equal or higher than the order of the equation that is 

being discretized (in space and time).  

Finite Volume Method: A Crash introduction

• This a brief introduction to the FVM to illustrate some basic concepts.

• There is much more under the hood.

• We will use the general transport equation as the starting point to explain the FVM,
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• Let us use the general transport equation as the starting point to explain the FVM,

Profile assumptions using Taylor expansions around point P (in space) and point t (in time)

• Hereafter we are going to assume that the discretization practice is at least second 

order accurate in space and time.

• As consequence of the previous requirement, all dependent variables are assumed 

to vary linearly around a point P in space and instant t in time,
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• Domain discretization (or mesh generation), consist in dividing the solution domain into a finite 

number of arbitrary control volumes or cells, such as the one illustrated below.

• Inside each control volume the solution is sought.

• The control volumes can be of any shape (e.g., tetrahedrons, hexes, prisms, pyramids, 

dodecahedrons, and so on). The only requirement is that the faces that made up the control 

volume need to be planar.

• We also know which control volumes are internal and which control volumes lie on the 

boundaries.

 

 

 

 

 

  

 

 

  

 

 
 

  

 

 

 

Domain discretization – Mesh information and variable arrangement
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Domain discretization – Mesh information and variable arrangement

• In the control volume illustrated, the centroid  P and face center f  are known.

• We also assume that the values of all variables are computed and stored in the centroid of the 

control volume Vp and that they are represented by a piecewise constant profile (the mean 

value),

• This is known as the cell centered collocated arrangement.

• All approximations used so far are at least second order accurate.

 

 

 

 

 

  

 

 

  

 

 
 

  

 

 

 



Summary:

• The control volume        has a volume V and is constructed 

around point P, which is the centroid of the control volume.  

Therefore the notation       . 

• The vector from the centroid P of        to the centroid N of the 

neighboring control volume         is named d. 

• We also know all neighbors       of the control volume

• The control volume faces are labeled f, which also denotes the 

face center. 

• The location where the vector d intersects a face is     .

• The face area vector         point outwards from the control 

volume, is located at the face centroid, is normal to the face and 

has a magnitude equal to the area of the face.

• The vector from the centroid P to the face center f  is named Pf.
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Domain discretization – Mesh information and variable arrangement

• Putting all together, it is a lot geometrical information that we need to track. 

• A lot of overhead goes into the data book-keeping.

• At the end of the day, the FVM simply consist in conservation of the transported quantities and 

interpolating information from cell centers to face centers.



Finite Volume Method: A Crash introduction

572

Gauss theorem and face fluxes computation

• Let us recall the Gauss or Divergence theorem,

where          is a closed surface bounding the control volume        and           represents an 

infinitesimal surface element are with associated normal       pointing outwards of the          

surface          , and

• The Gauss or Divergence theorem simply states that 

the outward flux of a vector field through a closed 

surface is equal to the volume integral of the divergence 

over the region inside the surface.

• This theorem is fundamental in the FVM. 

• It is used to convert the volume integrals appearing in 

the governing equations into surface integrals.  
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Gauss theorem and face fluxes computation

• Let us use the Gauss theorem to convert the volume integrals into surface integrals,

• At this point the problem reduces to interpolating somehow the cell centered values (known 

quantities) to the face centers.

• That is, we need to compute the gradient terms, source terms, and convective and diffusive 

fluxes across the faces.
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Gauss theorem and face fluxes computation

• Integrating in space each term of the general transport equation and by using Gauss theorem,  

yields to the following discrete equations for each term

Convective term:

where we have approximated the integrant by means of 

the mid point rule, which is second order accurate

By using Gauss theorem we convert volume 

integrals into surface integrals

Gauss theorem:
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Gauss theorem and face fluxes computation

• Integrating in space each term of the general transport equation and by using Gauss theorem,  

yields to the following discrete equations for each term

Diffusive term:

where we have approximated the integrant by means of 

the mid point rule, which is second order accurate

By using Gauss theorem we convert volume 

integrals into surface integrals

Gauss theorem:
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Gauss theorem and face fluxes computation

• Integrating in space each term of the general transport equation and by using Gauss theorem,  

yields to the following discrete equations for each term

Gradient term:

where we have approximated the centroid gradients by using the Gauss theorem.

This method is second order accurate and is known as Gauss cell-based.

Gauss theorem:

 

 

 

 

  

 

   

Note:

• There are more methods for gradients 

computation, e.g., least squares, node-

based reconstruction, and so on.

• As there is some algebra involved, we 

do not provide the demonstration.
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Gauss theorem and face fluxes computation

• Integrating in space each term of the general transport equation and by using Gauss theorem,  

yields to the following discrete equations for each term

Source term:

Gauss theorem:

 

 

 

 

  

 

   

This approximation is exact if        is either constant or varies linearly within the control volume; otherwise is 

second order accurate. 

Sc is the constant part of the source term and Sp is the non-linear part
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Gauss theorem and face fluxes computation

• Using the previous equations to evaluate the general transport equation over all the control 

volumes, we obtain the following semi-discrete equation

where is the convective flux and                is the diffusive flux. 

• And recall that all variables are computed and stored at the centroid of the control volumes. 

• The face values appearing in the convective and diffusive fluxes have to be computed by 

some form of interpolation from the centroid values of the control volumes at both sides of 

face f.



Interpolation of the convective fluxes

Finite Volume Method: A Crash introduction

• This type of interpolation scheme is known as linear interpolation or central differencing and it is 

second order accurate.  

• However, it may generate oscillatory solutions (unbounded solutions).

• By looking the figure below, the face values appearing in the convective flux can be computed 

as follows,
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• By looking the figure below, the face values appearing in the convective flux can be computed 

as follows,

Finite Volume Method: A Crash introduction

• This type of interpolation scheme is known as upwind differencing and it is first order accurate.  

• This scheme is bounded (non-oscillatory) and diffusive.

Interpolation of the convective fluxes
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• By looking the figure below, the face values appearing in the convective flux can be computed 

as follows,

Finite Volume Method: A Crash introduction

• This type of interpolation scheme is known as second order upwind differencing (SOU), linear 

upwind differencing (LUD) or Beam-Warming (BW), and it is second order accurate.  

• For highly convective flows or in the presence of strong gradients, this scheme is oscillatory 

(unbounded).

Interpolation of the convective fluxes
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• By adding a well-designed limiter function          , we get a high resolution (second order 

accurate) and bounded scheme (HR).  This is a TVD scheme.

• When the limiter detects strong gradients or changes in slope, it switches locally to low 

resolution (upwind).

• The concept of the limiter function           is based on monitoring the ratio of successive 

gradients, e.g., 

Interpolation of the convective fluxes

Finite Volume Method: A Crash introduction

• To prevent oscillations in the SOU, we add a gradient or slope limiter function           . 
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Interpolation of the convective fluxes – TVD schemes
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• A TVD scheme, is a scheme that does not create 

new local undershoots and/or overshoots in the 

solution or amplify existing extremes. 

• In CFD we want stable, non-oscillatory, bounded, 

high order schemes. 

• The Sweby diagram (Sweby, 1984), gives the 

necessary and sufficient conditions for a scheme to 

be TVD.  

• In the figure, the shaded area represents the 

admissible TVD region.  However, not all limiter 

functions are second order. 

• High resolution schemes falls in the blue area and 

low resolution schemes falls in the grey area.

• The drawback of the limiters is that they reduce the 

accuracy of the scheme locally to first order (low 

resolution scheme), when r < 0 (sharp gradient, 

opposite slopes or zero gradient).  However, this is 

justified when it serves to suppress oscillations.

• No particular limiter has been found to work well for 

all problems, and a particular choice is usually made 

on a trial and error basis.

UD = upwind

SOU = second order upwind

CD = central differencing

D = downwind



• Let us see how the upwind, linear upwind, linear, and Minmod TVD schemes behave in a 

numerical schemes killer test case:

• The oblique double step profile in a uniform vector field (pure convection).

• Even if this problem seems to be easy, from the numerical point of view is difficult to resolve due 

to the strong discontinuities.

• This problem has an exact solution.

Finite Volume Method: A Crash introduction

Interpolation of the convective fluxes – TVD schemes
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• Qualitative comparison of the upwind, linear upwind, linear, and Minmod TVD schemes 

Finite Volume Method: A Crash introduction

Upwind – 1st order 

Very bounded but too Diffusive
Linear – 2nd order 

Very accurate but too oscillatory
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Interpolation of the convective fluxes – TVD schemes

Linear Upwind – 2nd order

Bounded and accurate

SuperBee – TVD high resolution

Compressive

Minmod – TVD high resolution

Diffusive

vanLeer – TVD high resolution

Smooth
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Interpolation of the convective fluxes – TVD schemes

• Quantitative comparison of the upwind, linear upwind, linear, and Minmod TVD schemes 



• In the previous explanation, we assumed a line structure (figure A). That is, the cell centers PP, 

P, and N are all aligned.

• In unstructured meshes (which are often used in industrial cases), most of the times the cell 

center PP is not aligned with the vector connecting cells P and N (figure B). Therefore, 

extending the previous formulations to these meshes is not very straightforward.

• Higher-order schemes for unstructured meshes are an area of active research, and new ideas 

continue to emerge.

Finite Volume Method: A Crash introduction

Interpolation of the convective fluxes – Unstructured meshes
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• A simple way around this problem is to redefine       

higher-order schemes in terms of gradients at the 

control volume P.

• For example, using the gradient of the cells, we can 

compute the face values as follows,

Finite Volume Method: A Crash introduction

Interpolation of the convective fluxes – Unstructured meshes

Upwind  → 

Central difference  → 

Second order upwind differencing  → 

• Notice that in this new formulation the cell PP does not appear anymore.

• The problem now turns in the accurate evaluation of the gradients at the cell and face centers. 

• For example, the gradients at the cell centers can be computed using the Gauss method, and 

then interpolated to the face centers.

• At this point, we are only missing the reconstruction of the cell center gradients at the face 

centers, this is explained latter.
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Interpolation of the convective fluxes – Unstructured meshes
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• In unstructured meshes, as often the value of the node PP (of NN) is not available or 

straightforward to compute, the ratio of successive gradients r can be computed as follows [1],

U → Upwind

D → Downwind

• As you can see, the value of r depends on the flow direction.

• There are many ways to compute r.  This is an area of active research

Reference:

[1] Darwish, M. S., Moukalled, F., “TVD schemes for unstructured grids”
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Gradients computation at cell centers

• There are many methods for the computation of the cell centered gradients, e.g., least squares, 

Gauss cell-based, Gauss node-based, and so on.

• Using the Gauss cell-based method, the cell centered gradients can be computed as follows,
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• This approximation is second order accurate given that the mesh quality is acceptable, and the 

volume of the cell is finite.

• In general, the least squares method tends to be more accurate.
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Gradients reconstruction at face centers

• Face gradients           arise from the discretization process of the convective and diffusive terms.

• One way to reconstruct the face gradient          , is by using weighted interpolation of the cell 

centered quantities           and          .

• Mesh non-orthogonality and skewness introduce errors when approximating the face gradients, 

so corrections need to be added.

• This is an iterative process, where we compute successively better approximations to the 

gradients starting from an initial approximation.
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where

Face gradient



• By looking the figure below, the face values 

appearing in the diffusive flux in an orthogonal 

mesh can be computed as follows,
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• This is a central difference approximation of the 

first order derivative. This type of 

approximation is second order accurate.

Interpolation of diffusive fluxes in an orthogonal mesh
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• By looking the figure below, the face values 

appearing in the diffusive flux in a non-orthogonal 

mesh (20°) can be computed as follows,

• This type of approximation is second order accurate 

but involves a larger truncation error.  It also uses a 

larger numerical stencil, which make it less stable.

• Remember, the non-orthogonal angle is the angle between the vector S and the vector d



• By looking the figures below, the face values appearing in the diffusive flux in a non-orthogonal 

mesh (       ) can be computed as follows.

• Using the over-relaxed approach, the diffusive fluxes can be corrected as follow,
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Over-relaxed approach

Correction of diffusive fluxes in a non-orthogonal mesh
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• In order to maintain second order accuracy, and to avoid unboundedness, we need to correct 

non-orthogonality and skewness errors.

• The ideal case is to have an orthogonal and non skew mesh, but this is the exception rather 

than the rule.

Finite Volume Method: A Crash introduction

Orthogonal and non skew mesh Non-orthogonal and non skew mesh

Orthogonal and skew mesh Non-orthogonal and skew mesh

Mesh induced errors
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where is the convective flux and                is the diffusive flux. 

• Using the previous equations to evaluate the general transport equation over all the control 

volumes, we obtain the following semi-discrete equation,
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• After spatial discretization, we can proceed with the temporal discretization.  By proceeding 

in this way we are using the Method of Lines (MOL).

• The main advantage of the MOL method, is that it allows us to select numerical 

approximations of different accuracy for the spatial and temporal terms.  Each term can be 

treated differently to yield to different accuracies.

Temporal discretization
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• Now, we evaluate in time the semi-discrete general transport equation

Finite Volume Method: A Crash introduction

• At this stage, we can use any time discretization scheme, e.g., Crank-Nicolson, euler implicit, 

forward euler, backward differencing, adams-bashforth, adams-moulton.

• It should be noted that the order of the temporal discretization of the transient term does not 

need to be the same as the order of the discretization of the spatial terms.  

• Each term can be treated differently to yield different accuracies.  As long as the individual terms 

are at least second order accurate, the overall accuracy will also be second order.

Temporal discretization
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in every control volume         of the domain, a system of linear algebraic equations for the 

transported quantity       is assembled,

• After spatial and temporal discretization and by using equation

• This system can be solved by using any iterative or direct method.

Linear system solution
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So, what does OpenFOAM® do?

Finite Volume Method: A Crash introduction

• It simply discretize in space and time the governing equations in arbitrary polyhedral control 

volumes over the whole domain.  

• Assembling in this way a large set of linear discrete algebraic equations (DAE), and then it solves 

this system of DAE to find the solution of the transported quantities. 

• Therefore, we need to give to OpenFOAM® the following information:

• Discretization of the solution domain or the mesh. 

• This information is contained in the directory constant/polyMesh

• Boundary conditions and initials conditions. 

• This information is contained in the directory 0

• Physical properties such as density, gravity, diffusion coefficient, viscosity, etc. 

• This information is contained in the directory constant

• Physics involve, such as turbulence modeling, mass transfer, source terms, dynamic 

meshes, multiphase models, combustion models, etc. 

• This information is contained in the directories constant and/or system
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So, what does OpenFOAM® do?

Finite Volume Method: A Crash introduction

• Therefore, we need to give to OpenFOAM® the following information:

• How to discretize in space each term of the governing equations (diffusive, convective, 

gradient and source terms).  

• This information is set in the system/fvSchemes dictionary.

• How to discretize in time the obtained semi-discrete governing equations. 

• This information is set in the system/fvSchemes dictionary.

• How to solve the linear system of discrete algebraic equations (crunch numbers). 

• This information is set in the system/fvSolution dictionary.

• Set runtime parameters and general instructions on how to run the case (such as time step, 

maximum CFL number, solution saving frequency, and so on). 

• This information is set in the system/controlDict dictionary.

• Additionally, we may set sampling and monitors for post-processing (functionObjects).  

• This information is set in the system/fvSchemes dictionary or in the specific 

sampling dictionaries located in the directory system/
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ddtSchemes

{

default backward;

}

gradSchemes

{

default Gauss linear;

grad(p)         Gauss linear;

}

divSchemes

{

default none;

div(phi,U)      Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

Where do we set all the discretization schemes in OpenFOAM®?

• The fvSchemes dictionary contains the information related to 

the discretization schemes for the different terms appearing in 

the governing equations.

• The discretization schemes can be chosen in a term-by-term 

basis.

• The keyword ddtSchemes refers to the time discretization.

• The keyword gradSchemes refers to the gradient term 

discretization.

• The keyword divSchemes refers to the convective term 

discretization.

• The keyword laplacianSchemes refers to the Laplacian term  

discretization.

• The keyword interpolationSchemes refers to the method used 

to interpolate values from cell centers to face centers. It is 

unlikely that you will need to use something different from 

linear.

• The keyword snGradSchemes refers to the discretization of 

the surface normal gradients evaluated at the faces.

• Remember, if you want to know the options available for each 

keyword you can use the banana method.
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Time discretization schemes

• There are many time discretization schemes available in OpenFOAM®. 

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/ddtSchemes

• These are the time discretization schemes that you will use most of the times:

• steadyState: for steady state simulations (implicit/explicit).

• Euler: time dependent first order (implicit/explicit), bounded.

• backward: time dependent second order (implicit), bounded/unbounded.

• CrankNicolson: time dependent second order (implicit), bounded/unbounded.

• First order methods are bounded and stable, but diffusive. 

• Second order methods are accurate, but they might become oscillatory.

• At the end of the day, we always want a second order accurate solution.

• If you keep the CFL less than one when using the Euler method, numerical diffusion is not that 

much (however, we advise you to do your own benchmarking).
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Time discretization schemes

• The Crank-Nicolson method as it is implemented in OpenFOAM®, uses a blending factor. 

ddtSchemes

{

default        CrankNicolson       ;

}

• Setting       to 0 is equivalent to running a pure Euler scheme (robust but first order accurate). 

• By setting the blending factor equal to 1 you use a pure Crank-Nicolson (accurate but 

oscillatory, formally second order accurate).  

• If you set the blending factor to 0.5, you get something in between first order accuracy and 

second order accuracy, or in other words, you get the best of both worlds.

• A blending factor of 0.7-0.9 is safe to use for most applications (stable and accurate).
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Convective terms discretization schemes

• There are many convective terms discretization schemes available in OpenFOAM® (more than 

50 last time we checked). 

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/interpolation/surfaceInterpolation

• These are the convective discretization schemes that you will use most of the times:

• upwind: first order accurate.

• linearUpwind: second order accurate, bounded.

• linear: second order accurate, unbounded. 

• A good TVD scheme (vanLeer or Minmod): TVD, second order accurate, bounded.

• limitedLinear: second order accurate, unbounded, but more stable than pure linear. 

Recommended for LES simulations (kind of similar to the Fromm method).

• LUST: blended 75% linear and 25% linearUpwind scheme

• First order methods are bounded and stable but diffusive.

• Second order methods are accurate, but they might become oscillatory.

• At the end of the day, we always want a second order accurate solution. 603
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Convective terms discretization schemes

• When you use linearUpwind for div(phi,U), you need to tell OpenFOAM® how to compute the 

velocity gradient or grad(U):

gradSchemes

{

grad(U) cellMDLimited Gauss linear 1.0;

}

divSchemes

{

div(phi,U) Gauss linearUpwind grad(U);

}

• Same applies for every transported quantity (e.g. k, epsilon, omega, T)
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Gradient terms discretization schemes

• There are many gradient discretization schemes available in OpenFOAM®.

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/gradSchemes

• These are the gradient discretization schemes that you will use most of the times:

• Gauss linear (cell-based method)

• Gauss pointLinear (node-based method; more accurate than the cell-based method)

• leastSquares

• To avoid overshoots or undershoots when computing the gradients, you can use gradient 

limiters. 

• Gradient limiters increase the stability of the method but add diffusion due to clipping. 

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/gradSchemes/limitedGradSchemes

• These are the most important gradient limiter schemes available in OpenFOAM®:

• cellLimited, cellMDLimited, faceLimited, faceMDLimited

• All of the gradient discretization schemes are at least second order accurate.
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Gradient terms discretization schemes

• These are the gradient limiter schemes available in OpenFOAM®:

cellMDLimited

cellLimited

faceMDLimited

faceLimited

Less diffusive

More diffusive

• Cell limiters will limit cell-to-cell values.

• Face limiters will limit face-to-cell values.

• The multi-directional (dimensional) limiters (cellMDLimited and faceMDLimited), will apply the 

limiter in each face direction separately.

• The standard limiters (cellLimited and faceLimited), will apply the limiter to all components of 

the gradient.

• The default method is the Minmod.
606

Note: for smooth field variation, cell 

limiting may provide less numerical 

dissipation on meshes with skewed 

cells
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Gradient terms discretization schemes

• The gradient limiter implementation in OpenFOAM®, uses a blending factor      . 

gradSchemes

{

default        cellLimited Gauss linear        ;

}

• Setting       to 0 is equivalent to turning off the gradient limiter. You gain accuracy but the solution 

might become unbounded.

• By setting the blending factor equal to 1 the limiter is set to be very aggressive (kind of saying 

that it is always on). You gain stability but you give up accuracy (due to gradient clipping).

• If you set the blending factor to 0.5, you get the best of both worlds.

• You can use limiters with all gradient discretization schemes.

It can be any method

Gradient limiter scheme
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Laplacian terms discretization schemes

• There are many Laplacian terms discretization schemes available in OpenFOAM®.

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/snGradSchemes
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• These are the Laplacian terms discretization schemes that you will 

use most of the times:

• orthogonal: mainly limited for hexahedral meshes with no 

grading (a perfect mesh). Second order accurate, bounded 

on perfect meshes, without non-orthogonal corrections.

• corrected: for meshes with grading and non-orthogonality. 

Second order accurate, bounded depending on the quality of 

the mesh, with non-orthogonal corrections.

• limited: for meshes with grading and non-orthogonality. 

Second order accurate, bounded depending on the quality of 

the mesh, with non-orthogonal corrections.

• uncorrected: usually limited to hexahedral meshes with very 

low non-orthogonality. Second order accurate, without non-

orthogonal corrections. Stable but more diffusive than the 

limited and corrected methods.

Can be computed using the over-relaxed approach

Can be computed using the over-relaxed approach
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Laplacian terms discretization schemes

• The limited method uses a blending factor      . 

laplacianSchemes

{

default        Gauss linear limited          ;

}

• Setting       to 1 is equivalent to using the corrected method. You gain accuracy, but the solution might 

become unbounded.

• By setting the blending factor equal to 0 is equivalent to using the uncorrected method. You give up accuracy 

but gain stability.

• If you set the blending factor to 0.5, you get the best of both worlds. In this case, the non-orthogonal 

contribution does not exceed the orthogonal part. You give up accuracy but gain stability.

• For meshes with non-orthogonality less than 70, you can set the blending factor to 1.

• For meshes with non-orthogonality between 70 and 85, you can set the blending factor to 0.5

• For meshes with non-orthogonality more than 85, it is better to get a better mesh.  But if you want to use that 

mesh, you can set the blending factor to 0.333-0.5, and increase the number of non-orthogonal corrections.

• If you are doing LES or DES simulations, use a blending factor of 1 (this means that you need good meshes).

Interpolation method of the diffusion coefficient

Only option

Surface normal gradients discretization 
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Laplacian terms discretization schemes

• Just to make it clear, the blending factor       is used to avoid the non-orthogonal contribution 

exceeding the orthogonal part.

• That is, non-orthogonal contribution ≤ orthogonal contribution.
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The blending factor works as a limiter acting on this term (non-orthogonal contribution)

Implicit part Explicit part

• In meshes with large non-orthogonality, the explicit term can lead to unboundedness and 

eventually divergence.

• This limiting is local, similar to the treatment done for the connective terms when using slope 

limiters and TVD schemes.

• The explicit contribution is added to the RHS of the linear system (source term), so if this term 

becomes too large it will lead to convergence problems.

• It becomes harder to guarantee diagonal dominance of the matrix of coefficient.
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Laplacian terms discretization schemes

• The surface normal gradients terms usually use the same method as the one chosen for the 

Laplacian terms.

• For instance, if you are using the limited 1 method for the Laplacian terms, you can use the 

same method for snGradSchemes:

laplacianSchemes

{

default        Gauss linear limited 1;

}

snGradSchemes

{

default        limited 1;

}
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What method should I use?

ddtSchemes

{

default CrankNicolson 0;

}

gradSchemes

{

default cellLimited Gauss linear 0.5;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U)      Gauss linearUpwindV grad(U);

div(phi,omega) Gauss linearUpwind default;

div(phi,k) Gauss linearUpwind default;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1;

}

• This setup is recommended for most of            

the cases.

• It is equivalent to the default method you will find in 

commercial solvers.

• In overall, this setup is second order accurate and 

fully bounded.

• According to the quality of your mesh, you will need 

to change the blending factor of the 

laplacianSchemes and snGradSchemes

keywords.

• To keep temporal diffusion to a minimum, use a CFL 

number less than 2, and preferably below 1.

• If during the simulation the turbulence quantities 

become unbounded, you can safely change the 

discretization scheme to upwind.  After all, 

turbulence is diffusion.

• For gradient discretization the leastSquares

method is more accurate. But we have found that it 

is a little bit oscillatory in tetrahedral meshes.
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A very accurate but oscillatory numerics

ddtSchemes

{

default backward;

}

gradSchemes

{

default Gauss leastSquares;

}

divSchemes

{

default none;

div(phi,U)      Gauss linear;

div(phi,omega) Gauss limitedlinear 1;

div(phi,k) Gauss limitedLinear 1;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1;

}

• If you are looking for more accuracy, you can use 

this method.

• In overall, this setup is second order accurate but 

oscillatory.

• Use this setup with LES simulations or laminar 

flows with no complex physics and meshes with 

overall good quality.

• Use this method with good quality meshes.

• According to the quality of your mesh, you will need 

to change the blending factor of the 

laplacianSchemes and snGradSchemes

keywords.
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A very stable but too diffusive numerics

ddtSchemes

{

default Euler;

}

gradSchemes

{

default cellLimited Gauss linear 1;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U)      Gauss upwind;

div(phi,omega) Gauss upwind;

div(phi,k) Gauss upwind;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 0.5;

}

• If you are looking for extra stability, you can use this 

method.

• This setup is very stable but too diffusive.

• This setup is first order in space and time.

• You can use this setup to start the solution in the 

presence of bad quality meshes or strong 

discontinuities.

• Remember, you can start using a first order method 

and then switch to a second order method.

• According to the quality of your mesh, you will need 

to change the blending factor of the 

laplacianSchemes and snGradSchemes

keywords.

• Start robustly, end with accuracy.

• You can use this method for troubleshooting. If the 

solution diverges, you better check boundary 

conditions, physical properties, and so on.
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On the CFL number

• First of all, what is the CFL or Courant number?

• In one dimension, the CFL number is defined as,

• The CFL number is a measure of how much information (   ) traverses a 

computational grid cell (        ) in a given time-step (       ).

• The CFL number is not a magical number.

• The CFL number is a necessary condition to guarantee the stability of the numerical 

scheme.

• But not all numerical schemes have the same stability requirements.  

• By doing a linear stability study, we can find the stability requirements of each 

numerical scheme (but this is out of the scope of this lecture). 
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On the CFL number

• Let us now talk about the CFL number condition. The CFL number condition is the maximum allowable 

CFL number a solver can use. 

• For the N dimensional case, the CFL number condition becomes,

• CFD solvers can be explicit and implicit. 

• Explicit and implicit solvers have different stability requirements.

• Implicit numerical methods are unconditionally stable. 

• In other words, they are not constrained to the CFL number condition.

• However, the fact that you are using a numerical method that is unconditionally stable, does not mean that 

you can choose a time step of any size.

• The time-step must be chosen in such a way that it resolves the time-dependent features, and it maintains the 

solver stability.

• When we use implicit solvers, we need to assemble a large system of equations.

• The memory requirements of implicit methods are much higher than those of explicit methods.

• In OpenFOAM®, most of the solvers are implicit. 

• In our personal experience, we have been able to go up to a CFL = 5.0 while maintaining the accuracy and 

without increasing too much the computational cost.

• But as we are often interested in the unsteadiness of the solution, we usually use a CFL number in the order of 

1.0
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On the CFL number

• I like to see the CFL number as follows,

The CFL number for dummies

• It is an indication of the amount of information that 

propagates through one cell (or many cells), in one 

time-step.

• By the way, and this is extremely important, the CFL condition is a necessary 

condition for stability (and hence convergence).  

• But it is not always sufficient to guarantee stability.

• Other properties of the discretization schemes that you should observe are: 

conservationess, boundedness, transportiveness, and accuracy.
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application     pimpleFoam;

startFrom       latestTime;

startTime       0;

stopAt          endTime;

endTime         10;

deltaT          0.0001;

writeControl    runTime;

writeInterval   0.1;

purgeWrite      0;

writeFormat     ascii;

writePrecision  8;

writeCompression off;

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

adjustTimeStep  yes;

maxCo           2.0;

maxDeltaT       0.001;

• You can control the CFL number by changing the mesh cell 

size or changing the time-step size. 

• The time step size is set in the controlDict dictionary.

• The easiest way is by changing the time-step size.

• If you refine the mesh, and you would like to have the same 

CFL number as the base mesh, you will need to decrease the 

time-step size.

• On the other side, if you coarse the mesh and you would like 

to have the same CFL number as the base mesh, you will 

need to increase the time-step size.

• The keyword deltaT controls the time-step size of the 

simulation (0.0001 seconds in this generic case).

• If you use a solver that supports adjustable time-step 

(adjustTimeStep), you can set the maximum CFL number 

and maximum allowable time-step using the keywords 

maxCo and maxDeltaT, respectively. 

How to control the CFL number
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On the CFL number

• The option adjustTimeStep will automatically adjust the time 

step to achieve the maximum desired courant number 

(maxCo) or time-step size (maxDeltaT). 

• When any of these conditions is reached, the solver will stop 

scaling the time-step size.

• To use these features, you need to turn-on the option 

adjustTimeStep.

• Remember, the first time-step of the simulation is done using 

the value defined with the keyword deltaT and then it is 

automatically scaled (up or down), to achieve the desired 

maximum values (maxCo and maxDeltaT). 

• It is recommended to start the simulation with a low time-step 

in order to let the solver scale-up the time-step size.

• If you want to change the values on-the-fly, you need to turn-

on the option runTimeModifiable.

• The feature adjustTimeStep is only present in the PIMPLE

family solvers, but it can be added to any solver by modifying 

the source code.

How to control the CFL number

application     pimpleFoam;

startFrom       latestTime;

startTime       0;

stopAt          endTime;

endTime         10;

deltaT          0.0001;

writeControl    runTime;

writeInterval   0.1;

purgeWrite      0;

writeFormat     ascii;

writePrecision  8;

writeCompression off;

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

adjustTimeStep  yes;

maxCo           2.0;

maxDeltaT       0.001;
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The output screen

Courant Number mean: 0.10863988 max: 0.73950028

deltaT = 0.001

Time = 30.000289542261612

PIMPLE: iteration 1

DILUPBiCG:  Solving for Ux, Initial residual = 0.003190933, Final residual = 1.0207483e-09, No Iterations 5

DILUPBiCG:  Solving for Uy, Initial residual = 0.0049140114, Final residual = 8.5790109e-10, No Iterations 5

DILUPBiCG:  Solving for Uz, Initial residual = 0.010705877, Final residual = 3.5464756e-09, No Iterations 4

GAMG:  Solving for p, Initial residual = 0.024334674, Final residual = 0.0005180308, No Iterations 3

GAMG:  Solving for p, Initial residual = 0.00051825089, Final residual = 1.6415538e-05, No Iterations 5

time step continuity errors : sum local = 8.768064e-10, global = 9.8389717e-11, cumulative = -2.6474162e-07

GAMG:  Solving for p, Initial residual = 0.00087813032, Final residual = 1.6222017e-05, No Iterations 3

GAMG:  Solving for p, Initial residual = 1.6217958e-05, Final residual = 6.4475277e-06, No Iterations 1

time step continuity errors : sum local = 3.4456296e-10, global = 2.6009599e-12, cumulative = -2.6473902e-07

ExecutionTime = 33091.06 s  ClockTime = 33214 s

fieldMinMax domainminandmax output:

min(p) = -0.59404715 at location (-0.019 0.02082288 0.072) on processor 1

max(p) = 0.18373302 at location (-0.02083962 -0.003 -0.136) on processor 1

min(U) = (0.29583255 -0.4833922 -0.0048229716) at location (-0.02259661 -0.02082288 -0.072) on processor 0

max(U) = (0.59710937 0.32913292 0.020043679) at location (0.11338793 -0.03267608 0.12) on processor 3

min(nut) = 1.6594481e-10 at location (0.009 -0.02 0.024) on processor 0

max(nut) = 0.00014588174 at location (-0.02083962 0.019 0.072) on processor 1

yPlus yplus output:

patch square y+ : min = 0.44603573, max = 6.3894913, average = 2.6323389

writing field yPlus

Courant number (mean and maximum values)

Current time-step

Simulation time

CPU time and wall clock

• This is the output screen of a solver supporting the option adjustTimeStep.

• In this case maxCo is equal 2 and maxDeltaT is equal to 0.001.  

• Notice that the solver reached the maximum allowable maxDeltaT.

One PIMPLE iteration (outer loop), this is equivalent to PISO
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in every control volume         of the domain, a system of linear algebraic equations for the 

transported quantity       is assembled

Linear solvers in OpenFOAM®

• After spatial and temporal discretization and by using equation

623
• This system can be solved by using any iterative or direct method.



Linear solvers in OpenFOAM®

• The equation solvers, tolerances, and algorithms are controlled 
from the sub-dictionary solvers located in the fvSolution

dictionary file. 

• In the dictionary file fvSolution and depending on the solver 

you are using you will find the additional sub-dictionaries PISO, 

PIMPLE, and SIMPLE, which will be described later.

• In this dictionary is where we tell OpenFOAM® how to crunch 

numbers.

• The solvers sub-dictionary specifies each linear solver that is 

used for each equation being solved. 

• The linear solvers distinguish between symmetric matrices and 

asymmetric matrices. 

• If you forget to define a linear-solver or use the wrong one, 

OpenFOAM® will let you know.

• The syntax for each entry within the solvers sub-dictionary uses 

a keyword that is the word relating to the variable being solved 

in the particular equation and the options related to the linear 

solver.

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          PBiCGStab;

preconditioner      DILU;

tolerance       1e-08;

relTol          0;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

Linear solvers – fvSolution dictionary
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• In this generic case, to solve the pressure (p) we are using the 

PCG method with the DIC preconditioner, an absolute 

tolerance equal to 1e-06 and a relative tolerance relTol equal 

to 0. 

• The entry pFinal refers to the final pressure correction (notice 

that we are using macro syntax), and we are using a relative 

tolerance relTol equal to 0 (disabled).  

• To solve the velocity field (U) we are using the PBiCGStab

method with the DILU preconditoner, an absolute tolerance

equal to 1e-08 and a relative tolerance relTol equal to 0. 

• The linear solvers will iterative until reaching any of the 

tolerance values set by the user or reaching a maximum value 

of iterations (optional entry). 

• FYI, solving for the velocity is relatively inexpensive, whereas 

solving for the pressure is expensive.

• The pressure equation is particularly important as it governs 

mass conservation.

• If you do not solve the equations accurately enough (tolerance), 

the physics might be wrong. 

• Selection of the tolerance is of paramount importance and it 

might be problem dependent.

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          PBiCGStab;

preconditioner      DILU;

tolerance       1e-08;

relTol          0;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

Linear solvers – fvSolution dictionary
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solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          PBiCGStab;

preconditioner      DILU;

tolerance       1e-08;

relTol          0;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

Linear solvers – fvSolution dictionary

• The linear solvers are iterative, i.e., they are based on reducing 

the equation residual over a succession of solutions. 

• The residual is a measure of the error in the solution so that the 

smaller it is, the more accurate the solution. 

• More precisely, the residual is evaluated by substituting the 

current solution into the equation and taking the magnitude of 

the difference between the left- and right-hand sides (L2-norm).

• It is also normalized to make it independent of the scale of the 

problem being analyzed. 
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solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          PBiCGStab;

preconditioner      DILU;

tolerance       1e-08;

relTol          0;

minIter 3;

maxIter 100;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

Linear solvers – fvSolution dictionary

• Before solving an equation for a particular field, the initial 

residual is evaluated based on the current values of the field.

• After each solver iteration the residual is re-evaluated. The 

solver stops if either of the following conditions are reached: 

• The residual falls below the solver tolerance, tolerance. 

• The ratio of current to initial residuals falls below the solver 

relative tolerance, relTol.

• The number of iterations exceeds a maximum number of 

iterations, maxIter. 

• The solver tolerance should represent the level at which the 

residual is small enough that the solution can be deemed 

sufficiently accurate. 

• The keyword maxIter is optional and the default value is 1000.

• The user can also define the minimum number of iterations 

using the keyword minIter. This keyword is optional, and the 

default value is 0.
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Linear solvers

• These are the linear solvers (segregated) available in OpenFOAM®:

• GAMG  

• PBiCG  

• PBiCGStab 

→   Multigrid solver

→   Newton-Krylov solver

→   Newton-Krylov solver

• PCG 

• smoothSolver 

• diagonalSolver

→   Newton-Krylov solver

→   Smooth solver

• You will find the source code of the linear solvers in the following directory:

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/lduMatrix/solvers
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• DIC

• DILU

• FDIC

• GAMG

• diagonal

• noPreconditioner

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/lduMatrix/preconditioners

• The smoothSolver solver requires the specification of a smoother.

• These are the smoothers available in OpenFOAM®:

• DIC

• DICGaussSeidel

• DILU

• DILUGaussSeidel

• FDIC

• GaussSeidel

• nonBlockingGaussSeidel

• symGaussSeidel

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/lduMatrix/smoothers

• When using Newton-Krylov solvers, you need to define preconditoners.

• These are the preconditioners available in OpenFOAM®:
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Linear solvers – General remarks

• As you can see, when it comes to linear solvers there are many options and combinations available in 

OpenFOAM®.

• When it comes to choosing the linear solver, there is no written theory.  

• It is problem and hardware dependent (type of the mesh, physics involved, processor cache memory, network 

connectivity, partitioning method, and so on).

• Most of the times using the GAMG method (geometric-algebraic multi-grid), is the best choice for symmetric 

matrices (e.g., pressure).

• The GAMG method should converge fast (less than 20 iterations). If it’s taking more iterations, try to change the 

smoother.

• And if it is taking too long or it is unstable, use the PCG solver.

• When running with many cores (more than 1000), using the PCG might be a better choice.

• For asymmetric matrices, the PBiCGStab method with DILU preconditioner is a good choice.

• The smoothSolver solver with smoother GaussSeidel, also performs very well.

• If the PBiCGStab method with DILU preconditioner mysteriously crashed with an error related to the 

preconditioner, use the smoothSolver or change the preconditioner.

• But in general the PBiCGStab solver should be faster than the smoothSolver  solver.

• Remember, asymmetric matrices are assembled from the velocity (U), and the transported quantities (k, 

omega, epsilon, T, and so on).

• Usually, computing the velocity and the transported quantities is inexpensive and fast, so it is a good idea to use 

a tight tolerance (1e-8) for these fields.

• The diagonal solver is used for back-substitution, for instance, when computing density using the equation of 

state (we know p and T). 629
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Linear solvers – General remarks

• A few comments on the linear solvers residuals (we will talk about monitoring the residuals   

later on).

• Residuals are not a direct indication that you are converging to the right solution.

• The first time-steps the solution might not converge, this is acceptable.

• Also, you might need to use a smaller time-step during the first iterations to maintain solver 

stability.

• If the solution is not converging after a while, try to reduce the time-step size.

Time = 50

Courant Number mean: 0.044365026 max: 0.16800273

smoothSolver:  Solving for Ux, Initial residual = 1.0907508e-09, Final residual = 1.0907508e-09, No Iterations 0

smoothSolver:  Solving for Uy, Initial residual = 1.4677462e-09, Final residual = 1.4677462e-09, No Iterations 0

DICPCG:  Solving for p, Initial residual = 1.0020944e-06, Final residual = 1.0746895e-07, No Iterations 1

time step continuity errors : sum local = 4.0107145e-11, global = -5.0601748e-20, cumulative = 2.637831e-18

ExecutionTime = 4.47 s  ClockTime = 5 s

fieldMinMax minmaxdomain output:

min(p) = -0.37208345 at location (0.025 0.975 0.5)

max(p) = 0.77640927 at location (0.975 0.975 0.5)

min(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

max(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5) Residuals
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Linear solvers tolerances

• So how do we set the tolerances?

• The pressure equation is particularly important, so we should resolve it accurately. Solving the 

pressure equation is the expensive part of the whole iterative process.

• For the pressure equation (symmetric matrix), you can start the simulation with a tolerance

equal to 1e-6 and relTol equal to 0.01.  

• And after a while, you change these values to 1e-6 and 0.0, respectively.

• If the linear solver is taking too much time, you can change the convergence criterion to 1e-4 

and relTol equal to 0.05.  You usually will do this during the first iterations.

p

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.01;

}

p

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.0;

}

Loose tolerance Tight tolerance
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Linear solvers tolerances

• For the velocity field (U) and the transported quantities (asymmetric matrices), you can use the 

following criterion.

• Solving for these variables is relatively inexpensive, so you can start right away with a tight 

tolerance.

• As a side note, the relative tolerance (relTol) is the difference between the initial residuals and 

the current final residuals.

U

{

solver           PBiCGStab;

preconditioner DILU;

tolerance        1e-8;

relTol          0.001;

}

Loose tolerance

U

{

solver           PBiCGStab;

preconditioner DILU;

tolerance        1e-8;

relTol          0.0;

}

Tight tolerance
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Linear solvers tolerances

• It is also a good idea to set the minimum number of iterations (minIter), we recommend using a 

value of 3.

• If your solver is doing too many iterations, you can set the maximum number of iterations 

(maxIter).  

• But be careful, if the solver reach the maximum number of iterations it will stop, we are talking 

about unconverged time-steps or outer-iterations.

• Setting the maximum number of iterations is especially useful during the first time-steps where 

the linear solver takes longer to converge.

• You can set minIter and maxIter in all symmetric and asymmetric linear solvers.

p

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.01;

minIter 3;

maxIter 100;

}
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Linear solvers tolerances

• When you use the PISO or PIMPLE method with the momentumPredictor option (which is 

enabled by default), you also have the option to set the tolerance for the final pressure corrector 

step (pFinal).  

• By proceeding in this way, you can put all the computational effort only in the last corrector step 

(pFinal). 

• For all the intermediate corrector steps, you can use a more relaxed convergence criterion.

• For example, you can use the following solver and tolerance criterion for all the intermediate 

corrector steps (p), then in the final corrector step (pFinal) you tight the solver tolerance.

p

{

solver           PCG;

preconditioner DIC;

tolerance        1e-4;

relTol          0.05;

}

pFinal

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.0;

}

Loose tolerance for p Tight tolerance for pFinal

634



Linear solvers in OpenFOAM®

Linear solvers tolerances

Courant Number mean: 0.10556573 max: 0.65793603

deltaT = 0.00097959184

Time = 10

PIMPLE: iteration 1

DILUPBiCG:  Solving for Ux, Initial residual = 0.0024649332, Final residual = 2.3403547e-09, No Iterations 4

DILUPBiCG:  Solving for Uy, Initial residual = 0.0044355904, Final residual = 1.8966277e-09, No Iterations 4

DILUPBiCG:  Solving for Uz, Initial residual = 0.010100894, Final residual = 1.4724403e-09, No Iterations 4

GAMG:  Solving for p, Initial residual = 0.018497918, Final residual = 0.00058090899, No Iterations 3

GAMG:  Solving for p, Initial residual = 0.00058090857, Final residual = 2.5748489e-05, No Iterations 5

time step continuity errors : sum local = 1.2367812e-09, global = 2.8865505e-11, cumulative = 1.057806e-08

GAMG:  Solving for p, Initial residual = 0.00076032002, Final residual = 2.3965621e-05, No Iterations 3

GAMG:  Solving for p, Initial residual = 2.3961044e-05, Final residual = 6.3151172e-06, No Iterations 2

time step continuity errors : sum local = 3.0345314e-10, global = -3.0075104e-12, cumulative = 1.0575052e-08

DILUPBiCG:  Solving for omega, Initial residual = 0.00073937735, Final residual = 1.2839908e-10, No Iterations 4

DILUPBiCG:  Solving for k, Initial residual = 0.0018291502, Final residual = 8.5494234e-09, No Iterations 3

ExecutionTime = 29544.18 s  ClockTime = 29600 s

pFinal

p

p

• When you use the PISO or PIMPLE method with the momentumPredictor option (which is 

enabled by default), you also have the option to set the tolerance for the final pressure corrector 

step (pFinal).  

• By proceeding in this way, you can put all the computational effort only in the last corrector step 

(pFinal in this case). 

• For all the intermediate corrector steps (p), you can use a more relaxed convergence criterion.

• If you proceed in this way, it is recommended to do at least 2 corrector steps (nCorrectors).

1

2

nCorrectors
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Linear solvers – Matrix reordering

• As we are solving a sparse matrix, the more diagonal the matrix is, the best the convergence 

rate will be. 

• So it is highly advisable to use the utility renumberMesh before running the simulation.

• $> renumberMesh –overwrite

• The utility renumberMesh can dramatically increase the speed of the linear solvers, specially 

during the first iterations.

• The idea behind reordering is to make the matrix more diagonally dominant, therefore, speeding 

up the iterative solver.
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Matrix structure plot before reordering Matrix structure plot after reordering

Note: this is the actual pressure matrix from an OpenFOAM® model case
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On the multigrid solvers

• The development of multigrid solvers (GAMG in OpenFOAM®), together with the development 

of high-resolution TVD schemes and parallel computing, are among the most remarkable 

achievements of the history of CFD.

• Most of the time using the GAMG linear solver is fine.  

• However, if you see that the GAMG linear solver is taking too long to converge or is converging 

in more than 100 iterations, it is better to use the PCG linear solver.

• Particularly, we have found that the GAMG linear solver in OpenFOAM® does not perform very 

well when you scale your computations to more than 500 processors.

• Also, we have found that for some multiphase cases the PCG method outperforms the GAMG. 

• But again, this is problem and hardware dependent. 

• As you can see, you need to always monitor your simulations (stick to the screen for a while.

• Otherwise, you might end-up using a solver that is performing poorly, and this translate in 

increased computational time and costs.
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On the multigrid solvers tolerances

• If you go for the GAMG linear solver for symmetric matrices (e.g., pressure), the following 

tolerances are acceptable for most of the cases.

p

{

solver           GAMG;

tolerance        1e-6;

relTol          0.01;

smoother         GaussSeidel;

nPreSweeps       0;

nPostSweeps     2;

cacheAgglomeration on;

agglomerator     faceAreaPair;

nCellsInCoarsestLevel 100;

mergeLevels      1;

minIter 3;

}

pFinal

{

solver           GAMG;

tolerance        1e-6;

relTol          0;

smoother         GaussSeidel;

nPreSweeps       0;

nPostSweeps     2;

cacheAgglomeration on;

agglomerator     faceAreaPair;

nCellsInCoarsestLevel 100;

mergeLevels      1;

minIter 3;

}

Loose tolerance for p Tight tolerance for pFinal

NOTE:

The GAMG parameters are not optimized, that is up to you. 

Most of the times is safe to use the proposed parameters.
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Linear solvers tolerances – Steady simulations

• The previous tolerances are fine for unsteady solver.

• For extremely coupled problems you might need to have tighter tolerances.

• You can use the same tolerances for steady solvers. However, it is acceptable to use a looser 

criterion.

• For steady simulations using the SIMPLE method, you can set the convergence controls based 

on residuals of fields. 

• The controls are specified in the residualControls sub-dictionary of the dictionary file 
fvSolution. 

SIMPLE

{

nNonOrthogonalCorrectors    2;

residualControl

{

p    1e-4;

U    1e-4;

}

}

Residual control for every 

field variable you are solving
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Linear solvers benchmarking of a model case

Case Linear solver for P Preconditioner or smoother MR Time QOI

IC1 PCG FDIC NO 278 2.8265539

IC2 smoothSolver symGaussSeidel NO 2070 2.8271198

IC3 ICCG GAMG NO 255 2.8265538

IC4 GAMG GaussSeidel NO 1471 2.8265538

IC5 PCG GAMG-GaussSeidel NO 302 2.8265538

IC6 GAMG GaussSeidel YES 438 2.8265539

IC7 PCG FDIC YES 213 2.8265535

IC8 PCG GAMG-GaussSeidel YES 283 2.8265538

IC9 ICCG GAMG YES 261 2.8265538

IC10 PCG DIC NO 244 2.8265539

Solver used = icoFoam – Incompressible case

MR = matrix reordering (renumberMesh)

QOI = quantity of interest. In this case the maximum velocity at the outlet (m/s)

TIME = clock time (seconds)
640



Linear solvers in OpenFOAM®

641

• Choose any tutorial or a case of your own and do a benchmarking of the linear solvers. 

• Using your benchmarking case, conduct the following numerical experiments:

• Find the optimal parameters for the GAMG solver.

• Use different linear solvers for p and pFinal (symmetric matrices). Do you see any advantage?

• Do a benchmarking of the different reordering methods available

(Hint: look for the dictionary renumberMeshDict)

• Compare the performance of the asymmetric solvers PBiCG, PBiCGStab, and smoothSolver. Do you 

see any significant difference between both solvers?

• Is it possible to switch between segregated and coupled linear solvers on-the-fly?

• In what files are located the controls of the SIMPLE, PISO, and PIMPLE methods?

(Hint: for example, using grep look for the keyword nCorrectors in the directory src/finiteVolume)

Exercises



Roadmap

1. Finite Volume Method: A Crash Introduction

2. On the CFL number

3. Linear solvers in OpenFOAM®

4. Pressure-Velocity coupling in OpenFOAM®

5. Unsteady and steady simulations

6. Understanding residuals

7. Boundary and initial conditions

8. Numerical playground
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Pressure-Velocity coupling in OpenFOAM®

• To solve the Navier-Stokes equations we need to use a solution approach able to 

deal with the nonlinearities of the governing equations and with the coupled set of 

equations.

Additional equations deriving from models, such as, volume fraction, 

chemical reactions, turbulence modeling, combustion, multi-species, etc.
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• Many numerical methods exist to solve the Navier-Stokes equations, just to name a 

few:

• Pressure-correction methods (Predictor-Corrector type).

• SIMPLE, SIMPLEC, SIMPLER, PISO.

• Projection methods.

• Fractional step (operator splitting), MAC, SOLA.

• Density-based methods and preconditioned solvers.

• Riemann solvers, ROE, HLLC, AUSM+, ENO, WENO.

• Artificial compressibility methods.

• Artificial viscosity methods.

• The most widely used approaches for solving the NSE are:

• Pressure-based approach (predictor-corrector).

• Density-based approach.
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• Historically speaking, the pressure-based approach was developed for low-speed 

incompressible flows, while the density-based approach was mainly developed for 

high-speed compressible flows.

• However, both methods have been extended and reformulated to solve and operate 

for a wide range of flow conditions beyond their original intent.

• In OpenFOAM®, you will find segregated pressure-based solvers.

• The segregated pressure-based solvers in OpenFOAM®, solve a modified pressure 

equation (pressure-Poisson equation).

• The following methods are available: 

• SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)

• SIMPLEC (SIMPLE Corrected/Consistent)

• PISO (Pressure Implicit with Splitting Operators)

• You will find the solvers in the following directory:

• $WM_PROJECT_DIR/applications/solvers

• Additionally, you will find something called PIMPLE, which is a hybrid between 

SIMPLE and PISO (known as iterative PISO outside OpenFOAM® jargon).  

• This formulation can give you more accuracy and stability when using very 

large time-steps or in pseudo-transient simulations.
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• In OpenFOAM®, the PISO and PIMPLE methods are formulated for unsteady 

simulations.

• Whereas, the SIMPLE and SIMPLEC methods are formulated for steady simulations.

• If conserving time is not a priority, you can use the PIMPLE method in pseudo 

transient mode. 

• The pseudo transient PIMPLE method is more stable than the SIMPLE method, but it 

has a higher computational cost.

• Also, the pseudo transient PIMPLE method  tends to be faster than the fully transient 

PIMPLE when reaching steady states.

• Depending on the method and solver you are using, you will need to define a specific 
sub-dictionary in the dictionary file fvSolution.

• For instance, if you are using the PISO method, you will need to specify the PISO

sub-dictionary.

• And depending on the method, each sub-dictionary will have different entries.
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On the origins of the methods

647

• SIMPLE

• S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum 

transfer in three-dimensional parabolic flows”, Int. J. Heat Mass Transfer, 15, 1787-1806 (1972).

• SIMPLE-C

• J. P. Van Doormaal and G. D. Raithby, “Enhancements of the SIMPLE method for predicting 

incompressible fluid flows”, Numerical Heat Transfer, 7, 147-163 (1984).

• PISO

• R. I. Issa, “Solution of the implicitly discretized fluid flow equations by operator-splitting”, J. 

Comput. Phys., 62, 40-65 (1985).

• PIMPLE

• Unknown origins outside OpenFOAM® ecosystem (we are referring to the semantics).

• It is equivalent to PISO with outer iterations (iterative time-advancement of the solution).

• Useful reference (besides PISO reference):

• I. E. Barton, “Comparison of SIMPLE and PISO-type algorithms for transient flows, Int. J. 

Numerical methods in fluids, 26,459-483 (1998).

• P. Oliveira and R. I. Issa, “An improved piso algorithm for the computation of buoyancy-driven 

flows”, Numerical Heat Transfer, 40, 473-493 (2001).
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The SIMPLE sub-dictionary

SIMPLE

{

nNonOrthogonalCorrectors    1;

}

• This sub-dictionary is located in the dictionary file fvSolution.

• It controls the options related to the SIMPLE pressure-velocity coupling method.

• The SIMPLE method only makes one correction. 

• An additional correction to account for mesh non-orthogonality is available when using the 

SIMPLE method. The number of non-orthogonal correctors is specified by the 

nNonOrthogonalCorrectors keyword. 

• The number of non-orthogonal correctors is chosen according to the mesh quality. 

• For orthogonal meshes you can use 0 non-orthogonal corrections. However, it is strongly 

recommended to do at least 1 non-orthogonal correction (this helps stabilizing the solution).

• For non-orthogonal meshes, it is recommended to do at least 1 correction. 
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The SIMPLE sub-dictionary

• You can use the optional keyword consistent to enable or disable the SIMPLEC method. 

• This option is disable by default.

• In the SIMPLEC method, the cost per iteration is marginally higher but the convergence rate is 

better, so the number of iterations is reduced.

• The SIMPLEC method relaxes the pressure in a consistent manner and additional relaxation of 

the pressure is not generally necessary (but it is recommended). 

• In addition, convergence of the p-U system is better and still is reliable with less aggressive 

relaxation factors of the momentum equation.

SIMPLE

{

consistent yes;

nNonOrthogonalCorrectors    1;

}
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The SIMPLE sub-dictionary

• These are the typical (or industry standard) under-relaxation factors for the SIMPLE and 

SIMPLEC methods.  

• Remember the under-relaxation factors are problem dependent.

650

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U    0.7;

k 0.7; 

omega 0.7;

}

}

relaxationFactors

{

fields

{

p 1.0;

}

equations

{

p 1.0;

U    0.9;

k 0.9; 

omega 0.9;

}

}

SIMPLE SIMPLEC

Usually there is no need 

to under-relax pressure; 

however, it is advisable.
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The SIMPLE sub-dictionary

• If you are planning to use the SIMPLEC method, 

we recommend you to use under-relaxation factors 

that are little bit more smaller that the industry 

standard values.

• If during the simulation you still have some stability 

problems, try to reduce all the values to 0.5.

• Remember the under-relaxation factors are 

problem dependent.

• If you are having convergence problems, it is 

recommended to start the simulation with low 

values (about 0.3), and then increase the values 

slowly up to 0.7 or 0.9 (for faster convergence).

relaxationFactors

{

fields

{

p 0.7;

}

equations

{

p 0.7;

U    0.7;

k 0.7; 

omega 0.7;

}

}

SIMPLEC
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The SIMPLE loop in OpenFOAM®
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fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

U = HbyA – rAU*fvc::grad(p);

This is an excerpt of the actual source code of 

the solver
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The PISO sub-dictionary
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• This sub-dictionary is located in the dictionary file fvSolution.

• It controls the options related to the PISO pressure-velocity coupling method.

• The PISO method requires at least one correction (nCorrectors). 

• For good accuracy and stability (specially in unstructured meshes), it is recommended to use at 

least 2 nCorrectors. 

• An additional correction to account for mesh non-orthogonality is available when using the PISO 

method. The number of non-orthogonal correctors is specified by the 

nNonOrthogonalCorrectors keyword. 

• The number of non-orthogonal correctors is chosen according to the mesh quality. 

• For orthogonal meshes you can use 0 non-orthogonal corrections. However, it is strongly 

recommended to do at least 1 non-orthogonal correction (this helps stabilizing the solution).

• For non-orthogonal meshes, it is recommended to do at least 1 correction. 

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}
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The PISO sub-dictionary

• You can use the optional keyword momentumPredictor to enable or disable the momentum 

predictor step. 

• The momentum predictor helps in stabilizing the solution as we are computing better 

approximations for the velocity. 

• It is clear that this will add an extra computational cost, which most of the times is negligible. 

• In most of the solvers, this option is enabled by default.

• It is recommended to use this option for highly convective flows (high Reynolds number). If you 

are working with low Reynolds flow or creeping flows it is recommended to turn it off.

• Note that when you enable the option momentumPredictor, you will need to define the linear 

solvers for the variables .*Final (we are using regex notation). 

• Also, if you want to use URF you will need to apply then to all field variables (including .*Final).
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PISO

{

momentumPredictor yes;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}
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fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

U = HbyA – rAU*fvc::grad(p);

The PISO loop in OpenFOAM®

(PISO with non-iterative marching – NITA – )

This is an excerpt of the actual source code of 

the solver



Pressure-Velocity coupling in OpenFOAM®

The PIMPLE sub-dictionary
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• This sub-dictionary is located in the dictionary file fvSolution. It controls the options related to the PIMPLE 

pressure-velocity coupling method.

• The PIMPLE method works very similar to the PISO method. 

• In fact, setting the keyword nOuterCorrectors to 1 is equivalent to running using the PISO method. 

• The keyword nOuterCorrectors controls a loop outside the PISO loop.

• To gain more stability, especially when using large time-steps or when dealing with complex physics 

(combustion, chemical reactions, shock waves, and so on), you can use more outer correctors 

(nOuterCorrectors).  

• Usually between 2 and 5 corrections for computational efficiency. 

• Have in mind that increasing the number of nOterCorrectors will highly increase the computational cost.

PIMPLE

{

momentumPredictor yes;

nOuterCorrectors 1;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}
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The PIMPLE sub-dictionary
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• You can use under-relaxation factors (URF) with the PIMPLE solvers. 

• By using URF, you will gain more stability in time dependent solutions (as they control the amount of change of 

field variables within the time-step). 

• However, if you use too low URF values, your solution might not be time-accurate anymore.

• You can use the same or larger URF values as those for steady simulation.

• Note that when you enable the option momentumPredictor, you will need to define the linear solvers for the 

variables .*Final (we are using regex notation). 

• You can assign URF to all variables (including .*Final), to only the intermediate field variables (U, p, k, and so 

on), or to only the .*Final variables (UFinal, pFinal, kFinal, and so on).

• We recommend to use URF in all variables.

PIMPLE

{

momentumPredictor yes;

nOuterCorrectors 1;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}
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fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

U = HbyA – rAU*fvc::grad(p);

The PIMPLE loop in OpenFOAM®

(PISO with iterative marching – ITA – )

This is an excerpt of the actual source code of 

the solver
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Comparison of PISO with non-iterative time-advancement (PISO-NITA) 

against  PISO with Iterative time-advancement (PISO-ITA) 

PISO-NITA PISO-ITA (PIMPLE in OpenFOAM®)

• The main difference between both methods is the outer loop present in the PISO-ITA.

• This outer loop gives more stability and allow the use of very large time-steps (CFL numbers).

• The recommended CFL number of the PISO-NITA is below 2 (for good accuracy and stability).
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Unsteady and steady simulations

Turbulent flows - SRS

www.wolfdynamics.com/wiki/FVM_uns/ani4.gif

Sliding grids – Continuous stirred tank reactor

www.wolfdynamics.com/wiki/FVM_uns/ani5.gif
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• Nearly all flows in nature and industrial applications 

are unsteady (also known as transient or 

time-dependent).

• Unsteadiness can be due to:

• Instabilities.

• Non-equilibrium initial conditions.

• Time-dependent boundary conditions.

• Source terms.

• Chemical reactions and finite rate chemistry.

• Phase change.

• Moving or deforming bodies.

• Turbulence.

• Buoyancy and heat transfer.

• Discontinuities.

• Multiple phases.

• Fluid structure interaction.

• Combustion.

• And much more.

Multiphase flow

www.wolfdynamics.com/wiki/FVM_uns/ani3.gif

http://www.wolfdynamics.com/wiki/FVM_uns/ani1.gif
http://www.wolfdynamics.com/wiki/FVM_uns/ani1.gif
http://www.wolfdynamics.com/wiki/FVM_uns/ani3.gif


How to run unsteady simulations in OpenFOAM®?

Unsteady and steady simulations

• Select the time step. The time-step must be chosen in such a way that it resolves the time-dependent features 

and maintains solver stability.

• Select the temporal discretization scheme.

• Set the tolerance (absolute and/or relative) of the linear solvers.

• Monitor the CFL number. 

• Monitor the stability and boundedness of the solution.

• Monitor a quantity of interest.

• And of course, you need to save the solution with a given frequency.

• Have in mind that unsteady simulations generate a lot of data.

• End time of the simulation?, it is up to you.  

• In the controlDict dictionary you need to set runtime parameters and general instructions on how to run the 

case (such as time step and maximum CFL number).   You also set the saving frequency.

• In the fvSchemes dictionary you need to set the temporal discretization scheme.

• In the fvSolution dictionary you need to set the linear solvers.

• Also, you will need to set the number of corrections of the velocity-pressure coupling method used (e.g. PISO
or PIMPLE), this is done in the fvSolution dictionary.

• Additionally, you may set functionObjects in the controlDict dictionary.  The functionObjects are used to 

do sampling, probing and co-processing while the simulation is running.
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How to run unsteady simulations in OpenFOAM®?

Unsteady and steady simulations

ddtSchemes

{

default backward;

}

gradSchemes

{

default Gauss linear;

grad(p)         Gauss linear;

}

divSchemes

{

default none;

div(phi,U)      Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

• The fvSchemes dictionary contains the information related to 

time discretization and spatial discretization schemes.

• In this generic case we are using the backward method for time 

discretization (ddtSchemes). 

• This scheme is second order accurate but oscillatory. 

• The parameters can be changed on-the-fly.
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How to run unsteady simulations in OpenFOAM®?

Unsteady and steady simulations

• The controlDict dictionary contains runtime simulation 

controls, such as, start time, end time, time step, saving 

frequency and so on. 

• Most of the entries are self-explanatory.

• This generic case starts from time 0 (startTime), and it will run 

up to 10 seconds (endTime). 

• It will write the solution every 0.1 seconds (writeInterval) of 

simulation time (runTime). 

• The time step of the simulation is 0.0001 seconds (deltaT). 

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat) with a 

precision of 8 digits (writePrecision). 

• And as the option runTimeModifiable is on (yes), we can 

modify all these entries while we are running the simulation.

• To reduce parsing time and file size, it is recommended to use 

binary format to write the solution.

startFrom       latestTime;

startTime       0;

stopAt          endTime; 

endTime         10;

deltaT          0.0001;

writeControl    runTime;

writeInterval   0.1; 

purgeWrite      0;

writeFormat     ascii;

writePrecision  8;

writeCompression off; 

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

adjustTimeStep  yes;

maxCo           2.0;

maxDeltaT       0.001;
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How to run unsteady simulations in OpenFOAM®?

Unsteady and steady simulations

startFrom       latestTime;

startTime       0;

stopAt          endTime; 

endTime         10;

deltaT          0.0001;

writeControl    runTime;

writeInterval   0.1; 

purgeWrite      0;

writeFormat     ascii;

writePrecision  8;

writeCompression off; 

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

adjustTimeStep  yes;

maxCo           2.0;

maxDeltaT       0.001;

• In this generic case, the solver supports adjustable time-step 

(adjustTimeStep).

• The option adjustTimeStep will automatically adjust the time 

step to achieve the maximum desired courant number (maxCo) 

or time-step size (maxDeltaT). 

• When any of these conditions is reached, the solver will stop 

scaling the time-step size.

• Remember, the first time-step of the simulation is done using the 

value defined with the keyword deltaT and then it is 

automatically scaled (up or down), to achieve the desired 

maximum values (maxCo and maxDeltaT). 

• It is recommended to start the simulation with a low time-step in 

order to let the solver scale-up the time-step size.

• The feature adjustTimeStep is only present in the PIMPLE

family solvers, but it can be added to any solver by modifying 

the source code.

• If you are planning to use large time steps (CFL much higher 

than 1), it is recommended to do at least 3 correctors steps 

(nCorrectors) in PISO/PIMPLE loop, and at least 2 outer 

correctors in the PIMPLE loop.
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Unsteady and steady simulations

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

“U.*”

{

solver          smoothSolver;

smoother        symGaussSeidel;

tolerance       1e-08;

relTol          0;

}

}  

PIMPLE

{

nOuterCorrectors 1;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

• The fvSolution dictionary contains the instructions of how to 

solve each discretized linear equation system.

• As for the controlDict and fvSchemes dictionaries, the 

parameters can be changed on-the-fly.

• To set these parameters, follow the guidelines given in the 

previous section.

• Depending on the solver you are using, you will need to define 

the sub-dictionary PISO or PIMPLE.

• Setting the keyword nOuterCorrectors to 1 in PIMPLE solvers 

is equivalent to running using the PISO method.

• To gain more stability, especially when using large time-steps, 

you can use more outer correctors (nOuterCorrectors).

• If you are using large time steps (CFL much higher than 1), it is 

recommended to do at least 3 correctors steps (nCorrectors) in 

PISO/PIMPLE loop.

• Remember, in both PISO and PIMPLE method you need to do 

at least one correction (nCorrectors).

• Adding corrections increase the computational cost 

(nOuterCorrectors and nCorrectors). 
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• Remember, when running unsteady simulations the time-step must be chosen in such a way 

that it resolves the time-dependent features and maintains solver stability.

When you use large time steps you do not 

resolve well the physics

By using a smaller time step you resolve 

better the physics and you gain stability

Unsteady and steady simulations

How to choose the time-step in unsteady simulations and monitor the solution
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• When running unsteady simulations, it is highly advisable to monitor a quantity of interest.

• The quantity of interest can fluctuate in time, this is an indication of unsteadiness.

Unsteady and steady simulations

Monitoring unsteady simulations
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What about steady simulations?

Unsteady and steady simulations

• First of all, steady simulations are a big simplification of reality. 

• Steady simulations is a trick used by CFDers to get fast outcomes with results that might be 

even more questionable. 

• Remember, most of the flows you will encounter are unsteady so be careful of this hypothesis.

• In steady simulations, we made two assumptions:

• We ignore unsteady fluctuations.  That is, we neglect the time derivative in the governing 

equations.

• We perform time averaging when dealing with stationary turbulence (RANS modeling)

• The advantage of steady simulations is that they require low computational resources, give fast 

outputs, and are easier to post-process and analyze.

• To do so, you need to use the appropriate solver and use the right discretization scheme.

• As you are not solving the time derivative, you do not need to set the time step.  However, you 

need to tell OpenFOAM®  how many iterations you would like to run.

• You can also set the residual controls (residualControl), in the fvSolution dictionary file. 

You set the residualControl in the SIMPLE sub-dictionary.

• If you do not set the residual controls, OpenFOAM® will run until reaching the maximum 

number of iterations (endTime).
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Unsteady and steady simulations

• In the controlDict dictionary you need to set runtime parameters and general instructions on 

how to run the case (such as the number of iterations to run). 

• Remember to set also the saving frequency.

• In the fvSchemes dictionary you need to set the time discretization scheme, for steady 

simulations it must be steadyState.

• In the fvSolution dictionary you need to set the linear solvers, under-relaxation factors, and 

residual controls.

• Also, you will need to set the number of corrections of the velocity-pressure coupling method 
used (e.g. SIMPLE or SIMPLEC), this is done in the fvSolution dictionary.

• Additionally, you may set functionObjects in the controlDict dictionary.  

• The functionObjects are used to do sampling, probing and co-processing while the simulation 

is running.
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How to run steady simulations in OpenFOAM®?



• The under-relaxation factors (URF) control the change of the variable    .

Unsteady and steady simulations

• According to the physics involved you will need to add more under-relaxation factors.

• Finding the right URF involved experience and some trial and error.

• Selecting the URF it is kind of equivalent to selecting the right time step.

• Many times, steady simulations diverge because of wrongly chosen URF.

p           0.3;

U           0.7;

k           0.7;

omega       0.7;
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How to run steady simulations in OpenFOAM®?

• Under-relaxation is a feature typical of steady solvers using the SIMPLE family of methods.

• These are the URF commonly used with SIMPLE and SIMPLEC (industry standard),

p           1;    

U           0.9;

k           0.9;

omega       0.9;

SIMPLE SIMPLEC

Pressure Usually does not require under-relaxing



• The URF are bounded between 0 and 1.

• If you set the URF close to one you increase the 

convergence rate but loose solution stability. 

• On the other hand, if you set the URF close to zero 

you gain stability but reduce convergence rate.

Unsteady and steady simulations
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How to run steady simulations in OpenFOAM®?

• An optimum choice of under-relaxation factors is one that is small enough to ensure stable 

computation but large enough to move the iterative process forward quickly.

• Under-relaxation can be implicit (equation in OpenFOAM) or explicit (field in OpenFOAM).

• A small CFL number is equivalent to small URF.

Implicit URF Explicit URF

• You can relate URF to the CFL number as follows, 



How to run steady simulations in OpenFOAM®?

Unsteady and steady simulations

ddtSchemes

{

default steadyState;

}

gradSchemes

{

default Gauss linear;

grad(p)         Gauss linear;

}

divSchemes

{

default none;

div(phi,U)     bounded Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

• The fvSchemes dictionary contains the information related to 

time discretization and spatial discretization schemes.

• In this generic case and as we are interested in using a steady 

solver, we are using the steadyState method for time 

discretization (ddtSchemes). 

• It is not a good idea to switch between steady and unsteady 

schemes on-the-fly.

• For steady state cases, the bounded form can be applied to the 

divSchemes, in this case, div(phi,U) bounded Gauss linear.

• This adds a linearized, implicit source contribution to the 

transport equation of the form,

• This term removes a component proportional to the continuity 

error. This acts as a convergence aid to tend towards a bounded 

solution as the calculation proceeds. 

• At convergence, this term becomes zero and does not 

contribute to the final solution.
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Unsteady and steady simulations

startFrom       latestTime;

startTime       0;

stopAt          endTime; 

endTime         10000;

deltaT          1;

writeControl    runTime;

writeInterval   100; 

purgeWrite      10;

writeFormat     ascii;

writePrecision  8;

writeCompression off; 

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

• The controlDict dictionary contains runtime simulation 

controls, such as, start time, end time, time step, saving 

frequency and so on. 

• Most of the entries are self-explanatory.

• As we are doing a steady simulation, let us talk about iterations 

instead of time (seconds).

• This generic case starts from iteration 0 (startTime), and it will 

run up to 10000 iterations (endTime). 

• It will write the solution every 100 iterations (writeInterval) of 

simulation time (runTime). 

• It will advance the solution one iteration at a time (deltaT). 

• It will keep the last 10 saved solutions (purgeWrite).

• It will save the solution in ascii format (writeFormat) with a 

precision of 8 digits (writePrecision). 

• And as the option runTimeModifiable is on (true), we can 

modify all these entries while we are running the simulation.
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Unsteady and steady simulations

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

U

{

solver          smoothSolver;

smoother        symGaussSeidel;

tolerance       1e-08;

relTol          0;

}

}  

SIMPLE

{

nNonOrthogonalCorrectors    2;

residualControl

{

p    1e-4;

U    1e-4;

}

}

• The fvSolution dictionary contains the instructions of how to 

solve each discretized linear equation system.

• As for the controlDict and fvSchemes dictionaries, the 

parameters can be changed on-the-fly.

• To set these parameters, follow the guidelines given in the 

previous section.

• Increasing the number of nNonOrthogonalCorrectors 

corrections will add more stability but at a higher computational 

cost.

• Remember, nNonOrthogonalCorrectors is used to improve 

the gradient computation due to mesh quality.

• The SIMPLE sub-dictionary also contains convergence controls 

based on residuals of fields. The controls are specified in the 

residualControls sub-dictionary. 

• The user needs to specify a tolerance for one or more solved 

fields and when the residual for every field falls below the 

corresponding residual, the simulation terminates. 

• If you do not set the residualControls, the solver will iterate 

until reaching the maximum number of iterations set in the 
controlDict dictionary.
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Unsteady and steady simulations

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U    0.7;

}

}

• The fvSolution dictionary also contains the 

relaxationFactors sub-dictionary. 

• The relaxationFactors sub-dictionary which controls under-

relaxation, is a technique used for improving stability when using 

steady solvers.

• Under-relaxation works by limiting the amount which a variable 

changes from one iteration to the next, either by modifying the 

solution matrix and source prior to solving for a field (equations

keyword) or by modifying the field directly (fields keyword).

• Under-relaxing the equations is also known as implicit under-

relaxation. 

• Whereas, under-relaxing the fields is also known as explicit 

under-relaxation.

• An optimum choice of under-relaxation factors is one that is 

small enough to ensure stable computation but large enough to 

move the iterative process forward quickly.

• In this case we are using the industry standard URF.

• Remember, URF are problem dependent.

• If you do not define URF, the solver will not under-relax.
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Unsteady and steady simulations
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SIMPLE

{

consistent yes;

nNonOrthogonalCorrectors    3;

}

Enabled/disabled consistent formulation of the 

SIMPLE loop

• To enable the consistent formulation of the SIMPLE method, you need to add the following 

keywork to the SIMPLE sub-dictionary,

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U    0.7;

k 0.6; 

omega 0.6;

}

}

relaxationFactors

{

fields

{

p 0.7;

}

equations

{

U    0.7;

k 0.7; 

omega 0.7;

}

}

SIMPLE SIMPLEC

• The following URF are recommended,



• Steady simulations require less computational power than unsteady simulations.

• They are also much faster than unsteady simulations.

• But sometimes they do not converge to the right solution.

• They are easier to post-process and analyze (you just need to take a look at the last saved 

solution).

• You can use the solution of an unconverged steady simulation as initial conditions for an 

unsteady simulation.

• Remember, steady simulations are not time accurate. Therefore is not a good idea to compute 

a dominant frequency using steady simulations, e.g., vortex shedding frequency.

Unsteady and steady simulations

Steady simulations vs. Unsteady simulations
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Steady solution QOI unsteady solution QOI
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Understanding residuals

• Before talking about residuals, let us clarify something.

• When we talk about iterations in unsteady simulations, we are talking about the time-step or 

outer-iterations.

1. To arrive to this physical time of the monitored QOI

2. We iterate this many times

680

3. And we iterate inside each time-step (or outer-

iteration), until reaching the linear solver tolerance 

or maximum number of iterations.



Understanding residuals

• To get a better idea of how iterative methods work, and what are initial residuals and final residuals, let us 

take another look at a residual plot. 
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• is the initial guess used to start the iterative solver.

• You can use any value at iteration 0, but usually is a good choice to take the previous solution vector. 

• If the following condition is fulfilled                               (where r is the convergence criterion or tolerance), the linear solver will 

stop iterating and will advance to the next time-step.

• By working in an iterative way, every single iteration           is a better approximation of the previous iteration         .

• Sometimes the linear solver might stop before reaching the predefined convergence criterion because it has reached the 

maximum number of iterations, you should be careful of this because we are talking about unconverged iterations.



Unsteady solution residuals Steady solution residuals

• This is a typical residual plot for an unsteady simulation.

• Ideally, the solution should converge at every time-step (final 

residuals tolerance).

• If the solution is not converging, that is, the residuals are not 

reaching the predefined final residual tolerance, try to reduce 

the time-step size.

• The first time-steps the solution might not converge, this is 

acceptable.

• Also, you might need to use a smaller time-step during the 

first iterations to maintain solver stability.

• You can also increase the number of maximum inner 

iterations.

• If the initial residuals fall bellow the convergence criterion, you 

might say that you have arrived to a steady solution (the 

exception rather than the rule).

Understanding residuals
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• This is a typical residual plot for a steady simulation.

• In this case, the initial residuals are falling below the 

convergence criterion (monotonic convergence), hence we 

have reached a steady-state.

• In the solver does not reach the convergence criteria or the 

residuals get stalled, it does not mean that the solution is 

diverging, it is just an indication of unsteadiness and it 

might be better to run using an unsteady solver.

• In comparison to unsteady solvers, steady solvers require 

less iterations to arrive to a converge solution, if they arrive.



• Remember, residuals are not a direct indication that you are converging to the right solution.

• It is better to monitor a quantity of interest (QOI). 

• And by the way, you should get physically realistic values.

• In this case, if you monitor the residuals you might get the impression that the simulation is diverging.

• Instead, if you monitor a QOI you will realize that there is an initial transient (long one by the way), then the 

onset of an instability, and then a periodic behavior of the phenomenon.

• You should assess the convergence of the solution and compute the unsteady statistics in the time window 

where the behavior of the QOI is periodic.

• To monitor the stability, you can check the minimum and maximum values of the field variables.

• If you have bounded quantities, check that you do not have over-shoots or under-shoots. 

Understanding residuals
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Residuals QOI



Understanding residuals

• This is the output of the residuals for all field 

variables of an unsteady case.

• Notice that at the beginning the residuals show a 

monotonic behavior. 

• Then, after a while the convergence rate changes.

• This not necessarily means that the solution is 

diverging, it might be an indication of unsteadiness.

• This is the output of the residuals for all field 

variables of a steady case.

• The jumps are due to the changes in tolerance 

introduced while running the simulation.

• As you can see, the residuals are falling in a 

monotonic way.
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Understanding residuals

• This is the output of the aerodynamic 

coefficients for an unsteady case.

• This is the output of the aerodynamic 

coefficients for a steady case.
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Boundary conditions and initial conditions

• First of all, when we use a CFD solver to find the approximate solution of the governing 

equations, we are solving an Initial Boundary Value Problem (IBVP).

• In an IBVP, we need to impose appropriate boundary conditions and initial conditions.

• No need to say that the boundary conditions and initial conditions need to be physically realistic.

• Boundary conditions are a required component of the numerical method, they tell the solver 

what is going on at the boundaries of the domain.  

• You can think of boundary conditions as source terms.

• Initial conditions are also a required component of the numerical method, they define the initial 

state of the problem.

On the initial boundary value problem (IBVP)
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Boundary conditions and initial conditions

• Boundary conditions (BC) can be divided into three fundamental mathematical types:

• Dirichlet boundary conditions: when we use this BC, we prescribe the value of a variable at the 

boundary.

• Neumann boundary conditions: when we use this BC, we prescribe the gradient normal to the 

boundary.

• Robin Boundary conditions: this BC is a mixed of Dirichlet boundary conditions and Neumann 

boundary 

• You can use any of these three boundary conditions in OpenFOAM®.  

• During this discussion, the semantics is not important, that depends of how you want to call the BCs or how 

they are named in the solver, i.e., in, inlet, inflow, velocity inlet, incoming flow and so on.

• Defining boundary conditions involves:

• Finding the location of the boundary condition in the domain.

• Determining the boundary condition type.

• Giving the required physical information.

• The choice of the boundary conditions depend on:

• Geometrical considerations.

• Physics involved.

• Information available at the boundary condition location.

• Numerical considerations.

• And most important, you need to understand the physics involved.

A few words about boundary conditions
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Boundary conditions and initial conditions

• To define boundary conditions you need to know the location of the boundaries (where they are 

in your mesh).

• You also need to supply the information at the boundaries.

• Last but not least important, you must know the physics involved.

A few words about boundary conditions
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Boundary conditions and initial conditions

• Initial conditions (IC) can be divided into two groups:

• Uniform initial conditions.

• Non-uniform initial conditions.

• For non-uniform IC, the value used can be obtained from:

A few words about initial conditions
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• Defining initial conditions involves:

• Finding the location of the initial condition in the domain.

• Determining the initial condition type.

• Giving the required physical information.

• The choice of the initial conditions depend on:

• Geometrical considerations.

• Physics involved.

• Information available.

• Numerical considerations.

• And most important, you need to understand the physics involved.

• Another simulation (including a solution with 

different grid resolution).

• A mathematical function 

• A potential solver. • Reduced order models.

• Experimental results.



Boundary conditions and initial conditions

• For initial conditions, you need to supply the initial information or initial state of your problem.  

• This information can be a uniform value or a non-uniform value.

• You can apply the initial conditions to the whole domain or separated zones of the domain.

• Last but not least important, you must know the physics involved.

A few words about initial conditions
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Boundary conditions and initial conditions

• Inlets and outlets boundary conditions:

• Inlets are for regions where inflow is expected; however, inlets might support outflow when 

a velocity profile is specified.

• Pressure boundary conditions do not allow outflow at the inlets.

• Velocity specified inlets are intended for incompressible flows.

• Pressure and mass flow inlets are suitable for compressible and incompressible flows.

• Same concepts apply to outlets, which are regions where outflow is expected.
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Boundary conditions and initial conditions

• Zero gradient (Neumann) and backflow boundary conditions:

• Zero gradient boundary conditions extrapolates the values from the domain.  They require 

no information.  

• Zero gradient boundary conditions can be used at inlets, outlets, and walls.

• Backflow boundary conditions provide a generic outflow/inflow condition, with specified 

inflow/outflow for the case of backflow. 

• In the case of a backflow outlet, when the flux is positive (out of domain) it applies a 

Neumann boundary condition (zero gradient), and when the flux is negative (into of 

domain), it applies a Dirichlet boundary condition (fixed value).

• Same concept applies to backflow inlets.
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Boundary conditions and initial conditions

• On the outlet pressure boundary condition

• Some combinations of boundary conditions are very stable, and some are less reliable.

• And some configurations are unreliable.

• Inlet velocity at the inlet and pressure zero gradient at the outlet. This combination 

should be avoided because the static pressure level is not fixed.

• Qualitatively speaking, the results are very different.  

• This simulation will eventually crash.

BCs 1. Inlet velocity and fixed outlet pressure

www.wolfdynamics.com/wiki/BC/aniBC1.gif

BCs 2. Inlet velocity and zero gradient outlet pressure

www.wolfdynamics.com/wiki/BC/aniBC2.gif
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Boundary conditions and initial conditions

• On the outlet pressure boundary condition

• If you only rely on a  QOI and the residuals, you will not see any major difference between 

the two cases with different outlet pressure boundary condition. 

• This is very misleading.

• However, when you visualize the solution you will realize that something is wrong.  This is 

a case where pretty pictures can be used to troubleshoot the solution.

• Quantitative speaking, the results are very similar.  

• However, this simulation will eventually crash.

Residual plot for pressure Quantity of interest – Force coefficient on the body
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Boundary conditions and initial conditions

• Symmetry boundary conditions:

• Symmetry boundary conditions are a big simplification of the problem. However, they help 

to reduce mesh cell count.

• Have in mind that symmetry boundary conditions only apply to planar faces.

• To use symmetry boundary conditions, both the geometry and the flow field must be 

symmetric.

• Mathematically speaking, setting a symmetry boundary condition is equivalent to zero 

normal velocity at the symmetry plane, and zero normal gradients of all variables at the 

symmetry plane.

• Physically speaking, they are equivalent to slip walls.
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Boundary conditions and initial conditions

• Location of the outlet boundary condition:

• Place outlet boundary conditions as far as possible from recirculation zones or backflow 

conditions, by doing this you increase the stability.

• Remember, backflow conditions requires special treatment.

Possible backflow
Far enough so the flow can be 

considered fully developed
Might be OK
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Boundary conditions and initial conditions

• Domain dimensions (when the dimensions are not known):

• If you do not have any constrain in the domain dimensions, you can use as a general guideline the 

dimensions illustrated in the figure below, where L is a reference length (in this case, L is the wing chord). 

• The values illustrated in the figure are on the conservative side, nut if you want to play safe, multiply the 

values by two or more.

• Always verify that there are no significant gradients normal to any of the boundaries patches.  If there are, 

you should consider increasing the domain dimensions.
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Boundary conditions and initial conditions

• Boundary conditions and initial conditions need to be physically realistic.

• Poorly defined boundary conditions can have a significant impact on your solution.

• Initial conditions are as important as the boundary conditions. 

• A good initial condition can improve the stability and convergence rate. 

• On the other hand, unphysical initial conditions can slow down the convergence rate or can cause divergence.

• You need to define boundary conditions and initials conditions for every single variable you are solving.

• Setting the right boundary conditions is extremely important, but you need to understand the physics.

• You need to understand the physics in order to set the right boundary conditions.

• Do not force the flow at the outlet, use a zero normal gradient for all flow variables except pressure.  The solver 

extrapolates the required information from the interior.

• Be careful with backward flow at the outlets (flow coming back to the domain) and backward flow at inlets 

(reflection waves), they required special treatment.

• If possible, select inflow and outflow boundary conditions such that the flow either goes in or out normal to the 

boundaries.

• At outlets, use zero gradient boundary conditions only with incompressible flows and when you are sure that the 

flow is fully developed.

• Outlets that discharge to the atmosphere can use a static pressure boundary condition. This is interpreted as 

the static pressure of the environment into which the flow exhausts.

A few considerations and guidelines
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Boundary conditions and initial conditions

• Inlets that take flow into the domain from the atmosphere can use a total pressure boundary condition (e.g. 

open window).

• Mass flow inlets produce a uniform velocity profile at the inlet.

• Pressure specified boundary conditions allow a natural velocity profile to develop.

• The required values of the boundary conditions and initial conditions depend on the equations you are solving, 

and physical models used, e.g.,

• For incompressible and laminar flows you will need to set only the velocity and pressure.

• If you are solving a turbulent compressible flow you will need to set velocity, pressure, temperature and 

the turbulent variables.

• For multiphase flows you will need to set the primitives variables for each phase.  You will also need to 

initialize the phases.

• If you are doing turbulent combustion or chemical reactions, you will need to define the species, reactions 

and turbulent variables.

• Minimize grid skewness, non-orthogonality, growth rate, and aspect ratio near the boundaries.  You do not want 

to introduce diffusion errors early in the simulation, especially close to the inlets.

• Try to avoid large gradients in the direction normal to the boundaries and near inlets and outlets.  

• That is to say, put your boundaries far away from where things are happening.

A few considerations and guidelines
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Boundary conditions and initial conditions

• OpenFOAM® distinguish between base type boundary conditions and numerical type 

boundary conditions.

Base type boundary conditions Numerical type boundary conditions

• Base type boundary conditions are based on geometry 

information (surface patches) or on inter-processor 

communication link (halo boundaries). 

• Base type boundary conditions are defined in the file 
boundary located in the directory constant/polyMesh

• The file boundary is automatically created when you 

generate or convert the mesh.

• When you convert a mesh to OpenFOAM® format, you 
might need to manually modify the file boundary.  This is 

because the conversion utilities do not recognize the 

boundary type of the original mesh. 

• Remember, if a base type boundary condition is missing, 

OpenFOAM® will complain and will tell you where and what 

is the error.

• Also, if you misspelled something OpenFOAM® will complain 

and will tell you where and what is the error

• Numerical type boundary condition assigns the value to the 

field variables in the given surface patch. 

• Numerical type boundary conditions are defined in the field 
variables dictionaries located in the directory 0 (e.g. U, p).

• When we talk about numerical type boundary conditions, we 

are referring to Dirichlet, Neumann or Robin boundary 

conditions.

• You need to manually create the field variables dictionaries 
(e.g. 0/U, 0/p, 0/T, 0/k, 0/omega). 

• Remember, if you forget to define a numerical boundary 

condition, OpenFOAM® will complain and will tell you where 

and what is the error.

• Also, if you misspelled something OpenFOAM® will complain 

and will tell you where and what is the error.
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Boundary conditions and initial conditions

• The following base type and numerical type boundary conditions are constrained or paired. 

• That is, the type needs to be same in the boundary dictionary and field variables dictionaries 

(e.g. 0/U, 0/p, 0/T, 0/k, 0/omega).

Base type Numerical type

constant/polyMesh/boundary 0/U - 0/p - 0/T - 0/k - 0/omega (IC/BC)

cyclic

cyclicAMI

empty

processor

symmetry

symmetryPlane

wedge

cyclic

cyclicAMI

empty

processor

symmetry

symmetryPlane

wedge
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• These are known as constraint patches in OpenFOAM.

• To find a complete list and the source code location of these patches, go to the directory $WM_PROJECT_DIR and type in the 

terminal:

• $> find . -type d -iname *constraint*



Base type Numerical type

constant/polyMesh/boundary 0/U - 0/p - 0/T - 0/k - 0/omega (IC/BC)

patch

advective

calculated

codedFixedValue

epsilonWallFunction

fixedValue

inletOutlet

movingWallVelocity

rotatingWallVelocity

slip

supersonicFreeStream

totalPressure

zeroGradient

… and so on

Refer to the doxygen documentation or the source code for a list of all 

numerical boundary conditions available.

Boundary conditions and initial conditions

• The base type patch can be any of the boundary conditions available in OpenFOAM®.  

• Mathematically speaking; they can be Dirichlet, Neumann or Robin boundary conditions.
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Boundary conditions and initial conditions

• The wall base type boundary condition is defined as follows:

Base type Numerical type

constant/polyMesh/boundary 0/U 0/p

wall
type fixedValue;

value uniform (0 0 0);
zeroGradient

• This boundary condition is not contained in the patch base type boundary conditions group, 

because specialize modeling options can be used on this boundary condition.  

• An example is turbulence modeling, where turbulence can be generated or dissipated at the 

walls.
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Boundary conditions and initial conditions

• To deal with backflow at outlets, you can use the following boundary condition:

Base type Numerical type

constant/polyMesh/boundary 0/U 0/p

patch

type inletOutlet;

inletValue uniform (0 0 0);

value uniform (0 0 0);

type fixedValue;

value uniform 0;

• The inletValue keyword is used for the reverse flow.  

• In this case, if flow is coming back into the domain it will use the value set using the keyword 

inletValue.  Otherwise it will use a zeroGradient boundary condition.

• For the turbulent variables (k, omega, epsilon, and so on), you can use inletOutlet type (pay 

attention that these quantities are scalars).
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Boundary conditions and initial conditions

Boundary type description Pressure Velocity Turbulence fields

Inlet face zeroGradient fixedValue fixedValue

Outlet face fixedValue inletOutlet inletOutlet

Wall face zeroGradient fixedValue Wall functions*

Symmetry face symmetry symmetry symmetry

Periodic face cyclic cyclic cyclic

Empty face (2D) empty empty empty

Slip wall slip slip slip

• Typical boundary conditions are as follows (external aerodynamics),

* Wall functions can be: kqWallFunction, omegaWallFunction, nutkWallFunction, and so on (next slide).
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Boundary conditions and initial conditions

• Typical wall functions boundary conditions are as follows,

Field variable Wall functions – High RE Resolved BL – Low RE

nut nut(–)WallFunction* fixedValue 0 or a small number

k, q, R kqRWallFunction fixedValue 0 or a small number

epsilon epsilonWallFunction
zeroGradient or fixedValue 0 or 

a small number

omega omegaWallFunction
omegaWallFunction or 

fixedValue with a big number

zeta – fixedValue 0 or a small number

nuTilda – fixedValue 0 or a small number

* nutkAtmRoughWallFunction, nutkRoughWallFunction, nutkWallFunction, nutLowReWallFunction, 

nutURoughWallFunction, nutUSpaldingWallFunction, nutUTabulatedWallFunction, nutUWallFunction, nutWallFunction.
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Boundary conditions and initial conditions

• Finally, remember that the name of the base type boundary condition and the name of the 

numerical type boundary condition needs to be the same, if not, OpenFOAM® will complain.

• Pay attention to this, specially if you are converting the mesh from another format.

• Also, do not use spaces of funny characters when assigning the names to the boundary 

patches.

• The following names are consistent among all dictionary files,

Base type Numerical type

constant/polyMesh/boundary 0/U 0/p

inlet inlet inlet

top top top

cylinder cylinder cylinder

sym sym sym
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Boundary conditions and initial conditions

• There is a plethora of boundary conditions implemented in OpenFOAM®.  

• You can find the source code of the main numerical boundary conditions in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/fields/

• The wall boundary conditions for the turbulence models (wall functions), are located in the following directory:

• $WM_PROJECT_DIR/src/MomentumTransportModels/momentumTransportModels/derivedF

vPatchFields/wallFunctions

• To find all the boundary conditions implemented in OpenFOAM, go to the directory $WM_PROJECT_DIR and 

type in the terminal,

• $> find . -type d -iname *fvPatch*

• $> find . -type d -iname *derivedFv*

• $> find . -type d -iname *pointPatch*

• To get more information about all the boundary conditions available in OpenFOAM® you can read the 

Doxygen documentation. 

• You can access the documentation online at this link http://cpp.openfoam.org/v8/
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Boundary conditions and initial conditions

• For a generic case, the file boundary is divided as follows

The constant/polyMesh/boundary dictionary

fixedWalls

fi
x

e
d

W
a

ll
s

frontAndBack

movingWall

fi
x

e
d

W
a

ll
s

frontAndBack
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3

(

movingWall 

{ 

type patch;

nFaces 20;

startFace 760;

}

fixedWalls

{ 

type wall;

nFaces 60;

startFace 780;

}

frontAndBack 

{ 

type empty;

nFaces 800;

startFace 840;

}

)



Boundary conditions and initial conditions

• For a generic case, the file boundary is divided as follows

The constant/polyMesh/boundary dictionary

Name and type of the surface patches

• The name and type of the patch is given by the user.

• You can change the name if you do not like it.  Do not 

use strange symbols or white spaces.

• You can also change the base type.  For instance, you 

can change the type of the patch movingWall from 

patch to wall.

• When converting the mesh from a third-party format, 

OpenFOAM® will try to recover the information from 

the original format.  But it might happen that it does not 

recognize the base type and name of the original 

format.  If that is your case, you will need to modify the 

file manually or using any of the mesh manipulation 

utilities distributed with OpenFOAM®.

3

(

movingWall 

{ 

type patch;

nFaces 20;

startFace 760;

}

fixedWalls

{ 

type wall;

nFaces 60;

startFace 780;

}

frontAndBack 

{ 

type empty;

nFaces 800;

startFace 840;

}

)
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Number of surface patches

There must be 3 patches definition.

nFaces and startFace keywords

• Unless you know what are you doing,  you do not 

need to change this information.



Boundary conditions and initial conditions

• For a generic case, the numerical type BC are assigned as follows (U),

The 0/U dictionary

dimensions      [0 1 -1 0 0 0 0];

internalField   uniform (0 0 0);

boundaryField

{

movingWall

{

type            fixedValue;

value           uniform (1 0 0);

}

fixedWalls

{

type            fixedValue;

value           uniform (0 0 0);

}

frontAndBack

{

type            empty;

}

}

fixedWalls

type fixedValue;

value uniform (0 0 0);

fi
x

e
d

W
a

ll
s

ty
p

e
 f

ix
e

d
V

a
lu

e
;

v
a

lu
e

 u
n

if
o

rm
 (

0
 0

 0
);

frontAndBack

type empty;

movingWall

type fixedValue;

value uniform (1 0 0);

fi
x

e
d

W
a

ll
s

ty
p

e
 f

ix
e

d
V

a
lu

e
;

v
a

lu
e

 u
n

if
o

rm
 (

0
 0

 0
);

frontAndBack

type empty;
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Boundary conditions and initial conditions

• For a generic case, the numerical type BC are assigned as follows (p),

The 0/p dictionary

dimensions      [0 2 -2 0 0 0 0];

internalField   uniform 0;

boundaryField

{

movingWall

{

type            zeroGradient;

}

fixedWalls

{

type            zeroGradient;

}

frontAndBack

{

type            empty;

}

}

fixedWalls

type zeroGradient;

fi
x

e
d

W
a

ll
s

ty
p

e
 z

e
ro

G
ra

d
ie

n
t;

frontAndBack

type empty;

movingWall

type zeroGradient;

fi
x

e
d

W
a

ll
s

ty
p

e
 z

e
ro

G
ra

d
ie

n
t;

frontAndBack

type empty;
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Roadmap

1. Finite Volume Method: A Crash Introduction

2. On the CFL number

3. Linear solvers in OpenFOAM®

4. Pressure-Velocity coupling in OpenFOAM®

5. Unsteady and steady simulations

6. Understanding residuals

7. Boundary and initial conditions

8. Numerical playground
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Merry-go-round:

Pure convection of a passive scalar in a vector 

field – One dimensional tube.

Numerical playground

715



• This is a visual and mental exercise only.

• You will find this case in the directory

$PTOFC/101FVM/pureConvection/orthogonal_1d

• In this directory, you will also find the README.FIRST file with the 

instructions of how to run the case.

• Hereafter, we will focus our eyes to train our brain. 

Numerical playground
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Pure convection of a scalar in a vector field – One dimensional tube.

Numerical playground

U = (1 0 0)

T = 1

U = zeroGradient

T = zeroGradient

Initial conditions

U = (1 0 0)

T = 0

U = zeroGradient

T = zeroGradient

U = zeroGradient

T = zeroGradient

(0 0 0) (1 0 0)
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• This problem has an exact solution in the form of a traveling wave.

• We will use this case to study the different discretization schemes implemented in 

OpenFOAM®.

• In the figure, we show the solution for time = 0.5 s

Numerical playground

www.wolfdynamics.com/wiki/pureconvection/xani1.gif

www.wolfdynamics.com/wiki/pureconvection/xani2.gif
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Comparison of different spatial discretization schemes.

Euler in time – 100 cells – CFL = 0.1

Linear limiter functions on the Sweby diagram.

Numerical playground

Comparison of different spatial discretization schemes.

Euler in time – 100 cells – CFL = 0.1

Non-linear limiter functions on the Sweby diagram.
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Comparison of different gradient limiters.

Linear upwind in space – Euler in time – 100 cells –

CFL 0.1

Numerical playground

Comparison of different gradient limiters.

Linear upwind in space – Euler in time – 100 cells –

CFL 0.1
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Comparison of different time discretization schemes 

and gradient limiters.

Linear upwind in space – 100 cells – CFL 0.1

Numerical playground

Comparison of Crank Nicolson blending factor using 

cellLimited leastSquares  0.5 gradient limiter.

Linear upwind in space – 100 cells – CFL 0.1
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Comparison of different time-step size (different CFL 

number).

Linear upwind in space – Euler in time – 100 cells 

Numerical playground

Comparison of different mesh sizes.

Linear upwind in space – Euler in time 
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Numerical playground

• This case was for your eyes and brain only, but we encourage you to reproduce all the previous 

results,

• Use all the time discretization schemes.

• Use all the spatial discretization schemes.

• Use all the gradient discretization schemes.

• Use gradient limiters.

• Use different mesh resolution.

• Use different time-steps.

• Sample the solution and compare the results.

• Try to find the best combination of numerical schemes.

• Remember, in the README.FIRST file you will find the instructions of                                     

how to run the case.
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Numerical playground

724

Exercises

• Which one of the following schemes is useless: upwind, downwind, or linear

• Compare the solution obtained with the following schemes: upwind, linearUpwind, MUSCL, QUICK, cubic,

UMIST, OSHER, Minmod, vanAlbada. Are all of them bounded? Are they second order accurate?

• Use the linearUpwind method with Gauss linear, Gauss pointLinear and leastSquares for gradient 

computations, which method is more accurate?

• Imagine that you are using the linearUpwind method with no gradient limiters. How will you stabilize the 

solution if it becomes unbounded?

• When using gradient limiters, what is clipping?

• Use the linearUpwind with different gradient limiters. Which method is more unbounded?

• Use the vanLeer method with a CFL number of 0.1, 0.9 and 2, did all solutions converge? Are both solutions 

bounded? 

• In the directory tri_mesh, you will find the same case setup using a triangular mesh. 

• Run the case and compare the solution with the equivalent setup using the orthogonal mesh.

• Repeat the same experiments as before and draw your conclusions about which method is better 

for unstructured meshes.

• With unstructured meshes, is it possible to get the same accuracy level as for orthogonal meshes?



Numerical playground
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Exercises

• The solver scalarTransportFoam does not report the CFL number on the screen. How will you compute 

the CFL number in this case?

(Hint: you can take a look at the post-processing slides or the utilities directory)

• Which one is more diffusive, spatial discretization or time discretization? 

• Are all time discretization schemes bounded?

• If you are using the Crank-Nicolson scheme, how will you avoid oscillations?

• Does the solution improve if you reduce the time-step?

• Use the upwind scheme and a really fine mesh. Does the accuracy of the solution improve?

• From a numerical point of view, what is the Peclet number? Can it be compared to the Reynolds number?

• If the Peclet number is more than 2, what will happen with your solution if you were using a linear scheme?

(Hint: to change the Peclet number you will need to change the diffusion coefficient)

• Pure convection problems have analytical solutions.  You are asked to design your own tutorial with an 

analytical solution in 2D or 3D.

• Try to break the solver using a time step less than 0.005 seconds.  You are allowed to modify the original mesh 

and use any combination of discretization schemes.



Slide:

2D Laplace equation in a square domain.

Numerical playground
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• This is a visual and mental exercise only.

• You will find this case in the directory

$PTOFC/101FVM/laplace

• In this directory, you will also find the README.FIRST file with the 

instructions of how to run the case.

• Hereafter, we will focus our eyes to train our brain. 

Numerical playground
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Numerical playground

2D Laplace equation in a square domain
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Numerical playground

2D Laplace equation in a square domain

• This case consist of one domain and three different element types.

Hexahedral mesh Triangular mesh Polyhedral mesh

Domain

Detailed section view
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Numerical playground

2D Laplace equation in a square domain

This problem has the following 

analytical solution:

• We will study the influence of the element type on the gradients computation.

• We will also study the influence of the gradSchemes method and laplacianSchemes

method on the solution.
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Numerical playground

2D Laplace equation in a square domain

gradSchemes: 

Gauss linear 

laplacianSchemes: 

Gauss linear orthogonal

A. Hexahedral mesh

B. Triangular mesh

C. Polyhedral mesh

A

C

B

T field
731

• This is the actual solution. 

• Each mesh gives basically the 

same solution. 

• However, when we look at the 

information behind the field T, we 

will see a different outcome.

• Precisely, we will take a look at 

the gradients.



Numerical playground

2D Laplace equation in a square domain

gradSchemes: 

Gauss linear 

laplacianSchemes: 

Gauss linear orthogonal

A. Hexahedral mesh

B. Triangular mesh

C. Polyhedral mesh

field

A

C

B
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• This is not the actual solution.  

This is the gradient of the field T 

used to compute the solution.

• The outcome is different for each 

mesh.

• Behind doors, the gradients need 

to be computed accurately.

• For the method used in this case, 

the gradients on the unstructured 

meshes are noisy.



• This is not the actual solution.  

This is the gradient of the field T 

used to compute the solution.

• The outcome is different for each 

mesh.

• Behind doors, the gradients need 

to be computed accurately.

• By adjusting the numerics, we 

can smooth the gradients. 

• All meshes show similar 

gradients.

Numerical playground

2D Laplace equation in a square domain

gradSchemes: 

Gauss linear 

laplacianSchemes: 

Gauss linear limited 1

A. Hexahedral mesh

B. Triangular mesh

C. Polyhedral mesh

field

A

C

B
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Numerical playground

2D Laplace equation in a square domain

gradSchemes: 

Gauss leastSquares 

laplacianSchemes: 

Gauss linear orthogonal

A. Hexahedral mesh

B. Triangular mesh

C. Polyhedral mesh

field

A

C

B
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• This is not the actual solution.  

This is the gradient of the field T 

used to compute the solution.

• The outcome is different for each 

mesh.

• Behind doors, the gradients need 

to be computed accurately.

• For the method used in this case, 

the gradients on the unstructured 

meshes are noisy.



• This is not the actual solution.  

This is the gradient of the field T 

used to compute the solution.

• The outcome is different for each 

mesh.

• Behind doors, the gradients need 

to be computed accurately.

• By adjusting the numerics, we 

can smooth the gradients. 

• All meshes show similar 

gradients.

Numerical playground

2D Laplace equation in a square domain

gradSchemes: 

Gauss leastSquares

laplacianSchemes: 

Gauss linear limited 1

A. Hexahedral mesh

B. Triangular mesh

C. Polyhedral mesh

field

A

C

B
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Numerical playground

• This case was for your eyes and brain only, but we encourage you to reproduce all the previous 

results.

• In the subdirectory c1 you will find the hexahedral mesh, in the subdirectory c2 you will find the 

triangular mesh, and in the subdirectory c3 you will find the polyhedral mesh.

• Use the script runallcases.sh to run all the cases automatically. 

• When launching paraFoam it will give you a warning, accept the default option (yes).

• In paraFoam, go to the File menu and select Load State. Load the state located in the 

directory paraview (state1.pvsm).

• In the window that pops out, give the location of the *.foam files inside each subdirectory 

(c1/c1.foam, c2/c2.foam, and c3/c3.foam). 

• The file state1.pvsm will load a preconfigured state with all the solutions.

• If you are interested in running the cases individually, enter the subdirectory                            
and follow the instructions in the README.FIRST file.
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Numerical playground

737

Exercises

• Run the case using all gradient discretization schemes available. Which scheme gives the best results?

• According to the previous results, which element type is the best one? Do you think that the choice of the 

element type is problem dependent (e.g., direction of the flow)?

• Use the leastSquares method for gradient discretization, and the corrected and uncorrected method for 

Laplacian discretization. Do you get the same results in all the meshes? How can you improve the results?

(Hint: look at the corrections)

• Does it make sense to do more non-orthogonal corrections using the uncorrected method?

• Run a case only 1 iteration.  Do you get a converged solution? Is there a difference between 1 and 100 

iterations? Compare the solutions.

• Use a different interpolation method for the diffusion coefficient. Do you get the same results?

• Try to break the solver (this is a difficult task in this case).  You are allowed to modify the original mesh and 

use any combination of discretization schemes.



Swing:

Flow in a lid-driven square cavity – Re = 100

Effect of grading and non-orthogonality on the 

accuracy of the solution

Numerical playground
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Numerical playground

Orthogonal mesh 

This is a perfect mesh

Non-orthogonal mesh

The overall quality of this mesh is good (in 

terms of non-orthogonality and skewness),   

but by no standard this is a good mesh.

Flow in a lid-driven square cavity – Re = 100

Non-orthogonal mesh vs. orthogonal mesh

• Often people refer to these non-orthogonal meshes as Kershaw distorted meshes.

• We will use this case to learn how to adjust the numerical schemes according to mesh non-

orthogonality and grading.
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Numerical playground

• And as CFD is not only about pretty colors, we should also validate 

the results

LaplacianSchemes orthogonal – Non-orthogonal corrections disabled

Y centerline

X centerline

High-Re Solutions for incompressible flow using the navier-stokes equations and a multigrid method

U. Ghia, K. N. Ghia, C. T. Shin.

Journal of computational physics, 48, 387-411 (1982)
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Numerical playground

LaplacianSchemes orthogonal – Non-orthogonal corrections enabled

Y centerline

X centerline

High-Re Solutions for incompressible flow using the navier-stokes equations and a multigrid method

U. Ghia, K. N. Ghia, C. T. Shin.

Journal of computational physics, 48, 387-411 (1982)
741

• And as CFD is not only about pretty colors, we should also validate 

the results



Numerical playground

How to adjust the numerical method to deal with non-orthogonality

ddtSchemes

{

default         backward;

}

gradSchemes

{

default         Gauss linear;

//default         Gauss skewCorrected linear;

//default         cellMDLimited Gauss linear 1;

grad(p)         Gauss linear;

}

divSchemes

{

default         none;

//div(phi,U)      Gauss linearUpwind default;

div(phi,U)      Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

//default         Gauss linear limited 1;

//default         Gauss skewCorrected linear limited 1;

}

interpolationSchemes

{

//default          skewCorrected linear;

default linear;

}

snGradSchemes

{

default orthogonal;

//default         limited 1;

}

• In the dictionary fvSchemes we can enable non-

orthogonal corrections.

• Non-orthogonal corrections are chosen using the 

keywords laplacianSchemes and snGradSchemes.

• These are the laplacianSchemes and 

snGradSchemes schemes that you will use most of the 

times:

• orthogonal: second order accurate, bounded on 

perfect meshes, without non-orthogonal 

corrections.

• corrected: second order accurate, bounded 

depending on the quality of the mesh, with non-

orthogonal corrections.

• limited     : second order accurate, bounded 

depending on the quality of the mesh, with non-

orthogonal corrections.

• uncorrected: second order accurate, without 

non-orthogonal corrections. Stable but more 

diffusive than limited and corrected.
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solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol          0;

}

U

{

solver          smoothSolver;

smoother        symGaussSeidel;

tolerance       1e-08;

relTol          0;

}

}

PISO

{

nCorrectors     1;

nNonOrthogonalCorrectors 0;

pRefCell        0;

pRefValue       0;

}

How to adjust the numerical method to deal with non-orthogonality

• Additionally, in the dictionary fvSolution we need to 

define the number of PISO corrections (nCorrectors) and 

non-orthogonal corrections (nNonOrthogonalCorrectors).

• You need to do at least one PISO correction.  Increasing the 

number of PISO correctors will improve the stability and 

accuracy of the solution at a higher computational cost. 

• For orthogonal meshes, 1 PISO correction is ok. But as  

most of the time you will deal with non-orthogonal meshes, 

doing 2 PISO corrections is a good choice.

• If you are using a method with non-orthogonal corrections 

(corrected or limited 1-0.5), you need to define the number 

of non-orthogonal corrections (nNonOrthogonalCorrectors).

• If you use 0 nNonOrthogonalCorrectors, you are 

computing the initial approximation using central differences 

(accurate but unstable), with no explicit correction.

• To take into account the non-orthogonality of the mesh, you 

will need to increase the number of corrections (you get 

better approximations using the previous correction). 

• Usually 2 nNonOrthogonalCorrectors is ok.

743



Numerical playground

744

• We will now illustrate a few of the discretization schemes available in OpenFOAM® 

using a model case.

• We will use the lid-driven square cavity case to study the effect of grading and non-

orthogonality on the accuracy of the solution

• This case is located in the directory:

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this 

way, you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

$PTOFC/101FVM/nonorthoCavity/
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What are we going to do?

• This is the same case as the one we used during the first tutorial session.  

• The only difference is that we have modified the mesh a little bit in order to add grading and non-orthogonality.

• After generating the mesh, we will use the utility checkMesh to control the quality of the mesh. Is it a good 

mesh? 

• We will use this case to learn how to adjust the numerical schemes according to mesh non-orthogonality and 

grading.

• After finding the numerical solution we will do some sampling and plotting.

745

Running the case
• You will find this tutorial in the directory $PTOFC/101FVM/nonorthoCavity

• In the terminal window type:

1. $> foamCleanTutorials 

2. $> blockMesh –dict system/blockMeshDict.0

3. $> checkMesh

4. $> pisoFoam | log.solver

5. $> postProcess -func sampleDict -latestTime

6. $> gnuplot gnuplot/gnuplot_script

7. $> paraFoam 
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To run the case, follow these steps

• First run the case using the original dictionaries. Did it crash right?

• Now change the laplacianSchemes and snGradSchemes to limited 1. It crashed again but 

this time it ran a few more time-steps, right?

• Now increase the number of nNonOrthogonalCorrectors to 2. It crashed again but it is running 

more time-steps, right?

• Now increase the number of PISO corrections to 2 (nCorrectors). Did it run? 

• Basically we enabled non-orthogonal corrections, we computed better approximations of the 

gradients, and we increased the number of PISO corrections to get better predictions of the field 

variables (U and p).

• Now set the number of nNonOrthogonalCorrectors to 0. Did it crash right? This is telling us 

that the mesh is sensitive to the gradients.

• Now change the laplacianSchemes and snGradSchemes to limited 0 (uncorrected). In this 

case we are not using non-orthogonal corrections, therefore there is no need to increase the 

value of nNonOrthogonalCorrectors.  

• We are using a method that uses a wider stencil to compute the Laplacian, this method is more 

stable but a little bit more diffusive. Did it run?

• At this point, compare the solution obtained with corrected and uncorrected schemes. Which 

one is more diffusive?
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• When it comes to laplacianSchemes and snGradSchemes this is how we proceed most of 

the times (a robust setup),

laplacianSchemes

{

default         Gauss linear limited 1;

}

snGradSchemes

{

default    limited 1;

}

PISO

{

nCorrectors     2;

nNonOrthogonalCorrectors 1;

}

• This method works fine for meshes with non-orthogonality less than 75.

• If the non-orthogonality is more than 75, you should consider using limited 0.5, and increasing 

nCorrectors and nNonOrthogonalCorrectors.

• When the non-orthogonality is more than 85, the best solution is to redo the mesh.
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Exercises

• Using the non-orthogonal mesh and the original dictionaries, try to run the solver reducing the time-step.  Do 

you get a solution at all?

• Try to get a solution using the method limited 1 and two nNonOrthogonalCorrectors (leave nCorrectors

equal to 1).

(Hint: try to reduce the time-step)

• If you managed to get a solution using the previous numerical scheme. How long did it take to get the 

solution? Use the robust setup, clock the time and compare with the previous case.  Which one is faster? Do 

you get the same solution?

• Instead of using the non-orthogonal mesh, use a mesh with grading toward all edges.  How will you stabilize 

the solution?

(Hint: take a look at the blockMesh slides in order to add grading to the mesh)

• Try to get a solution using a time-step of 0.05 seconds. Use the original discretization schemes for the gradient 

and convective terms.

(Hint: increase nCorrectors and nNonOrthogonalCorrectors)

• Using the uniform orthogonal mesh and a robust numerics, determined the largest CFL you can use. Is the 

solution still accurate? What about the clock-speed?

• Try to break the solver and interpret the output screen.  You are allowed to modify the original mesh and use 

any combination of discretization schemes.



Seesaw:

Sod’s shock tube.

Numerical playground
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Sod’s shock tube

• This case has an analytical solution and plenty of experimental data.

• This is an extreme test case used to test solvers.

• Every single commercial and open source solver use this case for validation of the numerical 

schemes.

• The governing equation of this test case are the Euler equations.
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High Purity Photolysis Shock Tube (NASA Tube)

Shock tube. The driver section, including vacuum pumps, controls, and helium driver gas. 
Photo credit: Stanford University. http://hanson.stanford.edu/index.php?loc=facilities_nasa 

Copyright on the images is held by the contributors. Apart from Fair Use, permission must be sought for any other purpose. 751
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Sod’s shock tube

Boundary conditions and initial conditions

All walls are slip

752

Analytical solution
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Sod’s shock tube

Pressure field

Velocity magnitude field

Density field

Temperature field
753
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754

• We will now illustrate a few of the discretization schemes available in OpenFOAM® 

using a severe model case.

• We will use the Sod’s shock tube case. 

• This case is located in the directory:

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this 

way, you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

$PTOFC/101FVM/shockTube/
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What are we going to do?

• Now is your turn. 

• You are asked to select the best discretization scheme for the physics involve. 

• Remember the following concepts: accuracy, stability and boundedness.

• We will compare your numerical solution with the analytical solution.

• At this point, we are very familiar with the numerical schemes.  It is up to you to choose the best 

setup.

• You can start using the original dictionaries.

• To find the numerical solution we will use the solver rhoPimpleFoam. 

• rhoPimpleFoam is a transient solver for laminar or turbulent flow of a compressible gas. 

• After finding the numerical solution we will do some sampling.

• At the end, we will do some plotting (using gnuplot or Python) and scientific visualization.
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Running the case

• You will find this tutorial in the directory $PTOFC/101FVM/schockTube

• In the terminal window type:

1. $> foamCleanTutorials 

2. $> blockMesh 

3. $> checkMesh

4. $> rm –rf 0

5. $> cp –r 0_org 0

6. $> setFields

7. $> rhoPimpleFoam | tee log.solver

8. $> postProcess -func sampleDict -latestTime

9. $> paraFoam 

756

• To plot the analytical solution against the numerical solution, go to the directory python and run the Python script.

• In the terminal window type:

1. $> python3 python/sodshocktube.py

• The Python script will save four .png files with the solution. Feel free to explore and adapt the Python script to your needs.

• Python (version 3) must be installed in order to use the script
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Running the case

• If you used the values proposed in the dictionaries, the solution diverged, right? Try to get the 

case working.                                                                                                                

Hint: look at the gradient limiters. 

• By adjusting the gradient limiters, the case will run, but the final solution is not very accurate. 

How can you increase the accuracy of the solution?

Hint: look at the PIMPLE corrections.
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Not so accurate solution Accurate solution
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Exercises

• Using the proposed case setup, try to get an accurate solution by reducing the time-step or refining the mesh. 

Did you succeed in getting an accurate solution? 

• Run the case using different time discretization schemes. 

• Run the case using different gradient discretization schemes. 

• Run the case using different convective discretization schemes for the term div(phi,U). 

• Run the case using different convective discretization schemes for the terms div(phi,e) and div(phi,K).  What 

are the variables e and K?

• Extend the case to 2D and 3D. Do you get the same solution?

• Try to run a 2D case using a triangular mesh and adjust the numerical scheme to get  an accurate and stable 

solution.

• Try to run the 1D case using an explicit solver. For the same CFL number, do you have the same time step 

size as for the implicit solver?

(Hint: look for the solver with the word Central)

• Try to break the solver (this is extremely easy in this case).  You are allowed to modify the original mesh and 

use any combination of discretization schemes.



Module 7
Highlights – Implementing boundary 

conditions and initial conditions using 

codeStream
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Roadmap

1. codeStream – Highlights

2. Implementing boundary conditions using 

codeStream

3. Solution initialization using codeStream
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codeStream – Highlights

codeStream – Boundary conditions

761

• There are many boundary conditions available in OpenFOAM®. 

• But from time to time it may happen that you do not find what you are looking for.

• It is possible to implement your own boundary conditions, so in theory you can do whatever you 

want.

• Remember, you have the source code.

• To implement your own boundary conditions, you have three options:

• Use codeStream.

• Use high level programing.

• Use an external library (e.g., swak4foam).

• codeStream is the simplest way to implement boundary conditions, and most of the times you 

will be able to code boundary conditions with no problem. 

• If you can not implement your boundary conditions using codeStream, you can use high level 

programming.  However, this requires some knowledge on C++ and OpenFOAM® API.

• Hereafter, we are going to work with codeStream and basic high-level programming.

• We are not going to work with swak4Foam because it is an external library that is not officially 

supported by the OpenFOAM® foundation. However, it works very well and is relatively easy to 

use.



codeStream – Initial conditions

codeStream – Highlights
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• When it comes to initial conditions, you can use the utility setFields.

• This utility is very flexible, you can even read STL files and use them to initialize fields.

• But again, it may happen that you can not get the desired results.

• As for boundary conditions, to implement your own initials conditions you have three options:

• Use codeStream.

• Use high level programing.

• Use an external library (e.g., swak4foam).

• codeStream is the simplest way to implement initial conditions, and most of the times you will 

be able to code initial conditions with no problem. 

• If you can not implement your initial conditions using codeStream, you can use high level 

programming.  However, this requires some knowledge on C++ and OpenFOAM® API.

• Hereafter, we are going to work only with codeStream.

• Using high level programming is a little bit trickier, and we guarantee you that 99.9% of the times 

codeStream will work.

• We are not going to work with swak4Foam because it is an external library that is not officially 

supported by the OpenFOAM® foundation. However, it works very well and is relatively easy to 

use.



• Hereafter we will work with codeStream, which will let us program directly in the input 

dictionaries.

• With codeStream, we will implement our own boundary conditions and initial conditions without 

going thru the hustle and bustle of high-level programming.

• If you are interested in high level programming, refer to the supplements. 

• In the supplemental slides, we address the following topics: 

• Building blocks, implementing boundary conditions using high level programming, 

modifying applications, implementing an application from scratch, and adding the 

scalar transport equation to icoFoam.

• High level programming requires some knowledge on C++ and OpenFOAM® API library. 

• This is the hard part of programming in OpenFOAM®.

• Before doing high level programming, we highly recommend you try with codeStream, most of 

the time it will work.

• Also, before modifying solvers or trying to implement your own solvers, understand the theory 

behind the FVM.

• Remember, you can access the API documentation in the following link, 

https://cpp.openfoam.org/v8
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Roadmap

1. codeStream – Highlights

2. Implementing boundary conditions using 

codeStream

3. Solution initialization using codeStream
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Implementing boundary conditions using codeStream

• OpenFOAM® includes the capability to compile, load and execute C++ code at run-time.

• This capability is supported via the directive #codeStream, that can be used in any input file for 

run-time compilation.

• This directive reads the entries code (compulsory), codeInclude (optional), codeOptions

(optional), and codeLibs (optional), and uses them to generate the dynamic code.

• The source code and binaries are automatically generated and copied in the directory  
dynamicCode of the current case.

• The source code is compiled automatically at run-time.

• The use of codeStream is a very good alternative to avoid high level programming of boundary 

conditions or the use of external libraries.

• Hereafter we will use codeStream to implement new boundary conditions.

• Have in mind that codeStream can be used in any dictionary.
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Implementing boundary conditions using codeStream

patch-name

{

type            fixedValue;

value           #codeStream

{

codeInclude

#{

#include "fvCFD.H"

#};

codeOptions

#{

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude

#};

codeLibs

#{

-lmeshTools \

-lfiniteVolume

#};

code

#{

#};

};

}

Body of the codeStream directive for boundary conditions

Patch name

Use codeStream to set the value 
of the boundary condition

Files needed for compilation

Compilation options

Libraries needed for compilation.

Needed if you want to visualize the 

output of the boundary condition  
at time zero

Insert your code here.

At this point, you need to know 
how to access mesh information
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Implementing boundary conditions using codeStream

• Let us implement a parabolic inlet profile.

• The firs step is identifying the patch, its location and the dimensions.

• You can use paraview to get all visual references.

Inlet

velocity-inlet-5

Inlet

velocity-inlet-6

Outlet

pressure-outlet-7

Bounds of velocity-inlet-5 boundary patch

Parabolic inlet profile

Implementation of a parabolic inlet profile using codeStream
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Implementing boundary conditions using codeStream

• We will use the following formula to implement the parabolic inlet profile

• For this specific case c is the patch midpoint in the y direction (8), r is the patch semi-height or 

radius (8) and Umax is the maximum velocity.

• We should get a parabolic profile similar to this one,

Implementation of a parabolic inlet profile using codeStream
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velocity-inlet-5

{

type            fixedValue;

value           #codeStream

{

codeInclude

#{

#include "fvCFD.H"

#};

codeOptions

#{

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude

#};

codeLibs

#{

-lmeshTools \

-lfiniteVolume

#};

code

#{

#};

};

}

Implementing boundary conditions using codeStream

• The codeStream BC in the body of the file U is as follows, 

Patch name

Insert your code here.

At this point, you need to know 
how to access mesh information

Depending of what are you trying 

to do, you will need to add new 

files, options and libraries.

For most of the cases, this part is 
always the same.
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1 code

2 #{

3 const IOdictionary& d = static_cast<const IOdictionary&>

4 (

5 dict.parent().parent()

6 );

7

8 const fvMesh& mesh = refCast<const fvMesh>(d.db());

9 const label id = mesh.boundary().findPatchID("velocity-inlet-5");

10 const fvPatch& patch = mesh.boundary()[id];

11

12 vectorField U(patch.size(), vector(0, 0, 0));

13

14        ...

15        ...

16        ...

17    #};

Implementing boundary conditions using codeStream

• The code section of the codeStream BC in the body of the file U is as follows, 

• Lines 3-11, are always standard, they are used to access boundary mesh information.

• In lines 3-6 we access the current dictionary.

• In line 8 we access the mesh database.

• In line 9 we get the label id (an integer) of the patch velocity-inlet-5 (notice that you need to give the name of 

the patch).

• In line 10 using the label id of the patch, we access the boundary mesh information.

• In line 12 we initialize the vector field. The statement patch.size() gets the number of faces in the patch, and 

the statement vector(0, 0, 0) initializes a zero-vector field in the patch.

Remember to update this value with the 

actual name of the patch
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1 code

2 #{

3        ...

4        ...

5        ...

6 const scalar pi = constant::mathematical::pi;

7 const scalar U_0   = 2.; //maximum velocity

8 const scalar p_ctr = 8.; //patch center

9 const scalar p_r   = 8.; //patch radius

10

11 forAll(U, i) //equivalent to for (int i=0; patch.size()<i; i++)

12 {

13 const scalar y = patch.Cf()[i][1];

14 U[i] = vector(U_0*(1-(pow(y - p_ctr,2))/(p_r*p_r)), 0., 0.);

15 }

16

17 writeEntry(os, "", U);

18 #};

Implementing boundary conditions using codeStream

• The code section of the codeStream BC in the body of the file U is as follows, 

• In lines 6-17 we implement the new boundary condition.

• In lines 6-9 we declare a few constants needed in our implementation.

• In lines 11-15 we use a forAll loop to access the boundary patch face centers and to assign the velocity profile 

values. Notice the U was previously initialized.

• In line 13 we get the y coordinates of the patch faces center.

• In line 14 we assign the velocity value to the patch faces center.

• In line 17 we write the U values to the dictionary.

Index used to access the 

y coordinate

0 → x

1 → y

2 → z

Assign input profile to vector field U (component x)
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Implementing boundary conditions using codeStream

• This case is ready to run, the input files are located in the directory 
$PTOFC/101programming/codeStream_BC/2Delbow_UparabolicInlet

• To run the case, type in the terminal,

1. $> foamCleanTutorials

2. $> fluentMeshToFoam ../../../meshes_and_geometries/fluent_elbow2d_1/ascii.msh

3 $> checkMesh

4. $> rm –rf 0

5. $> cp –r 0_org 0

6. $> pisoFoam | tee log.solver

7. $> paraFoam

• The codeStream boundary condition is implemented in the file 0/U.

• FYI, you can run in parallel with no problem.

Implementation of a parabolic inlet profile using codeStream
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Implementing boundary conditions using codeStream

• If everything went fine, you should get something like this,

Implementation of a parabolic inlet profile using codeStream
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1 code

2 #{

3        ...

4        ...

5        ...

6 scalarField S(patch.size(), scalar(0) );

7

8 forAll(S, i)

9 {

10 const scalar y = patch.Cf()[i][1];

11 S[i] = scalar( 2.0*sin(3.14159*y/8.) );

12 }

13

14 writeEntry(os, "", S);

15 #};

Implementing boundary conditions using codeStream

• We just implemented the input parabolic profile using a vector field.  

• You can do the same using a scalar field, just proceed in a similar way.

• Remember, now we need to use scalars instead of vectors.

• And you will also use an input dictionary holding a scalar field.

Initialize scalar field

Write profile values 
in scalar field

Write output to input 
dictionary

Loop using scalar field size

Notice that the name of the field does not need to be the same as the name of the input dictionary

codeStream works with scalar and vector fields
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Implementing boundary conditions using codeStream

• Let us work in a case a little bit more complicated, a paraboloid input profile.

• As usual, the first step is to get all the spatial references.

Inlet

auto3

Paraboloid inlet profile
Bounds of auto3 boundary patch

Implementation of a paraboloid inlet profile using codeStream
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Implementing boundary conditions using codeStream

• We will implement the following equation in the boundary patch auto3.

Implementation of a paraboloid inlet profile using codeStream
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auto3

{

type            fixedValue;

value           #codeStream

{

codeInclude

#{

#include "fvCFD.H"

#};

codeOptions

#{

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude

#};

codeLibs

#{

-lmeshTools \

-lfiniteVolume

#};

code

#{

#};

};

}

Implementing boundary conditions using codeStream

• The codeStream BC in the body of the file U is as follows, 

Patch name

Insert your code here. 

We will implement the following 

equation

For most of the cases, this part is 

always the same. But depending of 

what are you trying to do, you will 

need to add more files, options and 

libraries.
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1 code

2 #{

3        ...

4        ...

5        ...

6 vectorField U(patch.size(), vector(0, 0, 0) );

7

8 const scalar s  = 0.5;

9

10 forAll(U, i)

11 {

12 const scalar x = patch.Cf()[i][0];

13 const scalar y = patch.Cf()[i][1];

14 const scalar z = patch.Cf()[i][2];

15

16 U[i] = vector(-1.*(pow(z/s, 2) + pow((y-s)/s,2) - 1.0), 0, 0);

17 }

18

19 writeEntry(os, "", U);

20 #};

Implementing boundary conditions using codeStream

• Hereafter, we only show the actual implementation of the codeStream boundary condition.

• The rest of the body is a template that you can always reuse. Including the section of how to 

access the dictionary and mesh information.

• Remember, is you are working with a vector, you need to use vector fields.  Whereas, if you are 

working with scalars, you need to use scalars fields.

Initialize vector field

Access faces center 
coordinates (x, y, and z)

Initialize scalar
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Implementing boundary conditions using codeStream

• This case is ready to run, the input files are located in the directory 
$PTOFC/101programming/codeStream_BC/3Delbow_Uparaboloid/

• To run the case, type in the terminal,

1. $> foamCleanTutorials

2. $> gmshToFoam ../../../meshes_and_geometries/gmsh_elbow3d/geo.msh

3. $> autoPatch 75 -overwrite

4. $> createPatch -overwrite

5. $> renumberMesh -overwrite

6. $> rm –rf 0

7. $> cp –r 0_org 0

8. $> pisoFoam | tee log.solver

9. $> paraFoam

• The codeStream boundary condition is implemented in the file 0/U.

• FYI, you can run in parallel with no problem.

Implementation of a paraboloid inlet profile using codeStream
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Implementing boundary conditions using codeStream

• If everything went fine, you should get something like this,

Implementation of a paraboloid inlet profile using codeStream
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Implementing boundary conditions using codeStream

• OpenFOAM® also includes the boundary conditions codedFixedValue and codedMixed.

• These boundary conditions are derived from codeStream and work in a similar way.  

• They use a friendlier notation and let you access more information of the simulation database 

(e.g. time).

• The source code and binaries are automatically generated and copied in the directory  
dynamicCode of the current case.

• Another feature of these boundary conditions, is that the code section can be read from an 
external dictionary (system/codeDict), which is run-time modifiable.

• The boundary condition codedMixed works in similar way.  This boundary condition gives you 

access to fixed values (Dirichlet BC) and gradients (Neumann BC).

• Let us implement the parabolic profile using codedFixedValue. 

codedFixedValue and codedMixed boundary conditions
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Implementing boundary conditions using codeStream

patch-name

{

type            codedFixedValue;

value           uniform (0 0 0);

name  name_of_BC;

/*

codeOptions

#{

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude

#};

codeInclude

#{

#include "fvCFD.H"

#include <cmath>

#include <iostream>

#};

*/

code

#{

#};

}

Body of the codedFixedValue boundary conditions

Patch name

Use codedFixedValue and 
initializations

Optional compilation options.

You do not need to add these options 

unless it is required.

At the following link, you can find a bug 

related to codedFixedValue (SEP2020)
https://bugs.openfoam.org/view.php?id=3555

In this section we do the actual 

implementation of the boundary 

condition. 

This is the only part of the body 

that you will need to change. The 

rest of the body is a template that 

you can always reuse. 

Unique name of the new boundary 

condition. 

If you have more codedFixedValue 
BC, the names must be different
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1 code

2    #{

3 const fvPatch& boundaryPatch = patch(); 

4 const vectorField& Cf = boundaryPatch.Cf(); 

5 vectorField& field = *this; 

6

7 scalar U_0 = 2, p_ctr = 8, p_r = 8; 

8

9        forAll(Cf, faceI)

10 {

11 field[faceI] = vector(U_0*(1-(pow(Cf[faceI].y()-p_ctr,2))/(p_r*p_r)),0,0);

12 }

13    #};

Implementing boundary conditions using codeStream

• The code section of the codeStream BC in the body of the file U is as follows, 

• Lines 3-5, are always standard, they give us access to mesh and field information in the patch.

• The coordinates of the faces center are stored in the vector field Cf (line 4).

• In this case, as we are going to implement a vector profile, we initialize a vector field where we are going to 

assign the profile (line 5).

• In line 7 we initialize a few constants that will be used in our implementation.

• In lines 9-12 we use a forAll loop to access the boundary patch face centers and to assign the velocity profile 

values. 

• In line 11 we do the actual implementation of the boundary profile (similar to the codeStream case). The 

vector field was initialized in line 5.
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Implementing boundary conditions using codeStream

• As you can see, the syntax and use of the codedFixedValue and codedMixed boundary 

conditions is much simpler than codeStream.

• You can use these instructions as a template.  

• At the end of the day, you only need to modify the code section.

• Depending of what you want to do, you might need to add new headers and compilation options.

• Remember, is you are working with a vector, you need to use vector fields.  Whereas, if you are 

working with scalars, you need to use scalars fields.

• One disadvantage of these boundary conditions, is that you can not visualize the fields at time 

zero.  You will need to run the simulation for at least one iteration.

• On the positive side, accessing time and other values from the simulation database is 

straightforward.

• Time can be accessed by adding the following statement,

this->db().time().value()

codedFixedValue and codedMixed boundary conditions
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1 code

2    #{

3 const fvPatch& boundaryPatch = patch(); 

4 const vectorField& Cf = boundaryPatch.Cf(); 

5 vectorField& field = *this; 

6

7 scalar U_0 = 2, p_ctr = 8, p_r = 8; 

8

9 scalar t = this->db().time().value(); 

10

11       forAll(Cf, faceI)

12 {

13 field[faceI] = vector(sin(t)*U_0*(1-(pow(Cf[faceI].y()-p_ctr,2))/(p_r*p_r))),0,0);

14 }

15 #};

Implementing boundary conditions using codeStream

• Let us add time dependency to the parabolic profile.

• This implementation is similar to the previous one, we will only address how to deal with time.

• In line 8 we access simulation time.

• In line 13 we do the actual implementation of the boundary profile (similar to the codeStream

case). The vector field was initialized in line 5 and time is accessed in line 9.

• In this case, we added time dependency by simple multiplying the parabolic profile by the 

function sin(t).

Time

Time dependency
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Implementing boundary conditions using codeStream

• This case is ready to run, the input files are located in the directory 
$PTOFC/101programming/codeStream_BC/2Delbow_UparabolicInlet_timeDep

• To run the case, type in the terminal,

1. $> foamCleanTutorials

2. $> fluentMeshToFoam ../../../meshes_and_geometries/fluent_elbow2d_1/ascii.msh

3. $> checkMesh | tee log

4. $> rm –rf 0

5. $> rm –rf 0_org 0

6. $> pisoFoam | tee log.solver

7. $> paraFoam

• The codeStream boundary condition is implemented in the file 0/U.

• FYI, you can run in parallel with no problem.

Implementation of a parabolic inlet profile using codedFixedValue
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Implementing boundary conditions using codeStream

• If everything went fine, you should get something like this,

Implementation of a parabolic inlet profile using codedFixedValue

www.wolfdynamics.com/wiki/BCIC/elbow_unsBC1.gif
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Implementing boundary conditions using codeStream

• Let us do a final example. 

• We will deal with scalar and vector fields at the same 

time.

• We will use codedFixedValue.

• For simplicity, we will only show the code section of the 

input files. 

• Remember, the rest of the body can be used as a 

template. 

• And depending of what you want to do, you might need 

to add new headers, libraries, and compilation options.

• Hereafter we will setup an inlet boundary condition in a 

portion of an existing patch.

• By using codedFixedValue BC, we do not need to 

modify the actual mesh topology.

• We will assign a velocity field and a scalar field to a set 

of faces (dark area in the figure).

• We are going to simulate filling a tank with water. 

• We will use the solver interFoam.

Water enters here
This is a face selection in a single boundary patch

The tank is initially empty

Filling a tank using codedFixedValue
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1 leftWall

2 {

3 type            codedFixedValue;

4 value           uniform (0 0 0);

5 name            inletProfile1;

6

7 code

8 #{

9 const fvPatch& boundaryPatch = patch(); 

10 const vectorField& Cf = boundaryPatch.Cf(); 

11 vectorField& field = *this; 

12

13 scalar minz = 0.4;  

14 scalar maxz = 0.6; 

15 scalar miny = 0.5;  

16 scalar maxy = 0.7; 

17

18 scalar t = this->db().time().value();

...

...

...

40 #}; 

41 }

Implementing boundary conditions using codeStream

• Definition of the vector field boundary condition (dictionary file U),

Access boundary mesh 

information and initialize 
vector field field

Access time

Initialize variables

Unique name of the BC
Do not use the same name in other patches

Use codedFixedValue BC and initialize value. 

The initialization is only needed for paraview 
in order to visualize something at time zero.

Name of the patch where we want to implement the boundary condition
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7 code

8 #{

...

...

...

19

20 forAll(Cf, faceI)

21 {

22

23 if (

24 (Cf[faceI].z() > minz) &&

25 (Cf[faceI].z() < maxz) &&

26 (Cf[faceI].y() > miny) &&

27 (Cf[faceI].y() < maxy) 

28 )

29 {

30 if ( t < 1.)

31 {

32 field[faceI] = vector(1,0,0);

33 }

34 else

35 {

36 field[faceI] = vector(0,0,0);

37 }

38 }       

39 }

40 #};

41 } 

Implementing boundary conditions using codeStream

Use conditional structure to 

select faces according to the 
variables defined in lines 13-16

Loop using size of boundary patch (Cf) and iterator 

faceI. 

This is equivalent to:              

for (int faceI=0; Cf.size()<faceI; faceI++) 

Use conditional structure to 

add time dependency and 

assign values to the 

selected faces.

The variable field was 
initialize in line 11.

Code section.  The actual implementation of the BC is done in this section

• Definition of the vector field boundary condition (dictionary file U),

790



1 leftWall

2 {

3 type            codedFixedValue;

4 value           uniform 0;

5 Name            inletProfile2;

6

7 code

8 #{

9 const fvPatch& boundaryPatch = patch(); 

10 const vectorField& Cf = boundaryPatch.Cf(); 

11 scalarField& field = *this; 

12

13 field = patchInternalField(); 

14

15 scalar minz = 0.4;  

16 scalar maxz = 0.6; 

17 scalar miny = 0.5;  

18 scalar maxy = 0.7; 

20

21 scalar t = this->db().time().value();

22

...

...

...

42 #};         

43 }

Implementing boundary conditions using codeStream

• Definition of the scalar field boundary condition (dictionary file alpha.water),

Access boundary mesh 

information and initialize 
scalar field field

Access time

Initialize variables

Unique name of the BC
Do not use the same name in other patches

Use codedFixedValue BC and initialize value. 

The initialization is only needed for paraview 
in order to visualize something at time zero.

Name of the patch where we want to implement the boundary condition

Assign value from the internal field to the patch
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7 code

8 #{

...

...

...

22

23 forAll(Cf, faceI)

24 {

25 if ( 

26 (Cf[faceI].z() > minz) &&

27 (Cf[faceI].z() < maxz) &&

28 (Cf[faceI].y() > miny) &&

29 (Cf[faceI].y() < maxy) 

30 )

31 {

32 if ( t < 1.)

33 {

34 field[faceI] = 1.;

35 }

36 else

37 {

38 field[faceI] = 0.;

39 }

40 }

41 }

42 #};         

43 }

Implementing boundary conditions using codeStream

• Definition of the scalar field boundary condition (dictionary file alpha.water),

Use conditional structure to 

select faces according to the 
variables defined in lines 13-16

Loop using size of boundary patch (Cf) and iterator 

faceI. 

This is equivalent to:              

for (int faceI=0; Cf.size()<faceI; faceI++) 

Use conditional structure to add 

time dependency and assign 

values to the selected faces.

The variable field was initialize in 
line 11.

Code section.  The actual implementation of the BC is done in this section
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Implementing boundary conditions using codeStream

• This case is ready to run, the input files are located in the directory 
$PTOFC/101programming/codeStream_BC/fillBox_BC/

• To run the case, type in the terminal,

1. $> foamCleanTutorials

2. $> blockMesh

3. $> rm –rf 0

4. $> cp –r 0_org 0

5. $> decomposePar

6. $> mpirun -np 4 interFoam -parallel | tee log.solver

7. $> reconstructPar

8. $> paraFoam

• As you can see, we can also run in parallel with no problem.

• To visualize the parallel results, you will need to use the wrapper paraFoam with the           

option  –builtin.

Implementation of a parabolic inlet profile using codedFixedValue
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Implementing boundary conditions using codeStream

• If everything went fine, you should get something like this

0

0 01

0 02

0 0 

0 0 

0 0 

0 0 2 0  0  0  1 1 2 1  1  1  2

 
 
  
  
 
 
  
 
 
  
 
  
 
  
   
 

 
 

        

Visualization of water phase 

(alpha.water)

www.wolfdynamics.com/wiki/BCIC/filltank1.gif

Volume integral of water entering the 

domain

Implementation of a parabolic inlet profile using codedFixedValue
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Roadmap

1. codeStream – Highlights

2. Implementing boundary conditions using 

codeStream

3. Solution initialization using codeStream
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Solution initialization using codeStream

• When it comes to initial conditions, you can use the utility setFields.

• This utility is very flexible, you can even read STL files and use them to initialize your fields.

• But in case that you can not get the desired results using setFields, you can implement your 

own initial conditions using codeStream.

• To implement initial conditions using codeStream, we proceed in a similar way as for boundary 

conditions.

• The source code and binaries are automatically generated and copied in the directory  
dynamicCode of the current case.

• The source code is compiled automatically at run-time.

• The use of codeStream is a very good alternative to avoid high level programming of initial 

conditions or the use of external libraries.

• Hereafter we will use codeStream to implement new initial conditions.
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Solution initialization using codeStream

internalField   #codeStream

{

{

codeInclude

#{

#include "fvCFD.H"

#};

codeOptions

#{

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude

#};

codeLibs

#{

-lmeshTools \

-lfiniteVolume

#};

code

#{

#};

};

}

Body of the codeStream directive for initial conditions

Use codeStream to set the value 

of the initial conditions

Files needed for compilation

Compilation options

Libraries needed for compilation.

Needed if you want to visualize the 

output of the initial conditions at 
time zero

Insert your code here.

At this point, you need to know 

how to access internal mesh 
information
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Solution initialization using codeStream

Implementation of an elliptic initialization using codeStream

Initialization using codeStream Initialization using a STL with setFields

• Let us implement an elliptic initialization using codeStream.

• The firs step is to know your domain and identify the region that you want to initialize.

• Then you will need to do a little bit of math to get the expression for the initialization.

• In this example, we are also going to show you how to do the same initialization by reading a 
STL file with the utility setFields.

Phase 1

Phase 2
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Solution initialization using codeStream

• The codeStream IC in the body of the file alpha.phase1 is as follows, 

Depending of what are you trying 

to do, you will need to add new 

files, options and libraries.

For most of the cases, this part is 
always the same.

internalField   #codeStream

{

{

codeInclude

#{

#include "fvCFD.H"

#};

codeOptions

#{

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude

#};

codeLibs

#{

-lmeshTools \

-lfiniteVolume

#};

code

#{

#};

};

}

Use codeStream to set the value 
of the initial conditions

Insert your code here.

At this point, you need to know 

how to access internal mesh 
information
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code

#{

const IOdictionary& d = static_cast<const IOdictionary&>(dict);

const fvMesh& mesh = refCast<const fvMesh>(d.db());

scalarField alpha(mesh.nCells(), 0.);

scalar he = 0.5;

scalar ke = 0.5;

scalar ae = 0.3;

scalar be = 0.15;

forAll(alpha, i)

{

const scalar x = mesh.C()[i][0];

const scalar y = mesh.C()[i][1];

const scalar z = mesh.C()[i][2];

if ( pow(y-ke,2) <= ((1 - pow(x-he,2)/pow(ae,2) )*pow(be,2)) )

{

alpha[i] = 1.;

}

}

writeEntry(os, "", alpha);

#};

Solution initialization using codeStream

• The code section of the codeStream IC in the body of the file alpha.phase1 is as follows, 

Initialize scalar field to zero
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Initialize variables

Access cell centers coordinates

forAll loop to access cell centers and to assign alpha values.

Notice the alpha was previously initialized.

The size of the loop is defined by alpha and the iterator is i.

Write output to input dictionary
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Solution initialization using codeStream

• This case is ready to run, the input files are located in the directory 
$PTOFC/101programming/codeStream_INIT/elliptical_IC

• To run the case, type in the terminal,

1. $> foamCleanTutorials

2. $> blockMesh

3. $> rm –rf 0

4. $> cp –r 0_org 0

5. $> paraFoam

6. $> interFoam | tee log.solver

7. $> paraFoam

Implementation of an elliptic initialization using codeStream

• In step 6, we launch paraFoam to visualize the initialization.

• FYI, you can run in parallel with no problem.
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Solution initialization using codeStream

codeStream initialization

Visualization of volume fraction (alpha.phase1)
www.wolfdynamics.com/wiki/BCIC/bubble_zeroG.gif

Implementation of an elliptic initialization using codeStream

• If everything went fine, you should get something like this,

Surface tension driven flow - Bubble in a zero gravity flow using interFoam

setFields initialization

Visualization of volume fraction (alpha.phase1)
www.wolfdynamics.com/wiki/BCIC/bubble_zeroG_SF.gif
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Solution initialization using codeStream

Elliptic initialization using setFields

• Let us do the same initialization using a STL file with setFields.

• First, you will need to create the solid model that encloses the region you want to initialize.  

• For this, you can use your favorite CAD/solid modeling software. Remember to save the 

geometry is STL format.

• Then you will need to read in the STL file using setFields.  

• You will need to modify the setFieldsDict dictionary.

Region defined by 

the STL file
Computational domain
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Solution initialization using codeStream

The setFieldsDict dictionary 

defaultFieldValues

(

volScalarFieldValue alpha.phase1 0

);

regions

(

surfaceToCell

{

file "./geo/ellipse.stl";

outsidePoints ((0.5 0.85 0));

includeInside true;

includeOutside false;

includeCut false;

fieldValues

(

volScalarFieldValue alpha.phase1 1

);

}

);

Initialize the whole domain to zero

setFields method to read STL files.

If you want to know all the options 

available use a word that does not exist 

in the enumerator list  (e.g. banana)

Location of the STL file to read

A point located outside the STL

Use what is inside the STL

Use what is outside the STL

Include cells cut by the STL

Initialize this value.

In this case the initialization will be inside 

the STL
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Solution initialization using codeStream

Elliptic initialization using setFields

• This case is ready to run, the input files are located in the directory 
$PTOFC/101programming/codeStream_INIT/elliptical_IC

• To run the case, type in the terminal,

1. $> foamCleanTutorials

2. $> blockMesh

3. $> rm –rf 0

4. $> cp –r 0_org 0

5. $> setFields

6. $> paraFoam

• At this point, compare this initialization with the previous one. 

• Also, feel free to launch the simulation using interFoam.
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Solution initialization using codeStream

Rayleigh-Taylor instability initialization

• Let us study the Rayleigh-Taylor

instability.  

• In this case, we have two phases with 

different physical properties (one phase 

is heavier).

• To onset this instability, we need to 

perturbate somehow the interface 

between the two phases.

• We will use codeStream to initialize the

two phases.

• For simplicity, we will only show the 

code section of the input files.

• The entries codeInclude, codeOptions, 

and codeLibs, are the same most of the 

times.
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Solution initialization using codeStream

• The code section of the codeStream IC in the body of the file alpha.phase1 is as follows, 

code

#{

const IOdictionary& d = static_cast<const IOdictionary&>(dict);

const fvMesh& mesh = refCast<const fvMesh>(d.db());

scalarField alpha(mesh.nCells(), 0.);

forAll(alpha, i)

{

const scalar x = mesh.C()[i][0];

const scalar y = mesh.C()[i][1];

if (y >= -0.05*cos(2*constant::mathematical::pi*x))

{

alpha[i] = 1.;

}

}

writeEntry(os, "", alpha);

#};

• For simplicity, we only show the code section. 

• The rest of the body of the codeStream IC is a template.

Initialize scalar field to zero

Access cell centers coordinates

Access internal mesh information
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Write output to input dictionary
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Solution initialization using codeStream

Rayleigh-Taylor instability initialization

• This case is ready to run, the input files are located in the directory 
$PTOFC/101programming/codeStream_INIT/rayleigh_taylor

• To run the case, type in the terminal,

1. $> foamCleanTutorials

2. $> blockMesh

3. $> rm –rf 0

4. $> cp –r 0_org 0

5. $> interFoam | tee log.solver

6. $> paraFoam

• FYI, you can run in parallel with no problem.
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Solution initialization using codeStream

Rayleigh-Taylor instability initialization

• If everything went fine, you should get something like this,

Visualization of volume fraction, static pressure and velocity 

magnitude
www.wolfdynamics.com/wiki/BCIC/rayleigh_taylor_ins1.gif

Initial conditions
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Solution initialization using codeStream

Filling a tank using codeStream and codedFixedValue

Water enters here
This is a single boundary patch

Initial water level

• Let us do a final example. 

• We will implement BCs and ICs at the same. 

• For simplicity, we will only show the code section of the input files.

• This setup is similar to the last example of the previous section (filling a tank using 

codedFixedValue).
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Solution initialization using codeStream

• The code section of the codeStream IC in the body of the file alpha.water is as follows, 

internalField   #codeStream

{

...

...

...

code

#{

const IOdictionary& d = static_cast<const IOdictionary&>(dict);

const fvMesh& mesh = refCast<const fvMesh>(d.db());

scalarField alpha(mesh.nCells(), 0.);

forAll(alpha, i)

{

const scalar x = mesh.C()[i][0];

const scalar y = mesh.C()[i][1];

const scalar z = mesh.C()[i][2];

if (y <= 0.2)

{

alpha[i] = 1.;

}

}

writeEntry(os, "", alpha);

#};

Access cell centers 

coordinates
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Initialize scalar field to zero

Write output to input dictionary

Assign value to alpha according to 
conditional structure

Use codeStream to set the 
value of the initial conditions
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leftWall

{

type            codedFixedValue;

value           uniform (0 0 0);

name            inletProfile1;

code

#{

const fvPatch& boundaryPatch = patch(); 

const vectorField& Cf = boundaryPatch.Cf(); 

vectorField& field = *this; 

scalar min = 0.5;  

scalar max = 0.7; 

scalar t = this->db().time().value();

...

...

...

#}; 

}

Solution initialization using codeStream

• The code section of the codeFixedValue BC in the body of the file U is as follows, 

Access boundary mesh 

information and initialize 
vector field field

Access time

Initialize variables

Unique name of the BC
Do not use the same name in other patches

Use codedFixedValue BC and initialize value. 

The initialization is only needed for paraview 
in order to visualize something at time zero.

Name of the patch where we want to implement the boundary condition

Code section.  The actual implementation of the BC is done here
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code

#{

...

...

...

forAll(Cf, faceI)

{

if (

(Cf[faceI].z() > min) &&

(Cf[faceI].z() < max) &&

(Cf[faceI].y() > min) &&

(Cf[faceI].y() < max) 

)

{

if ( t < 2.)

{

field[faceI] = vector(1,0,0);

}

else

{

field[faceI] = vector(0,0,0);

}

}       

}

#};

Solution initialization using codeStream

Use conditional structure to 
select faces.

Loop using size of boundary patch (Cf) and iterator 

faceI. 

This is equivalent to:              

for (int faceI=0; Cf.size()<faceI; faceI++) 

Use conditional structure to 

add time dependency and 

assign values to the 

selected faces.

Code section.  The actual implementation of the BC is done here

• The code section of the codeFixedValue BC in the body of the file U is as follows, 
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leftWall

{

type            codedFixedValue;

value           uniform 0;

name            inletProfile2;

code

#{

const fvPatch& boundaryPatch = patch(); 

const vectorField& Cf = boundaryPatch.Cf(); 

scalarField& field = *this; 

field = patchInternalField(); 

scalar min = 0.5;  

scalar max = 0.7; 

scalar t = this->db().time().value();

...

...

...

#};         

}

Solution initialization using codeStream

Access boundary mesh 

information and initialize 
scalar field field

Access time

Initialize variables

Unique name of the BC
Do not use the same name in other patches

Use codedFixedValue BC and initialize value. 

The initialization is only needed for paraview 
in order to visualize something at time zero.

Name of the patch where we want to implement the boundary condition

• The code section of the codeFixedValue BC in the body of the file alpha.water is as follows, 

Code section.  The actual implementation of the BC is done here

Assign value from the internal field to the patch

814



code

#{

...

...

...

forAll(Cf, faceI)

{

if ( 

(Cf[faceI].z() > min) &&

(Cf[faceI].z() < max) &&

(Cf[faceI].y() > min) &&

(Cf[faceI].y() < max) 

)

{

if ( t < 2.)

{

field[faceI] = 1.;

}

else

{

field[faceI] = 0.;

}

}

}

#};         

Solution initialization using codeStream

Use conditional structure to 
select faces

Loop using size of boundary patch (Cf) and iterator 

faceI. 

This is equivalent to:              

for (int faceI=0; Cf.size()<faceI; faceI++) 

Use conditional structure to add 

time dependency and assign 

values to the selected faces.

Code section.  The actual implementation of the BC is done here

• The code section of the codeFixedValue BC in the body of the file alpha.water is as follows, 
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Solution initialization using codeStream
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Filling a tank using codeStream and codedFixedValue

• If everything went fine, you should get something like this,

Visualization of water phase (alpha.water)

www.wolfdynamics.com/wiki/BCIC/filltank2.gif

Volume integral of water entering 

the domain

816
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Module 8
Advanced physics                             

Turbulence modeling – Multiphase flows –

Compressible flows – Moving bodies –

Source terms – Passive scalars

817



“Essentially, all models are wrong, 

but some are useful” 

G. E. P. Box

George Edward Pelham Box

18 October 1919 – 28 March 2013. Statistician, who

worked in the areas of quality control, time-series

analysis, design of experiments, and Bayesian inference.

He has been called “one of the great statistical minds of

the 20th century”.

• In this module, we will deal with advanced modeling capabilities. 

• Advanced modeling capabilities rely a lot in physical models, such as, 

turbulence, multiphase flows, porous media, combustion, radiation, heat 

transfer, phase change, acoustics, cavitation, and so on.

• Therefore, it is extremely important to get familiar with the theory behind 

these models.
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A crash introduction to:

1. Turbulence modeling in OpenFOAM®

2. Multiphase flows modeling in 

OpenFOAM® 

3. Compressible flows in OpenFOAM®

4. Moving bodies in OpenFOAM®

5. Source terms in OpenFOAM®

6. Scalar transport pluggable solver

Roadmap
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What is turbulence?

• For the purpose of this training, let us state the following:

• Turbulence is an unsteady, aperiodic motion in which 

all three velocity components fluctuate in space and 

time.

• Every transported quantity shows similar fluctuations 

(pressure, temperature, species, concentration, and 

so on)

• Turbulent flows contains a wide range of eddy sizes 

(scales):

• Large eddies derives their energy from the mean 

flow. The size and velocity of large eddies are on 

the order of the mean flow.

• Large eddies are unstable and they break-up into 

smaller eddies.

• The smallest eddies convert kinetic energy into 

thermal energy via viscous dissipation.

• The behavior of small eddies is more universal in 

nature.

820

Buoyant plume of smoke rising from a stick of incense

Photo credit: https://www.flickr.com/photos/jlhopgood/ 

This work is licensed under a Creative Commons License 

(CC BY-NC-ND 2.0)
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Flow visualization over a spinning spheroid

Photo credit: Y. Kohama. 

Copyright on the images is held by the contributors. Apart from Fair Use, 

permission must be sought for any other purpose.

Wake turbulence behind individual wind turbines

Photo credit: NREL's wind energy research group.

Copyright on the images is held by the contributors. Apart from Fair Use, 

permission must be sought for any other purpose.

Von Karman vortices created when prevailing winds sweeping east across 

the northern Pacific Ocean encountered Alaska's Aleutian Islands

Photo credit: USGS EROS Data Center Satellite Systems Branch.

Copyright on the images is held by the contributors. Apart from Fair Use, 

permission must be sought for any other purpose.

Vortices on a 1/48-scale model of an F/A-18 aircraft inside a Water 

Tunnel

Photo credit: NASA Dryden Flow Visualization Facility. 

Copyright on the images is held by the contributors. Apart from Fair Use, 

permission must be sought for any other purpose. 821
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Abstract representation of 

the drag decomposition

Flow around two spheres. Left image: smooth sphere. Right image: sphere with rough surface at the nose

Photo credit: http://www.mhhe.com/engcs/civil/finnemore/graphics/photos/AuthorRecommendedImages/index.html

Copyright on the images is held by the contributors. Apart from Fair Use, permission must be sought for any other purpose

Turbulence, does it matter?
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Turbulence, does it matter?

Blower simulation using sliding grids

823

No turbulence model used (laminar, no 

turbulence modeling, DNS, unresolved 

DNS, name it as you want)
http://www.wolfdynamics.com/training/turbulence/image1.gif

K-epsilon turbulence model
http://www.wolfdynamics.com/training/turbulence/image2.gif

http://www.wolfdynamics.com/training/turbulence/image1.gif
http://www.wolfdynamics.com/training/turbulence/image1.gif


URANS (K-Omega SST with no wall functions) –

Vortices visualized by Q-criterion
www.wolfdynamics.com/wiki/squarecil/urans2.gif

LES (Smagorinsky) – Vortices visualized by Q-criterion
www.wolfdynamics.com/wiki/squarecil/les.gif

Laminar (no turbulence model) – Vortices 

visualized by Q-criterion
www.wolfdynamics.com/wiki/squarecil/laminar.gif

DES (SpalartAllmarasDDES) – Vortices visualized by 

Q-criterion
www.wolfdynamics.com/wiki/squarecil/des.gif
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Turbulence, does it matter?

Vortex shedding past square cylinder

824

http://www.wolfdynamics.com/wiki/squarecil/urans2.gif
http://www.wolfdynamics.com/wiki/squarecil/urans2.gif
http://www.wolfdynamics.com/wiki/squarecil/laminar.gif
http://www.wolfdynamics.com/wiki/squarecil/des.gif


Turbulence model Drag coefficient Strouhal number Computing time (s)

Laminar 2.81 0.179 93489 

LES 2.32 0.124 77465

DES 2.08 0.124 70754

URANS (WF) 2.31 0.130 67830

URANS (No WF) 2.28 0.135 64492

RANS 2.20 - 28246 (10000 iter)

Experimental values 2.05-2.25 0.132 -

References:

Lyn, D.A. and Rodi, W., The flapping shear layer formed by flow separation from the forward corner of a square cylinder. J. Fluid Mech., 267, 353, 1994.

Lyn, D.A., Einav, S., Rodi, W. and Park, J.H., A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square 

cylinder. Report. SFB 210 /E/100.

Note: all simulations were run using 4 cores.
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Turbulence, does it matter?

Vortex shedding past square cylinder

825
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Turbulence, does it matter?

Separated flow around a NACA-4412 airfoil

826

Turbulence model 1

Turbulence model 2

Turbulence model 3

Turbulence model 4

Turbulence model 5

Experimental results

Turbulence model 1

Turbulence model 2

Turbulence model 3

Turbulence model 4

Turbulence model 5

Experimental results

Inflow

References:

F. Menter. “A New Generalized k-omega model. Putting flexibility into Turbulence models (GEKO)”, Ansys Germany

A. J. Wadcock. “Investigation of Low-Speed Turbulent Separated Flow Around Airfoils”, NASA Contractor Report 177450

• CFD has been around since the late 1970s, and after all these years is not that easy to compute the flow around 2D airfoils.

• In  particular, predicting the maximum lift and stall characteristics is not trivial.
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Turbulence modeling in engineering

• Most natural and engineering flows are turbulent, hence the necessity of modeling turbulence.

• The goal of turbulence modeling is to develop equations that predict the time averaged velocity, pressure, 

temperature fields without calculating the complete turbulent flow pattern as a function of time.

• There is no universal turbulence model, hence you need to know the capabilities and limitations of the 

turbulence models.

• Simulating turbulent flows in any general CFD solver requires selecting a turbulence model, providing initial 

conditions and boundary conditions for the closure equations of the turbulent model, selecting a near-wall 

modeling, and choosing runtime parameters and numerics.

827

Why modeling turbulent flows is challenging?

• Unsteady aperiodic motion.

• All fluid properties and transported quantities exhibit random spatial and temporal variations.

• They are intrinsically three-dimensional due to vortex stretching.

• Strong dependence from initial conditions.

• Contains a wide range of scales (eddies).

• Therefore, in order to accurately model/resolve turbulent flows, the simulations must be three-dimensional, 

time-accurate, and with fine enough meshes such that all spatial scales are resolved.  



Reynolds number and Rayleigh number

• It is well known that the Reynolds number characterizes if the flow is laminar or turbulent.

• So before doing a simulation or experiment, check if the flow is turbulent.

• The Reynolds number is defined as follows,

• Where U and L are representative velocity and length scales.

• If you are dealing with natural convection, you can use the Rayleigh number, Grashof number, and Prandtl 

number to characterize the flow.

where
Convective effects

Viscous effects

A crash introduction to turbulence modeling in OpenFOAM®  
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Buoyancy effects

Viscous effects Thermal conductivity

Specific heat Thermal expansion coefficient

Momentum diffusivity

Thermal diffusivity



Reynolds number and Rayleigh number

• Turbulent flow occurs at large Reynolds number.

• For external flows,

• For internal flows,

• Notice that other factors such as free-stream turbulence, surface conditions, blowing, suction, 

roughness and other disturbances, may cause transition to turbulence at lower Reynolds 

number.

• If you are dealing with natural convection and buoyancy, turbulent flows occurs when

Around slender/streamlined bodies (surfaces)

Around an obstacle (bluff body)

A crash introduction to turbulence modeling in OpenFOAM®  
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What happens when we increase the Reynolds number?
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Re < 5

5 < Re < 40 - 46

40 - 46 < Re < 150

150 < Re < 300

300 < Re < 3 x 10
5

3 x 10  < Re < 3 x 10
5 6

Transition to turbulence

3 x 10  > Re 
6

Creeping flow (no separation)
Steady flow

A pair of stable vortices
in the wake
Steady flow

Laminar vortex street
(Von Karman street)
Unsteady flow

Laminar boundary layer up to
the separation point, turbulent 
wake
Unsteady flow

Boundary layer transition to
turbulent
Unsteady flow

Turbulent vortex street, but the 
wake is  narrower than in the 
laminar case
Unsteady flow

Vortex shedding behind a cylinder and Reynolds number

• Easy to simulate

• Steady

• Challenging to 

simulate

• Unsteady

• Relatively easy to 

simulate.

• It becomes more 

challenging when 

the boundary layer 

transition to 

turbulent

• Unsteady



What happens when we increase the Reynolds number?
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831

Drag coefficient as a function of Reynolds number for 

a smooth cylinder [1]

Strouhal number                    for a smooth cylinder [2]

References:

1. Fox, Robert W., et al. Introduction to Fluid Mechanics. Hoboken, NJ, Wiley, 2010

2. Sumer, B. Mutlu, et al. Hydrodynamics Around Cylindrical Structures. Singapore, World Scientic, 2006
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Vorticity does not always mean turbulence

Instantaneous vorticity magnitude field
www.wolfdynamics.com/wiki/cylinder_vortex_shedding/movvort.gif

• The Reynold number in this case is 100, for these conditions the flow still is laminar.

• We are in the presence of the Von Karman vortex street, which is the periodic shedding of vortices caused by 

the unsteady separation of the fluid around blunt bodies.

• Vorticity is not a direct indication of turbulence.

• However turbulent flows are rotational, they exhibit vortical structures. 832

http://www.wolfdynamics.com/wiki/cylinder_vortex_shedding/movvort.gif
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Turbulence modeling – Fluctuations of transported quantities

• We have defined turbulence as an unsteady, aperiodic motion in which velocity components and every 

transported quantity fluctuate in space and time.

• For most engineering application it is impractical to account for all these instantaneous fluctuations.

• Therefore, we need to somehow remove those small scales by using models.

• To remove of filter the instantaneous fluctuations or small scales, two methods can be used: Reynolds 

averaging and Filtering

• Both methods introduce additional terms that must be modeled for closure. 

• We are going to talk about closure methods later. 833

In RANS

• The overbar denotes the mean value.

• The prime denotes the fluctuating value.

In LES

• The overbar denotes the filtered value.

• The prime denotes the modeled value or 

residual.
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Turbulence modeling – Velocity profile

• In the laminar flow case, the velocity gradients close to the walls are low and the velocity profile is parabolic.

• Turbulence has a direct effect on the velocity profiles and mixing of transported quantities.

• The turbulent case shows two regions.  One thin region close to the walls with very large velocity gradients, 

and a region far from the wall where the velocity profile is nearly uniform.

• The thin region close to the walls is laminar.

• Far from the flows, the flow becomes turbulent.
834

Laminar flow profile Averaged turbulent flow profile Instantaneous turbulent flow profile
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Turbulence modeling – Mixing of transported quantities

Flow in a pipe. (a) Laminar, (b) Transitional, (c) Turbulent

• Turbulence has a direct effect on the velocity profiles and mixing of transported quantities.

• Case (a) correspond to a laminar flow, where the dye can mix with the main flow only via molecular diffusion, 

this kind of mixing can take very long times.

• Case (b) shows a transitional state where the dye streak becomes wavy, but the main flow still is laminar.

• Case (c) shows the turbulent state, where the dye streak changes direction erratically, and the dye has mixed 

significantly with the main flow due to the velocity fluctuations. 835



                      

 

    

Laminar boundary
layer

Transition
region

Turbulent boundary
layer

 iscous sublayer

 uffer layer
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• Near walls, in the boundary layer, the velocity changes rapidly.

• A laminar boundary layer starts to form at the leading edge.  As the flow proceeds further downstream, large shear stresses and 

velocity gradient develop within the boundary layer. At one point, the flow becomes turbulent.

• In CFD, we try to avoid the transition region and the buffer layer. What is happening in this region is not well understood. The 

flow can become laminar again or can become turbulent.

• The velocity profiles in the laminar and turbulent regions are different. 

• Turbulence models require different considerations depending on whether you solve the viscous sublayer, model the log-law 

layer, or solve the whole boundary layer.

Turbulence near the wall – Boundary layer

Actual profile  - Physical velocity profile

Note: The scales are 

exaggerated for clarity
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Turbulence near the wall - Law of the wall
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Non-dimensional profile Actual profile  - Physical velocity profile

inertial scales

dissipation scales

integral scales

• The use of the non-dimensional velocity u+ and non-dimensional distance from the wall y+, results in a 

predictable boundary layer profile for a wide range of flows.

• Turbulence models require different considerations depending on whether you solve the viscous sublayer of 
model the log-law layer. 837



Turbulence near the wall - Definition of y+ and u+
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Where y is the distance normal to the 

wall,       is the shear velocity, and       

relates the mean velocity to the shear 

velocity

• y+ or wall distance units is a very 

important concept when dealing 

with turbulence modeling.

• Remember this definition as we 

are going to use it a lot.

U



Turbulence near the wall - Relations according to y+ value
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Note 1: the range of y+ values might change from reference to reference but roughly speaking 

they are all close to these values.

Note 2: the y+ upper limit of the buffer layer depends on the Reynolds number. Large Re will 

have higher y+ upper limit
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Wall resolving approach

• If you want to resolve the boundary layer up to the viscous sub-layer you need very fine meshes 

close to the wall.

• In terms of y+, you need to cluster at least 8-10 layers at y+ < 6-10.

• But for good accuracy, usually you will use 15 to 30 layers, with a low growth rate.

• You need to properly resolve the velocity profile.

• This is the most accurate approach, but it is computationally expensive. 

Wall resolving approach

• If you are not interested in resolving boundary layer up to the viscous sub-layer, you can use wall 

functions.

• In terms of y+, wall functions will model everything for y+ < 30.

• You will need to cluster at least 5 to 10 layers to resolve the profiles (U and k).

• This approach use coarser meshes, but you should be aware of the limitations of the wall functions. 

Near-wall treatment and wall functions

840

• When dealing with wall turbulence, we need to choose a near-wall treatment.

y+ insensitive

• You can also use the y+ insensitive wall treatment (sometimes known as continuous wall functions or scalable wall functions).  

• This near-wall treatment is valid in the whole boundary layer.

• In terms of y+, you can use this approach for values between  1 < y+ < 300.

• This approach is very flexible as it is independent of the y+ value but is not available in all turbulence models. 

• You should also be aware of its limitations.
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• Turbulence modelling aims at predicting velocity and transported quantities fluctuations without 

calculating the complete turbulent flow pattern as a function of time.

• Everything below grid scales or sub-grid scales (SGS) is modelled or filtered.

• Therefore, if we want to capture all scales we need very fine meshes in the whole domain.

To resolve the boundary layer 

you need very fine meshes
Cell size

This cell is not resolving the eddies Cell size

This cell may be resolving the eddies

Cell size

This cell is resolving the eddies

Turbulence modeling – Grid scales

Bullet at Mach 1.5

Photo credit: Andrew Davidhazy. Rochester Institute of Technology.

Copyright on the images is held by the contributors. Apart from Fair Use, permission must be sought for any other purpose.
841



Overview of turbulence modeling approaches
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MODELING APPROACH

RANS
Reynolds-Averaged Navier-Stokes equations

URANS
Unsteady Reynolds-Averaged Navier-Stokes equations

• Many more acronyms that fit between RANS/URANS 

and SRS. 

• Some of the acronyms are used only to differentiate 

approaches used in commercial solvers.

PANS, SAS, RSM, EARSM, PITM, SBES, ELES
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DES
Detached Eddy Simulations

LES
Large Eddy Simulations

DNS
Direct Numerical Simulations
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Overview of turbulence modeling approaches

LES (Instantaneous field)RANS

RANS/URANS DES/LES DNS

• Solve the time-average NSE.

• All turbulent spatial scales are 

modeled.

• Many models are available.  One 

equation models, two equation 

models, Reynolds stress models, 

transition models, and so on.

• This is the most widely approach for 

industrial flows.

• Unsteady RANS (URANS), use the 

same equations as the RANS but 

with the transient term retained.

• It can be used in 2D and 3D cases.

• Solve the filtered unsteady NSE.

• Sub-grid scales (SGS) are filtered, 

grid scales (GS) are resolved.

• Aim at resolving the temporal scales, 

hence requires small time-steps.

• For most industrial applications, it is 

computational expensive. However, 

thanks to the current advances in 

parallel and scientific computing it is 

becoming affordable.

• Many models are available.

• It is intrinsically 3D and asymmetric.

• Solves the unsteady laminar NSE.

• Solves all spatial and temporal 

scales; hence, requires extremely 

fine meshes and small time-steps.

• No modeling is required.

• It is extremely computational 

expensive.

• Not practical for industrial flows.

• It is intrinsically 3D and asymmetric.

843
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Model Short description

Spalart-Allmaras

Suitable for external aerodynamics, tubomachinery and high-speed flows. Good for mildly 

complex external/internal flows and boundary layer flows under pressure gradient (e.g. airfoils, 

wings, airplane fuselages, ship hulls). Performs poorly for free shear flows and flows with strong 

separation. 

Standard k–epsilon
Robust. Widely used despite the known limitations of the model. Performs poorly for complex 

flows involving severe pressure gradient, separation, strong streamline curvature. Suitable for 

initial iterations, initial screening of alternative designs, and parametric studies. 

Realizable k–epsilon

Suitable for complex shear flows involving rapid strain, moderate swirl, vortices, and locally 

transitional flows (e.g. boundary layer separation, massive separation, and vortex shedding 

behind bluff bodies, stall in wide-angle diffusers, room ventilation).  It overcome the limitations of 

the standard k-epsilon model.

Standard k–omega
Superior performance for wall-bounded boundary layer, free shear, and low Reynolds number 

flows compared to models from the k-epsilon family. Suitable for complex boundary layer flows 

under adverse pressure gradient and separation (external aerodynamics and turbomachinery). 

SST k–omega
Offers similar benefits as standard k–omega. Not overly sensitive to inlet boundary conditions 

like the standard k–omega. Provides more accurate prediction of flow separation than other 

RANS models. Probably the most widely used RANS model.

Short description of some RANS turbulence models

844
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Turbulence modeling – Starting equations

845

NSE

Additional equations to close the system (thermodynamic variables)

Additionally, relationships to relate the transport properties

Additional closure equations for the turbulence models

• Turbulence models equations cannot be derived from fundamental principles.

• All turbulence models contain some sort of empiricism.   

• Some calibration to observed physical solutions is contained in the turbulence models.

• Also, some intelligent guessing is used.

• A lot of uncertainty is involved!
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Incompressible RANS equations

846

• The RANS equations are very similar to the starting equations. 

RANS/URANS equations NSE with no turbulence models (DNS)

• The differences are that all quantities have been averaged (the overbar over the primitive variables).

• And the appearance of the Reynolds stress tensor        .

• Notice that the Reynolds stress tensor is not actually a stress, it must be multiplied by density in order to have 

dimensions corresponding to stresses,

• To derive the RANS equations we used Reynolds decomposition and a few averaging rules (a lot of algebra is 

involved),

If we retain this term, we talk about URANS equations and if we drop it we talk about RANS equations

Reynolds decomposition
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• The RANS approach to turbulence modeling requires the Reynolds stresses to be appropriately modeled. 

Incompressible RANS equations

• The Reynolds stress tensor can be modeled using the Boussinesq hypothesis, Reynolds stress models, non-

linear eddy viscosity models or algebraic models. 

• Let us address the Boussinesq hypothesis which is the most widely used approach to model the Reynolds 

stress tensor. 

• By using this hypothesis we can relate the Reynolds stress tensor to the mean velocity gradient such that,

847

• In the previous equation,                            denotes the strain-rate tensor.

• is the identity matrix.

• is the turbulent eddy viscosity.

• is the turbulent eddy viscosity.

• At the end of the day we want to determine the turbulent eddy viscosity.

• The turbulent eddy viscosity is not a fluid property, it is a property needed by the turbulence model.

• Each turbulence model will compute the turbulent eddy viscosity in a different way.
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• After introducing the Boussinesq approximation and doing some algebra, we obtain the following form of the 

governing equations,

Incompressible RANS equations

848

Normal stresses arising from the 

Boussinesq approximation

Turbulent viscosity

Effective viscosity

• Notice that by introducing the Boussinesq approximation the fluctuating quantities (the prime in the equations) 

do not appear in the final equations. 

• The new equations are expressed entirely n terms of mean values (overbar), which can be computed.

• The problem now reduces to computing the turbulent eddy viscosity        in the momentum equation.

• This is done by adding closure models (one-equation, two-equations, algebraic, transition, Reynolds stress, 

and so on).
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• We just outlined the incompressible RANS.

• The compressible RANS equations are similar, but when we derive them, we use Favre average 

(which can be seen as a mass-weighted averaging), instead of Reynolds average.

• Besides RANS, there is also LES and DES turbulence models.

• The idea behind LES/DES models is very similar to RANS, but instead of using averaging we 

filter the equations in space, and we solve the temporal scales 

• At the end of the day, in LES/DES it is also required to model a stress tensor, usually called the 

SGS stress tensor.  

• This stress tensor is related to the scales that cannot be resolved with the mesh; therefore, need 

to be modelled.

• LES/DES models are intrinsically unsteady and three-dimensional.

• Let us take a look at the governing equations of the                 RANS model (Wilcox 1998 

revision).

• Remember, the main goal of the RANS turbulence models is to model the Reynolds stress 

tensor by computing the turbulent eddy viscosity.

Additional remarks

849



Turbulence model overview (Wilcox 1998 revision)
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• It is called                 because it solves two additional equations for modeling the turbulent eddy viscosity, 
namely, the turbulent kinetic energy      and the specific kinetic energy      .

• These are the closure equations of the turbulence problem using the                 RANS model.

• These are not physical quantities.  They kind of represent the generation and destruction of turbulence.

• In the                model, the turbulent eddy viscosity can be computed as follows,

850

• The model has many closure coefficient that we do not show here. These coefficients are calibrated using 

experimental data, DNS simulations, analytical solutions, or empirical data.

• Note that all quantities are computed in function of mean values.  The Reynolds stresses are modeled using 

the Boussinesq hypothesis. By proceeding in this way, we remove any dependence on the fluctuations.

• It is worth mentioning that different turbulence models will have different ways of computing the turbulent eddy 

viscosity.
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• The initial value for the specific kinetic energy        can be computed as follows, 

• The initial value for the turbulent kinetic energy       can be computed as follows,

• Where            is the viscosity ratio and                    is the turbulence intensity.  

• If you are totally lost, you can use these reference values.  They work most of the times, but it is 

a good idea to have some experimental data or a better initial estimate.

Low Medium High

I 1.0 % 5.0 % 10.0 %

1 10 100

• By the way, use these guidelines for external aerodynamics only.

Turbulence model free stream initial conditions

851
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• Follow these guidelines to find the boundary conditions for the near-wall treatment. 

• We highly recommend you to read the source code and find the references used to implement 

the model.

• As for the free-stream boundary conditions, you need to give the boundary conditions for the 

near-wall treatment.

• When it comes to near-wall treatment, you have three options:

• Use wall functions:

• y+ insensitive wall functions, this only applies to the               family of model:

• Resolve the boundary layer (no wall functions):

Turbulence model boundary conditions at the walls
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• Remember, you can only use wall functions if the primitive patch (the patch type defined in the 
boundary dictionary), is of type wall.

Field Wall functions – High RE Resolved BL – Low RE

nut

nut(–)WallFunction* or

nutUSpaldingWallFunction**                                

(with 0 or a small number)

nutUSpaldingWallFunction** or 

nutLowReWallFunction or fixedValue                      

(with 0 or a small number)

k, q, R

kqRWallFunction kqRWallFunction or kLowReWallFunction

epsilon

epsilonWallFunction (with inlet value) epsilonWallFunction (with inlet value) or

zeroGradient or fixedValue (with 0 or a small 

number)

omega

omegaWallFunction omegaWallFunction** or fixedValue

nuTilda – fixedValue (with 0 or a small number)

* $WM_PROJECT_DIR/src/TurbulenceModels/turbulenceModels/derivedFvPatchFields/wallFunctions/nutWallFunctions

** For y+ insensitive wall functions (continuous wall functions)

oror

Turbulence model boundary conditions at the walls



Turbulence models available in OpenFOAM®  
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• There are many turbulence models implemented in OpenFOAM®, from RANS to LES.

• You can also implement yours!

• You can find the turbulence models in the following directories:

• $WM_PROJECT_DIR/src/MomentumTransferModels

• The wall functions are in the following directories:

• $WM_PROJECT_DIR/src/MomentumTransferModels/momentumTransferModels/d

erivedFvPatchFields

• If you have absolutely no idea of what model to use, we highly recommend you the  k-omega                 

family models or the realizable k-epsilon model.

• Remember, when a turbulent flow enters a domain, turbulent boundary conditions and initial 

conditions must be specified. 

• Also, if you are dealing with wall bounded turbulence you will need to choose the near-wall 

treatment.  

• You can choose to solve the viscous sub-layer (low-Re approach) or use wall functions       

(high-Re approach).

• You will need to give the appropriate boundary conditions to the near-wall treatment.

• Our task is to choose the less wrong model !
854



• We never know a priori the y+ value (because we do not know the friction velocity).

• What we usually do is to run the simulation for a few time-steps or iterations, and then we get an 

estimate of the y+ value.

• After determining where we are in the boundary layer (viscous sub-layer, buffer layer or log-law 

layer), we take the mesh as a good one or we modify it if is deemed necessary.

• It is an iterative process and it can be very time consuming, as it might require remeshing and 

rerunning the simulation.

• Have in mind that it is quite difficult to get a uniform y+ value at the walls.  

• Try to get a y+ mean value as close as possible to your target.  

• Also, check that you do not get very high maximum values of y+ (more than a 1000)

• Values up to 300 are fine.  Values larger that 300 and up to a 1000 are acceptable is they do not 

covert a large surface (no more than 10% of the total wall area), or they are not located in critical 

zones.

• Remember, the upper limit of y+ also depends on the Reynolds number.

• Use common sense when accessing y+ value.

A crash introduction to turbulence modeling in OpenFOAM®  
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y+ wall distance units normal to the wall
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• To get an initial estimate of the distance from the wall to the first cell center y+,  without recurring 

to a precursor simulation, you can proceed as follows,

Estimating normal wall distance

1.

2.

3.

4.

(Skin friction coefficient of a flat plate, there are 

similar correlations for pipes)

5.
Your desired value

• You will find a simple calculator for the wall distance estimation in the following link: 

http://www.wolfdynamics.com/tools.html?id=2

http://www.wolfdynamics.com/tools.html?id=2
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Wall distance units x+ – y+ – z+

• Similar to     , the wall distance units can be 

computed in the stream-wise (         ) and 

span-wise (         ) directions.

• The wall distance units in the stream-wise 

and span-wise directions can be computed 

as follows:

• And recall that         is computed at the cell 

center, therefore:

where

Viscous length
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Wall distance units and some rough estimates

• Similar to y+, the wall distance units can be computed in the stream-wise  (         ) and         

span-wise (         ) directions.

• DES and RANS simulations do not have stream-wise and span-wise wall distance units 

requirements as in LES simulations. Therefore, they are more affordable.

• Typical requirements for LES are (these are approximations based on different references):
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• Compute Reynolds number and determine whether the flow is turbulent. 

• Try to avoid the use of turbulent models with laminar flows.

• Choose the near-wall treatment and estimate y before generating the mesh.

• Run the simulation for a few time steps and get a better prediction of y and correct your initial 

prediction of y+. 

• The realizable            or                       models are good choices for general applications.

• The standard              model is very reliable, you can use it to get initial values. Have in mind 

that this model use wall functions.

• If you are interested in resolving the large eddies and modeling the smallest eddies, DES or LES 

are the right choice.  

• If you do not have any restriction in the near wall treatment method, use wall functions (even 

with LES/DES models).

• Be aware of the limitations of the turbulence model chosen, find and read the original references 

used to implement the model in OpenFOAM®.

• Set reasonable boundary and initial conditions for the turbulence model variables.

Turbulence modeling guidelines and tips
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• Always monitor the turbulent variables, some of them are positive bounded.

• Avoid strong oscillations of the turbulent variables.

• If you are doing LES, remember that these models are intrinsically 3D and unsteady. You should 

choose your time-step in such a way to get a CFL of less than 1 and preferably of about 0.5.

• If you are doing RANS with wall functions, it is perfectly fine to use upwind to discretize the 

turbulence closure equations. After all, turbulence is a dissipative process. However, some 

authors may disagree with this, make your own conclusions.

• On the other hand, if you are using a wall resolved approach, it is better to use a high-order 

discretization scheme to discretize the turbulence closure equations.

• If you are doing unsteady simulations, always remember to compute the average values 

(ensemble average).

• If you are dealing with external aerodynamics and detached flows, DES simulations are really 

affordable.

• The work-horse of turbulence modeling in CFD, RANS

Turbulence modeling guidelines and tips
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Turbulence modeling hands-on tutorials

861

• Laminar-Turbulent flat plate

• Let us run this case. Go to the directory:

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend to open the README.FIRST file and type the commands in the terminal, in this way 

you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

$PTOFC/advanced_physics/turbulence/flatPlate 
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Laminar-Turbulent flat plate

• The best way to understand the near the wall treatment and the effect of turbulence near the 

walls, is by reproducing the law of the wall.

• By plotting the velocity in terms of the non-dimensional variables u+ and y+, we can compare 

the profiles obtained from the simulations with the theoretical profiles. 862
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Laminar-Turbulent flat plate

• In the directory python of each case, you will find a jupyter notebook (a python script), that you 

can use to plot the non-dimensional u+ and y+ profiles.

• The notebook uses some precomputed results, but you can adjust it to any case.

• Remember, the u+ vs. y+ plot is kind of a universal plot. 

• It does not matter your geometry or flow conditions, if you are resolving well the turbulent flow, 

you should be able to recover this profile.

• To compute this plot, you must sample the wall shear stresses and the velocity along a line 

normal to the wall. 

• Then, you can compute the shear velocity, friction coefficient, and u+ and y+ values.
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Laminar-Turbulent flat plate

• We are going to use the following solver: simpleFoam (for RANS).

• This case is rather simple, but we will use it to explain many features used in OpenFOAM®

when dealing with turbulence, especially when dealing with near the wall treatment.

• We will also show you how to do the post-processing in order to reproduce the law of the wall.  

For this, we will use a jupyter notebook (a python script).

• Remember, as we are introducing new closure equations for the turbulence problem, we need to 

define initial and boundary conditions for the new variables.

• We also need to define the discretization schemes and linear solvers to use to solve the new 

variables.

• It is also a good idea to setup a few functionObjects, such as: y+, minimum and maximum 

values, forces, time average, and online sampling.

• You will find the instructions of how to run this case in the file README.FIRST located in the 

case directory.
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Laminar-Turbulent flat plate

• We select the turbulence model in the momentumTransport dictionary file.

• This dictionary file is located in the directory constant.

• To select the K-Omega SST turbulence model,

17 simulationType  RAS;

18 

19 RAS

20 {

21 RASModel        kOmegaSST;

22 turbulence      on;

23 printCoeffs     on;

24 }

RANS type simulation

RANS model to use 

Turn on/off turbulence.  Runtime modifiable

Print coefficients at the beginning

RANS sub-dictionary

• Remember, you need to assign boundary and initial conditions to the new variables (k, omega, 

and nut).
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Vortex shedding past square cylinder

• To define the wall functions, follow this table,

• Run using high-RE and low-RE approaches.

• Compute the initial values of the turbulent quantities using a turbulent intensity value equal to 

1% and an eddy viscosity ratio equal to 1.

• After computing the solution with             model, try to setup the case using the standard    

model and the realizable           .

Field Wall functions – High RE Resolved BL – Low RE

nut nutUSpaldingWallFunction fixedValue 0 or a small number

k kqRWallFunction fixedValue 0 or a small number

omega

omegaWallFunction omegaWallFunction
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867

• Vortex shedding past square cylinder

• Let us run this case. Go to the directory:

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend you to open the README.FIRST file and type the commands in the terminal, in this 

way, you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

$PTOFC/advanced_physics/turbulence/squarecil 
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Vortex shedding past square cylinder

Working fluid: Water

Physical and numerical side of the 

problem:

• The governing equations of the problem are the 

incompressible Navier-Stokes equations.

• To model the turbulence, we will use two approaches, 

LES and RANS.

• We are going to work in a 3D domain with periodic 

boundary conditions.

• This problem has plenty of experimental data for 

validation.

868
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Vortex shedding past square cylinder

Turbulence model Drag coefficient Strouhal number Computing time (s)

Laminar 2.81 0.179 93489 

LES 2.36 0.124 77465

DES 2.08 0.124 70754

SAS 2.40 0.164 57690

URANS (WF) 2.31 0.130 67830

URANS (No WF) 2.29 0.135 64492

RANS 2.30 - 28246 (10000 iter)

Experimental values 2.05-2.25 0.132 -

References:

Lyn, D.A. and Rodi, W., The flapping shear layer formed by flow separation from the forward corner of a square cylinder. J. Fluid Mech., 267, 353, 1994.

Lyn, D.A., Einav, S., Rodi, W. and Park, J.H., A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square 

cylinder. Report. SFB 210 /E/100.
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• We will use this case to learn how to setup a turbulent case (RANS and LES).

• To run this case we will use the solvers simpleFoam (steady solver) and pimpleFoam

(unsteady solver).

• To get fast outcomes, we will use a coarse mesh.  But feel free to refine the mesh, especially 

close to the walls.

• Remember, as we are introducing new closure equations for the turbulence problem, we need to 

define initial and boundary conditions for the new variables.

• We will use a few functionObjects to compute some additional quantities, such as, Q criterion, 

y+, minimum and maximum values, forces, time average, and online sampling.

• After finding the solution, we will visualize the results.

• We will also compare the numerical solution with the experimental results.

• At the end, we will do some plotting and advanced post-processing using gnuplot and Python.

• Have in mind that the unsteady case will generate a lot of data.

• You will find the instructions of how to run this case in the file README.FIRST located in the 

case directory.

Vortex shedding past square cylinder
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Vortex shedding past square cylinder

• We select the turbulence model in the momentumTransport dictionary file.

• This dictionary file is located in the directory constant.

• To select the LES (Smagorinsky) turbulence model,

17 simulationType  LES;

18 

19 LES

20 {

21 LESModel        Smagorinsky;

24 turbulence      on;

25 printCoeffs     on;

27 delta           cubeRootVol;

31 cubeRootVolCoeffs

32 {

33 deltaCoeff      1;

34 }

100 }

LES type simulation

LES model to use 

Turn on/off turbulence.  Runtime modifiable

Print coefficients at the beginning

LES sub-dictionary

• Remember, you need to assign boundary and initial conditions to the new variables (nut).

LES filter

871



Turbulence modeling hands-on tutorials

Vortex shedding past square cylinder

• To define the wall functions, follow this table,

• Run using the following combinations of wall functions and compare the outcome.

• Use High RE for RANS.

• Use High RE and Low RE for URANS.

• Use High RE and Low RE for LES.

Field Wall functions – High RE Resolved BL – Low RE

nut nutUSpaldingWallFunction fixedValue 0 or a small number

k kqRWallFunction fixedValue 0 or a small number

omega

omegaWallFunction omegaWallFunction
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• The initial value for the specific kinetic energy        can be found as follows, 

• The initial value for the turbulent kinetic energy       can be found as follows,

Turbulence modeling hands-on tutorials

Vortex shedding past square cylinder

• Use the following initial estimates,                     and

• At this point, we are ready to run.  But before running, remember to setup the right numerics in 
the dictionary files fvSolution and fvSchemes.

• For the LES simulation, try to keep the CFL number below 0.9. For the URANS simulation, you 

can go as high as 10.

• Finally, do not forget to setup the functionObjects to compute the forces, average values, do 

the sampling, and compute y+ on-the-fly.
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A crash introduction to:

1. Turbulence modeling in OpenFOAM®

2. Multiphase flows modeling in 

OpenFOAM® 

3. Compressible flows in OpenFOAM®

4. Moving bodies in OpenFOAM®

5. Source terms in OpenFOAM®

6. Scalar transport pluggable solver



What is a multiphase flow?

A crash introduction to multiphase flows modeling OpenFOAM®

875

• A multiphase flow is a fluid flow consisting of more than one phase component and have some 

level of phase separation above molecular level.

• Multiphase flows exist in many different forms.  For example, two phase flows can be classified 

according to the state of the different phases:

• Gas-Liquid mixture.

• Gas-Solid mixture.

• Liquid-Solid mixture.

• Immiscible liquid-liquid.

• Multiphase flows are present in many industrial processes and natural systems.

• Hence the importance of understanding, modeling, and simulating multiphase flows.



Propeller cavitation
http://www.veempropellers.com/features/cavitationresistance

Cargo ship wake
http://developeconomies.com/development-economics/how-to-get-america-back-on-track-free-trade-edition/

Municipal and industrial water treatment
http://www.asiapacific.basf.com/apex/AP/en/upload/Press2010/BASF-Water-Chem-2010-Paper-

Chem-2010-Intex-Shanghai

Examples of multiphase flows

A crash introduction to multiphase flows modeling OpenFOAM®

Siltation & Sedimentation
http://blackwarriorriver.org/siltation-sedimentation/

876



Volcano eruption
http://americanpreppersnetwork.com/2014/08/preparing-volcano-eruption.html

Examples of multiphase flows

A crash introduction to multiphase flows modeling OpenFOAM®

Cooling Towers
https://whatiswatertreatment.wordpress.com/what-are-the-systems-associated-with-water-

treatment-and-how-are-they-treated/103-2/

Fermentation of beer and spirits
http://www.distillingliquor.com/2015/02/05/how-to-make-alcohol-and-spirits/

877

Chemical reactor for the pharmaceutical and 

biotechnology industry
http://www.total-mechanical.com/Industrial/CaseStudies.aspx



Why simulating multiphase flows is challenging?

A crash introduction to multiphase flows modeling OpenFOAM®

• Simulating  multiphase flows is not an easy task.

• The complex nature of multiphase flows is due to:

• More than one working fluid.

• The transient nature of the flows.

• The existence of dynamically changing interfaces.

• Significant discontinuities (fluid properties and fluid separation).

• Complicated flow field near the interface.

• Interaction of small-scale structures (bubbles and particles).

• Different spatial-temporal scales.

• Dispersed phases and particle-particle interactions.

• Mass transfer and phase change.

• Turbulence.

• Many models involved (drag, lift, heat transfer, turbulence dispersion, frictional 

stresses, collisions, kinetic theory, and so on).
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Classifying multiphase flows according to phase morphology

Separated systemDispersed system

A crash introduction to multiphase flows modeling OpenFOAM®

• Disperse system: the phase is dispersed as non-contiguous isolated regions within the other 

phase (the continuous phase) . When we work with a disperse phase, we say that the system is 

dispersed: disperse-continuous flow.

• Separated system: the phase is contiguous throughout the domain and there is one well 

defined interphase with the other phase. When we work with continuous phases, we say that the 

system is separated: continuous-continuous flow.
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How to treat the wide range of behaviors in multiphase flows

• Fully resolved: solves complete physics. All spatial and temporal scales 

are resolved. Equivalent to DNS in turbulence modelling.

• Eulerian-Lagrangian: solves idealized isolated particles that are 

transported with the flow. One- or two-way coupling is possible. It can 

account for turbulence, momentum transfer, and mass transfer.

• Eulerian-eulerians: solves two or more co-existing fluids. The system can 

be dispersed or separated, and can account for turbulence, momentum 

transfer, and mass transfer. C
o

m
p

u
ta

ti
o

n
a
l 
p

o
w

e
r

M
o

d
e
li
n

g
 r

e
q

u
ir

e
m

e
n

ts

880

Increase

Increase



How to treat the wide range of behaviors in multiphase flows

• Dispersed phase in a continuous phase.

• In this case, the VOF method is not able to handle 

bubbles smaller than grid scales.

• Multi-fluid and mixture models are able to model 

bubbles smaller than grid scales by averaging the 

phase properties in the discrete domain.

VOF ≈ 0.5
Average phase 

properties

A crash introduction to multiphase flows modeling OpenFOAM®
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• Multi-fluid and mixture approaches can model 

bubble coalescence, bubble break-up and 

wake entrainment in dispersed systems.

In theory, the VOF method can resolve the smallest bubbles/droplets but the mesh requirements are 

too prohibitive (equivalent to DNS).  In multiphase flows, this is called fully resolved approach.
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How to treat the wide range of behaviors in multiphase flows

• When using multi-fluid and mixture 

approaches, interfacial momentum 

transfer models must be taken into 

account in order to model mass 

transfer and phases interaction. 

• As for turbulence modeling, there is 

no universal model.

• It is up to you to choose the model 

that best fit the problem you are 

solving.  

• Depending on the physics involved, 

you will find different models and 

formulations

• You need to know the applicability and 

limitations of each model, for this, 

refer to the literature.
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How to treat the wide range of behaviors in multiphase flows

• In the Eulerian-Lagrangian framework, the continuous phase is solved in an Eulerian reference 

system and the particles or dispersed phase is solved in a Lagrangian reference system.

• The particles can be smaller or larger than the grid size.

• The particles can be transported passively, or they can be coupled with the fluid governing 

equations. 

• It accounts for particle interaction and mass transfer.

• The particles can interact with the boundaries and have a fate. 

A crash introduction to multiphase flows modeling OpenFOAM®

The continuous phase is 

solved in the mesh

The particles position is 

tracked by solving an ODE 

for each particle
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Multiphase flows – Grid scales

884

Large bubbles

(system scale)

Multiphase flows are 

transient and multiscale

Copyright on the images is held by the contributors. Apart from Fair Use, permission must be sought for any other purpose.

• Applicability of the VOF method to separated 

systems (non-interpenetrating continua).

• In the figure, the free surface and large 

bubbles can be track/resolve by the mesh. 

• The smaller the features we want to 

track/resolve, the smaller the cells should be.

• Bubbles, droplets and/or particles larger than 

grid scales (GS), can be resolved using VOF.

• To resolve a bubble you will need at least two 

cells in every direction

• Bubbles, droplets and/or particles smaller 

than grid scales (sub-grid scales or SGS), can 

not be resolve using the VOF method.

• In such a case, we need to use models.

• Also, bubble break-up, coalescence and 

entrainment must be modeled, unless the 

mesh is fine enough so it captures the 

dynamics and solves the smallest scales.

Free surface  (system scale)

Bubble break-up 

and coalescence

(meso-scales)

Medium bubbles

(system-scales)

Small bubbles interaction and

motion of small particles

(micro-scales)



Numerical approaches for multiphase flows

A crash introduction to multiphase flows modeling OpenFOAM®

Eulerian-Eulerian

(VOF)

Eulerian-Eulerian

(Dispersed systems)
Eulerian-Lagrangian

• Non-interpenetrating continua.

• Continuous phases: Eulerian.

• Fluid properties are written on 

either side of the interface (no 

averaging).

• Solves one single set of PDEs: 

mass, momentum, energy.

• Interpenetrating continua.

• Continuous phase: Eulerian.

• Dispersed phase: Eulerian.

• Phase-weighted averages.

• Solves PDEs for all phases

(including interphase transfer 

terms): mass, momentum, 

energy.

• It can deal with gas-liquid, gas-

solid, and liquid-solid 

interactions.

• Continuous phase: Eulerian.

• Dispersed phase: Lagrangian.

• Solves ODEs for particle 

tracking (for every single 

particle).

• Solves a set of PDEs for the 

continuous phase: mass, 

momentum, energy.

• Phase interaction terms 

(including interphase transfer 

terms).
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Numerical approaches for multiphase flows

http://www.wolfdynamics.com/training/mphase/image16.gifwww.wolfdynamics.com/training/mphase/image10.gif

• Simulations showing free surface tracking using the VOF approach

• The left image corresponds to a simulation with rigid body motion and accurate surface tracking using the VOF 

method.
886

http://www.wolfdynamics.com/training/mphase/image16.gif
http://www.wolfdynamics.com/training/mphase/image10.gif


A crash introduction to multiphase flows modeling OpenFOAM®

• Simulation showing free surface tracking, bubble tracking, bubble coalescence, bubble break-up and wake 

entrainment using the VOF method.

• In this simulation the free surface and bubbles are capture by using AMR. 

• However, the smallest bubble that can be resolved is at the smallest grid size.

http://www.wolfdynamics.com/training/mphase/image2.gif http://www.wolfdynamics.com/training/mphase/image3.gif

Numerical approaches for multiphase flows
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Numerical approaches for multiphase flows

http://www.wolfdynamics.com/training/mphase/image18.gif

References:

[1] Vivek V. Buwa, Vivek V. Ranade, Dynamics of gas–liquid flow in a rectangular bubble column: experiments and single/multi-group CFD simulations.

Chemical Engineering Science 57 (2002) 4715 – 4736

• Eulerian-Eulerian simulation (gas-liquid).

• The bubbles are not being solved, instead, the interaction between phase is being averaged.
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Numerical approaches for multiphase flows

twoPhaseEulerFoam

Air volume fraction

Laminar case
http://www.wolfdynamics.com/training/mphase/image41.gif

twoPhaseEulerFoam

Air volume fraction

Turbulent case
http://www.wolfdynamics.com/training/mphase/image42.gif

• Eulerian-Eulerian simulations using the Eulerian-Granular KTGF approach (solid-gas).

• The granular phase is simulated as continuous phase.

• In these simulations we can observe the influence of turbulence modeling in the solution. 889

http://www.wolfdynamics.com/training/mphase/image38.gif
http://www.wolfdynamics.com/training/mphase/image38.gif
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Numerical approaches for multiphase flows

DPMFoam

Particle-particle interactions colored by velocity 

magnitude (particles not to scale)

http://www.wolfdynamics.com/training/mphase/image43.gif

twoPhaseEulerFoam

Air volume fraction

Turbulent case

http://www.wolfdynamics.com/training/mphase/image42.gif

• Comparison of an Eulerian-Lagrangian simulation and an Eulerian-Eulerian simulation (gas-solid).

• In the Eulerian-Lagrangian approach we track the position of every single particle. We also solve the fate and 

interaction of all particles.

• In the Eulerian-Eulerian approach we solve the granular phase as a continuous phase.

• The computational requirements of the Eulerian-Eulerian simulation are much lower than those for the 

Eulerian-Lagrangian simulation. 890
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Volume-of-Fluid (VOF) governing equations for separated systems

• The incompressible, isothermal governing equations can be written as follows,

A crash introduction to multiphase flows modeling OpenFOAM®

Surface tension - Continuum surface force (CSF) 

Source terms:

• Porous media

• Coriolis forces

• Centrifugal forces

• Mass transfer

• and so on …

• You can see the volume fraction       as a pointer that indicates what phase (with the 

corresponding physical properties), is inside each cell of the computational domain.

Phase transport equation and interface 

tracking with surface compression

Volume fraction (bounded quantity)

891



Volume-of-Fluid (VOF) governing equations for separated systems

A crash introduction to multiphase flows modeling OpenFOAM®

• For example, in the case of two phases where 

phase 1 is represented by              and phase 2 is 

represented by            ; a volume fraction value of  

1 indicates that the cell is fill with phase 1; a volume 

fraction of 0.8 indicates that the cell contains 80% 

of a phase 1; and a volume fraction of 0, indicates 

that the cell is fill with phase 2.

• The values between 0 and 1 can be seen as the 

interface between the phases.

• The fluid properties can be written on either side of the interface as follows,

1 1

1 1

1

1

0

0

0

0 0

0

0

0.4

0.1 0.8

0.3 0.8

0.1 0.3

Interface
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Eulerian-Eulerian governing equations for dispersed systems

A crash introduction to multiphase flows modeling OpenFOAM®

• The Eulerian-Eulerian approach solves the governing equations for each phase, it treats the 

phases as interpenetrating continua.

• The incompressible, isothermal governing equations with interface tracking can be written as 

follows,

Interface forces or momentum transfer.

Bubbles interaction models

Source terms:

• Porous media

• Coriolis forces

• Centrifugal forces

• Mass transfer

• and so on …

Surface tension - Continuum surface force (CSF) 
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Eulerian-Lagrangian governing equations

• In the Eulerian-Lagrangian framework, the continuous phase is solved in an Eulerian reference 

system and the particles or dispersed phase is solved in a Lagrangian reference system.

• The particles can be transported passively, or they can be coupled with the fluid governing 

equations (they can modify the fluid field).

• The particles motion is calculated by solving an ODE for every single particle (Newton-Euler 

equation of motion).

• The particles can interact with the boundaries, they can escape, bounce, stick, or form a wall 

film.

• This formulation accounts for particle interaction and mass transfer.

• The governing equations can be written as follows,

Any of the Eulerian formulations (single or multi-phase)

A crash introduction to multiphase flows modeling OpenFOAM®

894



A crash introduction to multiphase flows modeling OpenFOAM®

Multiphase solvers in OpenFOAM®

• In OpenFOAM®, there are many interfacial momentum transfer models implemented. 

• There are also many models for Eulerian-Lagrangian methods.

• No need to say that turbulence also applies to multiphase flows.

• There is no universal model, it is up to you to choose the model that best fit the problem you are 

solving.  

• You need to know the applicability and limitations of each model, for this, refer to the literature.

• When dealing with multiphase flows in OpenFOAM®, you can use VOF, Eulerian-Eulerian, 

Eulerian-Eulerian with VOF, and Eulerian-Lagrangian methods.

• The solution methods can account for turbulence models, interface momentum transfer models, 

mass transfer models, particle interaction models and so on.

• It is also possible to add source terms, deal with moving bodies or use adaptive mesh 

refinement.

• You will find the source code of all the multiphase solvers in the directory:

• OpenFOAM-8/applications/solvers/multiphase

• You will find the source code all the particle tracking solvers in the directory:

• OpenFOAM-8/applications/solvers/lagrangian
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• These are the multiphase solvers that you will use most of the time in OpenFOAM®.

• The VOF approach:

• interFoam family solvers

• The Eulerian-Eulerian approach:

• twoPhaseEulerFoam, multiphaseEulerFoam

• The Eulerian-Granular KTGF (kinetic theory of granular flows) approach.

• twoPhaseEulerFoam

• The Eulerian-Lagrangian framework, 

• DPMFoam, MPPICFoam

A crash introduction to multiphase flows modeling OpenFOAM®

Multiphase solvers in OpenFOAM®
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Multiphase flows hands-on tutorials
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• Free surface – Ship resistance simulation

• Let us run this case. Go to the directory:

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend to open the README.FIRST file and type the commands in the terminal, in this way 

you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

$PTOFC/advanced_physics/multiphase/wigleyHull 
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Free surface – Ship resistance simulation

Free surface colored by height

http://www.wolfdynamics.com/training/mphase/image45.gif 898
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Multiphase flows hands-on tutorials

Free surface – Ship resistance simulation

Comparison of water level on hull surface
Drag coefficient monitor
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Multiphase flows hands-on tutorials

Free surface – Ship resistance simulation

• We are going to use the following solver: interFoam

• The first step is to set the physical properties.  In the dictionary 
constant/transportProperties we defined the phases.

• Go to the directory constant and open the dictionary transportProperties. 

phases (water air);

water

{

transportModel  Newtonian;

nu              nu [ 0 2 -1 0 0 0 0 ] 1.09e-06;

rho             rho [ 1 -3 0 0 0 0 0 ] 998.8;

}

air

{ 

transportModel Newtonian; 

nu nu [ 0 2 -1 0 0 0 0 ] 1.48e-05; 

rho rho [ 1 -3 0 0 0 0 0 ] 1;

}

sigma sigma [ 1 0 -2 0 0 0 0 ] 0.07;

Phases naming convention.  

The name of the phases is chosen by 

the user.

water properties

air properties

Surface tension between phase1 

and phase2

The first phase is always considered the primary phase
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Multiphase flows hands-on tutorials

Free surface – Ship resistance simulation

• The next step is to set the boundary conditions and initial conditions.

• Therefore, in the directory 0 we define the dictionary alpha.water that will take the values of 

the phase water. 

• In this case, you will find the directory 0_org, here is where we keep a backup of the original 

files as we are doing field initialization using setFields.

• In the directory 0, you will find the dictionary p_rgh, in this dictionary we set the boundary and 

initial conditions for the pressure field, and the dimensions are in Pascals.

• The turbulence variables values were calculated using an eddy viscosity ratio equal to 1, 

turbulence intensity equal  5%, and the water properties. 

• If you are simulating numerical towing tanks, the setup of the boundary conditions is always the 

same.

• Feel free to reuse this setup.

• The dictionaries used in this case are standard for the VOF solvers (interFoam family solvers).

• If you are using a different solver (e.g., twoPhaseEulerFoam), you will need to use additional 

dictionaries where you define the interfacial models and so on.

• Remember, you should always conduct production runs using a second order discretization 

scheme
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Free surface – Ship resistance simulation

Inlet outlet

Slip

Opening
Wall

Symmetry

Water phase

Air phase

Physical domain and boundary patches

Note:

Phases must be initialized 

on the internal cells and 

boundary faces
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Free surface – Ship resistance simulation

Patch name Pressure Velocity Turbulence fields alpha.water

inflow fixedFluxPressure fixedValue
fixedValue

calculated (nut)
fixedValue

outflow inletOutlet or zeroGradient outletPhaseMeanVelocity
inletOutlet

calculated (nut)
variableHeightFlowRate

bottom symmetry symmetry symmetry symmetry

midplane symmetry symmetry symmetry symmetry

side symmetry symmetry symmetry symmetry

top totalPressure pressureInletOutletVelocity
inletOutlet

calculated (nut)
inletOutlet

ship fixedFluxPressure fixedValue

kqRWallFunction (k) 

omegaFunction  (omega)

nutkWallFunction (nut)

zeroGradient

Typical setup of boundary conditions for numerical towing tank simulations 903
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• OpenFOAM® solves the following modified volume fraction convective equation to track the 

interface between the phases,

Free surface – Ship resistance simulation

(phi, alpha)

Use a TVD scheme with gradient limiters.

Good choice is the vanLeer scheme.

(phirb, alpha)

Use a high order scheme. The use of linear 

interpolation is fine for this term.

• Where a value of               (cAlpha), is recommended to accurately resolve the sharp interface.

• To solve this equation, OpenFOAM® uses the semi-implicit MULES method.

• The MULES options can be controlled in the fvSolution dictionary. 
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Multiphase flows hands-on tutorials

Free surface – Ship resistance simulation

• MULES options in the fvSolution dictionary.

• The semi-implicit MULES offers significant speed-up and stability over the explicit MULES.

“alpha.*”

{

MULESCorr       yes;

nAlphaSubCycles 1;

nAlphaCorr 3;

nLimiterIter 10;

alphaApplyPrevCorr yes;

…

}

Turn on/off semi-implicit MULES

Number of corrections. 

Use 2-3 for slowly varying flows. 

Use 3 or more for highly transient, high Reynolds, 

high CFL number flows.

For semi-implicit MULES use 1. Use 2 or more for 

explicit MULES.

Number of iterations to calculate the MULES 

limiter. Use 3-5 if CFL number is less than 3. Use 

5-10 if CFL number is more than 3.

Use previous time corrector as initial estimate.  

Set to yes for slowly varying flows.  Set to no for 

highly transient flows.
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Free surface – Ship resistance simulation

momentumPredictor yes;

nOuterCorrectors 1;

nCorrector 3;

nNonOrthogonalCorrectors 2;

Set to yes for high Reynolds flows, where 

convection dominates

Recommended to use at least 2 correctors. 

It improves accuracy and stability.

Recommend to use at least 1 corrector. 

Increase the value for bad quality meshes.

Recommended value is 1 (equivalent to PISO). 

Increase to improve the stability of second 

order time discretization schemes (LES 

simulations). 

Increase for highly coupled problems.

• Additional notes on the fvSolution dictionary.

• If you are planning to use large time-steps (CFL number larger than 1), it is recommended to do 

at least 3 nCorrector, otherwise you can use 2.
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Free surface – Ship resistance simulation

• Finally, we need to set the discretization schemes

• This is done in the dictionary fvSchemes.

• In this dictionary we set the discretization method for every term appearing in the governing 

equations.

• Convective terms discretization is set as follows:

divSchemes

{

div(rhoPhi,U) Gauss linearUpwind grad(U);

div(phi,alpha) Gauss interfaceCompression vanLeer 1;

div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

}

• Notice that we are using a high-resolution scheme for the surface tracking (div(phi,alpha)).
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Free surface – Ship resistance simulation

• For time discretization we can use an unsteady formulation (Euler in this case).

• This scheme requires setting the time-step, and it should be choosing in such a way that it 

resolves the mean physics.

• Remember, as the free surface is a strong discontinuity, for stability and good resolution we 

need to use a CFL less than one for the interface courant.

ddtSchemes

{

default Euler;

}

• Hereafter, we are using what is know as global time stepping, that is, the CFL number is limited 

by the smallest cell.

• The simulation is time-accurate, but it requires a lot of CPU time to reach a steady state (if it 

reaches one).
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Free surface – Ship resistance simulation

• A way to accelerate the convergence to steady state, is by using local time stepping (LTS).

• In LTS, the time-step is manipulated for each individual cell in the mesh, making it as high as 

possible to enable the simulation to reach steady-state quickly.

• When we use LTS, the transient solution is no longer time accurate.

• The stability and accuracy of the method are driven by the local CFL number of each cell.

• To avoid instabilities caused by sudden changes in the time-step of each cell, the local time-

step can be smoothed and damped across the domain.

• Try to avoid having local time-steps that differ by several order of magnitudes.

• To enable LTS, we use the localEuler method.

ddtSchemes

{

default localEuler;

}

909

• LTS in OpenFOAM® can be used with any solver that supports the PISO or PIMPLE loop 

(PISO ITA).
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Free surface – Ship resistance simulation

• In the LTS method, the maximum flow CFL number, maximum interface CFL number, and the 

smoothing and damping of the solution across the cells, can be controlled in the dictionary 
fvSolution, in the sub-dictionary PIMPLE.

PIMPLE

{

momentumPredictor yes;

nOuterCorrectors 2;

nCorrector 3;

nNonOrthogonalCorrectors 2;

maxCo 10;

maxAlphaCo 1;

rDeltaTSmoothingCoeff 0.05;

rDeltaTDampingCoeff 0.5;

maxDeltaT 1;

}

Maximum flow Courant
Maximum interface 

Courant
Local time step 

smoothingLocal time step 

damping
Limit the maximum 

time-step size
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Free surface – Ship resistance simulation

• At this point, we are ready to run the simulation. 

• Remember to adjust the numerics according to your physics.

• You can choose between running using global time stepping or unsteady (directory uns) or local 

time stepping (directory LTS).

• You will find the instructions of how to run the cases in the file README.FIRST located in the 

case directory.
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A crash introduction to:

1. Turbulence modeling in OpenFOAM®

2. Multiphase flows modeling in 

OpenFOAM® 

3. Compressible flows in OpenFOAM®

4. Moving bodies in OpenFOAM®

5. Source terms in OpenFOAM®

6. Scalar transport pluggable solver



What are compressible flows?

A crash introduction to compressible flows modeling OpenFOAM®

• In few words, compressible flows are flows where the density change.

• The changes in density can be due to velocity, pressure, or temperature variations.

• Compressible flows can happen at low speed (subsonic) or high speed (transonic, supersonic, 

hypersonic and so on).

• Buoyancy-driven flows are also considered compressible flows. After all, the buoyancy is due to 

temperature gradients.

• In compressible flows, the viscosity also changes with temperature.

• The thermodynamical variables are related via an equation of state (e.g., ideal gas law).

• In principle, all flows are compressible.  

• Usually, compressibility effects start to become significant when the Mach number is          

higher than 0.3.
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A few compressible flows applications

A crash introduction to compressible flows modeling OpenFOAM®

• The following applications fall within the compressible flows classification:

• External and internal aerodynamics (high speed).

• Heat transfer and conjugate heat transfer.

• Fire dynamics.

• Buoyancy driven flows

• Heating, ventilation, and air conditioning (HVAC).

• Thermal comfort.

• Turbomachinery.

• Combustion.

• Chemical reactions.

• Condensation, evaporation, and melting.

• Cavitation.

• And many more.

• As you can see, the range of applicability is very wide.
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Large Natural Convection Plume, as effect of combustion of excess 

non-useable gases behind oilfield.

https://en.wikipedia.org/wiki/Plume_(fluid_dynamics)#/media/File:Naturalc

onvectionplume.JPG

Copyright on the images is held by the contributors. Apart from Fair Use, permission must be sought for any other purpose

Rayleigh–Bénard convection cells

https://en.wikipedia.org/wiki/File:B%C3%A9nard_cells_convection.ogv

Iron melting

https://commons.wikimedia.org/wiki/File:Iron_-melting.JPG

Airplane thermal image

http://www.blackroc.com/wp-content/uploads/2016/03/thermal-image.jpg
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Shadowgraph Images of Re-entry Vehicles
Photo credit: NASA on the Commons. 

https://www.flickr.com/photos/nasacommons/

Copyright on the images is held by the contributors. Apart from Fair Use, permission must be sought for any other purpose 916



Compressible flows – Starting equations

Additional closure equations for turbulence models, multiphase models, combustion, particles, 

source terms, and so on

NSE

A crash introduction to compressible flows modeling OpenFOAM®
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Compressible flows – Boundary layer

A crash introduction to compressible flows modeling OpenFOAM®

                      

                      

    

     

  

    

 
 
 
 
 
 
  
  
 
 
 
  
  
  
 
 
 
 
 

     

     

     

    

Thermal boundary layer vs. Viscous boundary layer

Forced convection

Thermal boundary layer in function of Prandtl number (Pr)

Momentum and thermal boundary layer

• Just as there is a viscous (or momentum) boundary layer in the velocity distribution, there is also a thermal 

boundary layer.

• Thermal boundary layer thickness is different from the thickness of the viscous sublayer (or momentum), and 

is fluid dependent. 

• The thickness of the thermal sublayer for a high Prandtl number fluid (e.g. water) is much less than the 

momentum sublayer thickness. 

• For fluids of low Prandtl numbers (e.g., air), it is much larger than the momentum sublayer thickness.

• For Prandtl number equal 1, the thermal boundary layer is equal to the momentum boundary layer.
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Compressible flows – Boundary layer

A crash introduction to compressible flows modeling OpenFOAM®

 
                      

                      

    

     

    

       

Horizontal heated plate immersed in a quiescent fluid.

Natural convection

Vertical heated plate immersed in a quiescent fluid.

Natural convection.

Natural convection in a heated plate

• As the fluid is warmed by the plate, its density decreases, and a buoyant force arises which induces flow 

motion in the vertical or horizontal direction. 

• The force is proportional to                             , therefore gravity must be considered.
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Compressible solvers in OpenFOAM®

A crash introduction to compressible flows modeling OpenFOAM®

• Dealing with compressible flows in OpenFOAM® is not so different from what we have          

done so far.

• The new steps are:

• Define the thermophysical variables.

• Define the boundary conditions and initial conditions for temperature.

• If you are dealing with turbulence (most of the times), you will need to define the boundary 

conditions and initial conditions for the turbulent thermal diffusivity. 

• Do not forget to choose the near-wall treatment.

• Depending on the thermophysical model and physics involved, you will need to define 

discretization schemes and linear solvers for the new variables and equations, that is, T, h, 

e and so on.

• Define solver parameters for the new variables, that is, under-relaxation factors, 

SIMPLE/PISO/PIMPLE corrections, maximum and minimum allowable pressure or density 

values, high-speed corrections, and so on.

• Remember, as for pressure, mesh non-orthogonality and skewness also introduces 

secondary gradients in the energy equation,               . 
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Compressible solvers in OpenFOAM®

A crash introduction to compressible flows modeling OpenFOAM®

• Additionally, the numerics of compressible solvers is a little bit more delicate.

• Temperature is a bounded quantity, so we need to use accurate and stable methods 

(preferably TVD).

• If you are in the presence of shock waves, you need to use TVD methods and gradient 

limiters.

• The solvers are very sensitive to overshoots and undershoots in the gradients, so you need 

to use aggressive limiters.

• If you are dealing with chemicals reactions or combustion, you need to use accurate and 

stable methods (preferably TVD).

• TVD methods requires good meshes and CFL number below 1 for good accuracy and 

stability.

• Using steady solvers requires tuning of the under-relaxation factors. Usually, the default 

values do not work well.

• The use of local time stepping to reach steady state can improve the convergence rate.

• FYI, we have found that it is tricky to achieve good convergence using a low-RE approach with 

steady solvers in high-speed compressible flows.
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Compressible solvers in OpenFOAM®

• OpenFOAM® comes with many solvers and models that can address a wide physics.

• Compressibility can be introduced in all the modeling capabilities we have seen so far 

(turbulence modeling and multiphase flows).

• It is also possible to add source terms, deal with moving bodies, or use adaptive mesh 

refinement.

• You will find the source code of all the compressible solvers in the directories:

• OpenFOAM-8/applications/solvers/compressible

• OpenFOAM-8/applications/solvers/combustion

• OpenFOAM-8/applications/solvers/heatTransfer

• OpenFOAM-8/applications/solvers/lagrangian

• OpenFOAM-8/applications/solvers/multiphases

• You will find the source code of the thermophysical models in the directory:

• OpenFOAM-8/src/thermophysicalModels

• OpenFOAM-8/src/ThermophysicalTransportModels
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• These are the compressible solvers that you will use most of the time in OpenFOAM®.

• HVAC and low-speed aerodynamics:

• rhoSimpleFoam, rhoPimpleFoam

• High-speed aerodynamics:

• rhoSimpleFoam, rhoPimpleFoam, rhoCentralFoam

• Buoyancy driven flows (including Boussinesq approximation):

• buoyantSimpleFoam, buoyantPimpleFoam

• Conjugate heat transfer

• chtMultiRegionFoam

A crash introduction to compressible flows modeling OpenFOAM®

Compressible solvers in OpenFOAM®
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• The thermophysical properties are set in the dictionary

thermophysicalProperties.

• This dictionary file is located in the directory constant.

• Thermophysical models are concerned with energy, heat 

and physical properties.

• In the sub-dictionary thermoType (lines 1-10), we define 

the thermophysical models.

• The entries in lines 3-4, are determined by the choice of 

the solver (they are hardwired to the solver).

• The transport keyword (line 5). concerns evaluating 

dynamic viscosity. In this case the viscosity is constant.

• The thermodynamic models (thermo keyword) are 

concerned with evaluating the specific heat Cp (line 6). In 

this case Cp is constant.

• The equationOfState keyword (line 7) concerns to the 

equation of state of the working fluid. In this case,

1  thermoType

2  {

3  type            hePsiThermo;

4  mixture         pureMixture;

5  transport       const;

6  thermo          hConst;

7  equationOfState perfectGas;

8   specie          specie;

9   energy          sensibleEnthalpy;

10  }

11  

12  mixture

13  {

14  specie

15  {

16  nMoles      1;

17  molWeight   28.9;

18  }

19  thermodynamics

20  {

21  Cp          1005;

22  Hf          0;

23  }

24  transport

25  {

26  mu          0;

27  Pr          0.713;

28  }

29  }

A crash introduction to compressible flows modeling OpenFOAM®

Selecting thermophysical properties

• Line 8 is a fixed option (hardwired to the solver).
924



• And                   is the kinetic energy per unit mass.

• The form of the energy equation to be used is specified 

in line 9 (energy). 

• In this case we are using enthalpy formulation 

(sensibleEnthalpy).

• In this formulation, the following equation is solved,

A crash introduction to compressible flows modeling OpenFOAM®

1  thermoType

2  {

3  type            hePsiThermo;

4  mixture         pureMixture;

5  transport       const;

6  thermo          hConst;

7  equationOfState perfectGas;

8   specie          specie;

9   energy          sensibleEnthalpy;

10  }

11  

12  mixture

13  {

14  specie

15  {

16  nMoles      1;

17  molWeight   28.9;

18  }

19  thermodynamics

20  {

21  Cp          1005;

22  Hf          0;

23  }

24  transport

25  {

26  mu          1.84e-05;

27  Pr          0.713;

28  }

29  }

Selecting thermophysical properties

• Alternatively, we can use the sensibleInternalEnergy 

formulation, where the following equation is solved for 

the internal energy,

• In the previous equations, the effective thermal diffusivity 

is equal to,
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• In the sub-dictionary mixture (lines 12-29), we define the 

thermophysical properties of the working fluid.

• In line 17, we define the molecular weight.

• In line 21, we define the specific heat.

• The heat of formation is defined in line 22 (not used in 

this case).

• In this case, we are defining the properties for air at 20°

Celsius and at a sea level.

• As we are using the transport model const (line 5), we 

need to define the dynamic viscosity and Prandtl number 

(lines 26 and 27).

• If you set the viscosity to zero, you solve the Euler 

equations.

• Remember, transport modeling (line 5), concerns 

evaluating dynamic viscosity, thermal conductivity and 

thermal diffusivity.

A crash introduction to compressible flows modeling OpenFOAM®

1  thermoType

2  {

3  type            hePsiThermo;

4  mixture         pureMixture;

5  transport       const;

6  thermo          hConst;

7  equationOfState perfectGas;

8   specie          specie;

9   energy          sensibleEnthalpy;

10  }

11  

12  mixture

13  {

14  specie

15  {

16  nMoles      1;

17  molWeight   28.9;

18  }

19  thermodynamics

20  {

21  Cp          1005;

22  Hf          0;

23  }

24  transport

25  {

26  mu          1.84e-05;

27  Pr          0.713;

28  }

29  }

Selecting thermophysical properties
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• If you use the transport model sutherland (line 5), you 

will need to define the coefficients of the Sutherland 

model.

• The Sutherland model is defined as follows 

(OpenFOAM® uses the 2 coefficients formulation):

A crash introduction to compressible flows modeling OpenFOAM®

1  thermoType

2  {

3  type            hePsiThermo;

4  mixture         pureMixture;

5  transport       sutherland;

6  thermo          hConst;

7  equationOfState perfectGas;

8   specie          specie;

9   energy          sensibleEnthalpy;

10  }

11  

12  mixture

13  {

14  specie

15  {

16  nMoles      1;

17  molWeight   28.9;

18  }

19  thermodynamics

20  {

21  Cp          1005;

22  Hf          0;

23  }

24  transport

25  {

26  As          1.4792e-06;

27  Ts          116;

28  }

29  }

• The Sutherland coefficients are defined in lines 26-27.

Selecting thermophysical properties

• Remember, you can use the banana method 

to know all the options available.
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Adjusting the numerical method

• If you choose the sensibleEnthalpy formulation, you need to define the convective 

discretization schemes and linear solvers of the energy equation (enthalpy formulation).

divSchemes

{

div(phi,K) Gauss linear;

div(phi,h) Gauss linear;

div(phid,p) Gauss linear;

…

…

…

}

“( |   )”

{

solver          PBiCGStab;

preconditioner  DILU;

tolerance       1e-8;

relTol          0.01;

}

…

…

…

• Remember, temperature is a bounded quantity, so you need to use non-oscillatory methods.

• For low speed flows, the kinetic energy K and the enthalpy h can be discretized using the linear 

method. For high speed flows, is better to use bounded methods.

• Remember to use gradient limiters.

• If you are using a steady solver, remember to set the under-relaxation factors for h and rho.

fvSchemes fvSolution
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Adjusting the numerical method

• If you choose the sensibleInternalEnergy formulation, you need to define the convective 

discretization schemes and linear solvers of the energy equation (internal energy formulation).

divSchemes

{

div(phi,K) Gauss linear;

div(phi,e) Gauss linear;

div(phiv,p) Gauss linear;

…

…

…

}

“( |   )”

{

solver          PBiCGStab;

preconditioner  DILU;

tolerance       1e-8;

relTol          0.01;

}

…

…

…

• Remember, temperature is a bounded quantity, so you need to use non-oscillatory methods.

• For low speed flows, the kinetic energy K and the internal energy e can be discretized using the 

linear method. For high speed flows, is better to use bounded methods.

• Remember to use gradient limiters.

• If you are using a steady solver, remember to set the under-relaxation factors for e and rho.

fvSchemes fvSolution
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• Finally, when you work with compressible solvers you use absolute pressure     

and the working units are in Pascals.

• This has a stabilizing effect on the solution, specially if you are using steady solvers.

• To turn off the pressure work term             , set the option dpdt to no ( dpdt no; ) in the 
thermophysicalProperties dictionary.    

the pressure work term              can be excluded from the solution.

A crash introduction to compressible flows modeling OpenFOAM®

Final remarks

• When solving the enthalpy formulation of the energy equation, 

930
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• 2D supersonic cylinder – Shock waves

• Let us run this case. Go to the directory:

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend to open the README.FIRST file and type the commands in the terminal, in this way 

you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

$PTOFC/advanced_physics/compressible/supersonic_cyl
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2D supersonic cylinder – Shock waves

• Shock waves are strong discontinuities that need to be treated using high resolution schemes.

• Additionally, the non-orthogonality add extra complications to this problem.

932

Shock wave visualization using numerical Schlieren (density gradient)



Compressible flows hands-on tutorials

2D supersonic cylinder – Shock waves

Mach number contours
http://www.wolfdynamics.com/training/compressible/image3.gif

Schlieren contours
http://www.wolfdynamics.com/training/compressible/image4.gif
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2D supersonic cylinder – Shock waves

• In this case we will use the solver rhoPimpleFoam with transonic corrections.

• By enabling transonic correction we can use this solver to tackle trans-sonic/supersonic flows.

• Transonic corrections are enabled in the PIMPLE block of the dictionary fvSolution,

• transonic yes;

• rhoPimpleFoam is an unsteady solver, but if you are interested in a steady solution you can 

use local time stepping.

• As the flow is compressible, we need to define the thermodynamical properties of the working 

fluid.  

• This is done in the dictionary constant/thermophysicalProperties.

• We also need to define the boundary conditions and initial conditions for the temperature field.

• Additionally, if you are using a turbulence model, you will need to define wall functions for the 

thermal diffusivity. 

• The rest of the turbulent variables are defined as in incompressible flows.

• Finally, adjust the numerics according to your physics.

• You will find the instructions of how to run the cases in the file README.FIRST located in the 

case directory.
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A crash introduction to:

1. Turbulence modeling in OpenFOAM®

2. Multiphase flows modeling in 

OpenFOAM® 

3. Compressible flows in OpenFOAM®

4. Moving bodies in OpenFOAM®

5. Source terms in OpenFOAM®

6. Scalar transport pluggable solver



A crash introduction to moving bodies OpenFOAM®

Moving bodies in OpenFOAM® – A few examples

Sloshing tank
http://www.wolfdynamics.com/training/dynamicMeshes/sloshing1.gif

Oscillating cylinder (prescribed motion)
http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion1
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Layering with mesh zones interface 
http://www.wolfdynamics.com/training/dynamicMeshes/layeringMesh.gif

Prescribed motion with multiple bodies
http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion1

http://www.wolfdynamics.com/training/dynamicMeshes/sloshing1.gif
http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion1
http://www.wolfdynamics.com/training/dynamicMeshes/layeringMesh.gif
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Moving bodies in OpenFOAM® – A few examples

Falling body (6 DoF)
http://www.wolfdynamics.com/training/movingbodies/image5.gif 937

Sea keeping
http://www.wolfdynamics.com/training/dynamicMeshes/seakeeping.gif

Continuous stirring tank reactor (CSTR)
http://www.wolfdynamics.com/training/movingbodies/image13.gif

VOF with sliding meshes
http://www.wolfdynamics.com/training/mphase/image33.gif

http://www.wolfdynamics.com/training/movingbodies/image6.gif
http://www.wolfdynamics.com/training/dynamicMeshes/seakeeping.gif
http://www.wolfdynamics.com/training/movingbodies/image13.gif
http://www.wolfdynamics.com/training/mphase/image33.gif


Moving bodies in OpenFOAM®

A crash introduction to moving bodies OpenFOAM®

• OpenFOAM® comes with many solvers and models that can address a wide physics.

• Moving bodies can be added to all the modeling capabilities we have seen so far (turbulence 

modeling, multiphase flows, and compressible flows).

• Several class of motions can be simulated in OpenFOAM®:

• Prescribed motion.

• Rigid body motion.

• Sliding meshes.

• MRF.

• Setting moving bodies simulations is not so different from what we have done so far.

• The main difference is that we must assign a motion type to a surface patch, a cell region, or the 

whole domain.
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• The mesh motion solver is selected in the dictionary constant/dynamicMeshDict.

• In the case of prescribed motion of a boundary patch, the motion is assigned in the dictionary 
0/pointDisplacement.

• Also, the boundary type of the moving walls must be movingWallVelocity, this is set in the 
dictionary 0/U.

• And as usual, you will need to adjust the numerics according to your physics.

• To use the moving bodies capabilities, you will need to use solvers able to deal with dynamic 

meshes.  

• To find which solvers work with dynamic meshes, go to the solvers directory by typing sol in the 

command line interface.  Then type in the terminal:

• $> grep -r dynamicFvMesh.H

• The solvers containing this header file support dynamic meshes.

• A few solvers that work with dynamic meshes: interFoam, pimpleFoam, rhoPimpleFoam, 

buoyantPimpleFoam.

Moving bodies in OpenFOAM®
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A crash introduction to moving bodies OpenFOAM®

• You will find the source code of all the mesh motion libraries in the directories:

• OpenFOAM-8/src/dynamicFvMesh

• OpenFOAM-8/src/dynamicMesh

• OpenFOAM-8/src/fvMotionSolver

• OpenFOAM-8/src/rigidBodyDynamics

• OpenFOAM-8/src/rigidBodyMeshMotion

• OpenFOAM-8/src/rigidBodyState

• OpenFOAM-8/src/sixDoFRigidBodyMotion

• OpenFOAM-8/src/sixDoFRigidBodyState

• You will find the source code of the prescribed patch motion in the directory:

• OpenFOAM-8/src/fvMotionSolver/pointPatchFields/derived

• You will find the source code of the restraints/constraints of rigid body motion solvers in the 

directory:

• OpenFOAM-8/src/rigidBodyDynamics/joints

• OpenFOAM-8/src/sixDoFRigidBodyMotion/sixDoFRigidBodyMotion

Moving bodies in OpenFOAM®

940



Moving bodies hands-on tutorials
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• Continuous stirring tank reactor – Sliding meshes and 

MRF

• Let us run this case. Go to the directory:

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend to open the README.FIRST file and type the commands in the terminal, in this way 

you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

$PTOFC/advanced_physics/sliding_meshes_MRF/CSTR



Moving bodies hands-on tutorials

Continuous stirring tank reactor – Sliding meshes and MRF

Sliding grids – Unsteady solver
http://www.wolfdynamics.com/training/movingbodies/image13.gif

MRF – Steady solver
http://www.wolfdynamics.com/training/movingbodies/image14.gif
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• We already created this mesh during the meshing module.

• We will only address the differences in meshing for an MRF simulation and a sliding mesh 

simulation.

• In this case, at the end of the meshing stage we obtained a faceZone and a cellZone.

• This is a conforming mesh, that is, the cells in the interface of the inner and outer regions are 

perfectly matching.

• For MRF simulations, the cellZone can be used to assign the MRF properties to the rotating 

zone.

• For sliding meshes or non-conforming meshes, there is an extra step where we need to split the 

mesh in two regions and create the interface patches between the fix zone and the rotating 

zone (the solution will be interpolated in these patches).

Face region between fix and 

rotating regions

(face_inner_volume)

Cell region 1

(cell_inner_volume)

Moving bodies hands-on tutorials

Continuous stirring tank reactor – Sliding meshes and MRF

Cell region 2

(fix region)s

943



• In the MRF approach, the governing equations are solved in a relative rotating frame in the 

selected rotating zone.

• Additional source terms that model the rotation effect are taken into account.

• You select the rotating zone and set the rotation properties in the dictionary 
constant/MRFProperties. 

• In this case, the mesh is conforming.

Moving bodies hands-on tutorials

Continuous stirring tank reactor – Sliding meshes and MRF

Inner region generated during 
meshing - MRFProperties

Impeller

type movingWallVelocity;

value uniform (0 0 0);

Shaft

type rotatingWallVelocity;

origin (0 0 0);

axis (0 0 1);

omega constant 12.566370;

value uniform (0 0 0);

944



• In the sliding meshes approach, the selected rotating region is physically rotating.

• As the meshes are non-conforming, the solution between the rotating region and the fix region 

must be interpolated using arbitrary mesh interface.

• In the sliding meshes approach, is not enough to only identify the rotating region.

• We also need to create the interface patches between the fix zone and the rotating zone.

Moving bodies hands-on tutorials

Continuous stirring tank reactor – Sliding meshes and MRF

Inner region – dynamicMeshDict

Arbitrary mesh interface –
createBafflesDicts

Impeller

type movingWallVelocity;

value uniform (0 0 0);

Shaft

type rotatingWallVelocity;

origin (0 0 0);

axis (0 0 1);

omega constant 12.566370;

value uniform (0 0 0);
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Continuous stirring tank reactor – Sliding meshes and MRF

dynamicFvMesh   dynamicMotionSolverFvMesh;

motionSolverLibs ( "libfvMotionSolvers.so" );

solver            solidBody;

cellZone        cell_inner_volume;

solidBodyMotionFunction  rotatingMotion;

origin    (0 0 0);

axis      (0 0 1);

omega     constant 12.566370;   

cellZone    cell_inner_volume;

active      yes;

// Fixed patches (by default they move’ with the MRF zone)

nonRotatingPatches ();

origin    (0 0 0);

axis      (0 0 1);

omega     constant 12.566370; 

constant/dynamicMeshDict – For sliding meshes constant/MRFProperties – For MRF approach

Inner region and arbitrary mesh 

interface 

Impeller

type movingWallVelocity;

value uniform (0 0 0);

Shaft

type rotatingWallVelocity;

origin (0 0 0);

axis (0 0 1);

omega constant 12.566370;

value uniform (0 0 0);

946



• For siding meshes, we need to create separated regions.

• In this case, to create the two regions we proceed as follows,

Moving bodies hands-on tutorials

Continuous stirring tank reactor – Sliding meshes and MRF

1. $> createBaffles –overwrite

2. $> mergeOrSplitBaffles –split –overwrite

• In step 1, we split the mesh in regions using the baffles (faceZone), created during the meshing 

stage.  

• We also create the cyclicAMI patches AMI1 and AMI2.

• At this point we have two regions and one zone. However, the two regions are stich together 

via the patches AMI1 and AMI2.

• In step 2, we topologically split the patches AMI1 and AMI2. As we removed the link between 

AMI1 and AMI2, the regions are free to move.

947



• The utility createBaffles, reads the dictionary createBafflesDict.

• With this utility we create the interface patches between the fix zone and the rotating zone.

baffles

{

rotating

{

type faceZone;

zoneName face_inner_volume;

patches

{

master

{

name AMI1;

type cyclicAMI;

matchTolerance 0.0001;

neighbourPatch AMI2;

transform none;

}

slave

{

name AMI2;

type cyclicAMI;

matchTolerance 0.0001;

neighbourPatch AMI1;

transform none;

}

}

}

}

Boundary condition 

for sliding grids

Boundary condition 

for sliding grids

Name of the baffle group

Parameters for the master patch

Parameters for the slave patch

Name of the master patch (user defined)

Name of the slave patch (user defined)

Neighbour patch (slave patch or AMI2)

Neighbour patch (master patch or AMI1)

Initially, the master and slave patches 

share a common face

Face to use to construct the AMI patches. 

The name was defined in snappyHexMeshDict

Use faceZone

Moving bodies hands-on tutorials

Continuous stirring tank reactor – Sliding meshes and MRF
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Continuous stirring tank reactor – Sliding meshes and MRF

Rotating patch

Master patch

Fix patch

Slave patch

• In sliding mesh simulations, the solution is interpolated back-and-forth between the regions.

• The interpolation is done at the arbitrary mesh interface patches (AMI) .

• To reduce interpolation errors at the AMI patches, the meshes should be similar in the master 

and slave patches. 

Rotating domain

AMI interface Fix domain
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• At this point, the mesh is ready to use.  

• You can visualize the mesh using paraFoam.

• If you use checkMesh, it will report that there are two regions.

• In the dictionary constant/dynamicsMeshDict we set which region will move and the 

rotation parameters.

• To preview the region motion, in the terminal type:

• $> moveDynamicMesh

• To preview the region motion and check the quality of the AMI interfaces, in the terminal type:

• $> moveDynamicMesh -checkAMI -noFunctionObjects

• In our YouTube channel you can find a step-by-step video explaining this case. 

Moving bodies hands-on tutorials

Continuous stirring tank reactor – Sliding meshes and MRF
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• The command moveDynamicMesh –checkAMI 

will print on screen the quality of the AMI interfaces 

for every time step.

• Ideally, you should get the AMI patches weights as 

close as possible to one.

• Weight values close to one will guarantee a good 

interpolation between the AMI patches.

…

…

…

Calculating AMI weights between owner patch: AMI1 and neighbour patch: AMI2

AMI: Creating addressing and weights between 2476 source faces and 2476 target faces

AMI: Patch source sum(weights) min/max/average = 0.94746705, 1.0067199, 0.99994232

AMI: Patch target sum(weights) min/max/average = 0.94746692, 1.0004497, 0.99980782

…

…

…

AMI1 patch weights

AMI2 patch weights

Number of faces in 
the AMI patches

Name of the AMI patch Name of the AMI patch

Moving bodies hands-on tutorials

Continuous stirring tank reactor – Sliding meshes and MRF

951

http://www.wolfdynamics.com/training/movingbodies/image9.gif

http://www.wolfdynamics.com/training/movingbodies/image8.gif


Moving bodies hands-on tutorials

Continuous stirring tank reactor – Sliding meshes and MRF

• At this point, we are ready to run the simulation. 

• You can choose between running using sliding meshes (directory sliding_piso) or MRF 

(directory MRF_simple).

• You can use the solver pimpleFoam for sliding meshes and the solver simpleFoam for MRF.

• You can also use pimpleFoam (unsteady solution) for the MRF. However, it is not 

computationally efficient, the idea of MRF is to reach a steady solution fast.

• You can also try pimpleFoam (with local time stepping (LTS).

• You will find the instructions of how to run the cases in the file README.FIRST located in the 

case directory.

952
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• Oscillating cylinder – Prescribed motion

• Let us run this case. Go to the directory:

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend to open the README.FIRST file and type the commands in the terminal, in this way 

you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

$PTOFC/advanced_physics/prescribed_motion/oscillatingCylinder
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Oscillating cylinder – Prescribed motion

Cylinder prescribed motion – Oscillating motion

Moving boundary

954
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Oscillating cylinder – Prescribed motion

17 dynamicFvMesh      dynamicMotionSolverFvMesh;

18

19 motionSolverLibs ("libfvMotionSolvers.so");

20

21 solver            displacementLaplacian;

22

23 displacementLaplacianCoeffs 

24 {

25 diffusivity       inverseDistance (cylinder);

26 }

• In the dictionary constant/dynamicMeshDict we select the mesh morphing method and the 

boundary patch that it is moving (lines 21 and 25, respectively).

• There are many mesh morphing methods implemented in OpenFOAM®.

• Mesh morphing is based in diffusing or propagating the mesh deformation all over the domain.

• You will need to find the best method for your case.  

• The setup used in this case works fine most of the times.

Patch name

Solver for mesh motion 

method

M
e

th
o

d
 c

o
e

ff
ic

ie
n
ts

Mesh diffusion method

Motion library

Mesh motion library for 

boundary patches
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Oscillating cylinder – Prescribed motion

37 in

38 {

39 type            fixedValue;

40 value           uniform (0 0 0);

41 }

42 cylinder

43 {

44 type            oscillatingDisplacement;

45 amplitude       ( 0 1 0 );

46 omega           6.28318;

47 value           uniform ( 0 0 0 );

48 }

• In the dictionary 0/pointDisplacement we select the prescribed body motion.

• In this case we are using oscillatingDisplacement (line 44) for the cylinder patch.

• Each method has different input values. In this case it is required to define the amplitude (line 

45) and the angular velocity (line 46) in rad/s.

• If the patch is not moving, we assign to it a fixedValue boundary conditions (lines 37-41).

Dummy value for paraview
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Oscillating cylinder – Prescribed motion

41  cylinder

42  {

43      type            movingWallVelocity;

44      value           uniform (0 0 0);

45  }

• You must assign the boundary condition movingWallVelocity to all patches that are moving.

• This is done in the dictionary 0/U.

• And as usual, you will need to adjust the numerics according to your physics.

• In this case we need to solve the new fields cellDisplacement and diffusivity, which are 

related to the mesh motion and morphing.

• In the dictionary fvSolution, you will need to add a linear solver for the field 

cellDisplacement.

• In the dictionary fvSchemes, you will need to add the discretization schemes related to the 

mesh morphing diffusion method, laplacian(diffusivity, cellDisplacement).

• If you are dealing with turbulence modeling the treatment of the wall functions is the same as if 

you were working with fixed meshes. 957
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Oscillating cylinder – Prescribed motion

• At this point, we are ready to run the simulation. 

• You will find the instructions of how to run the cases in the file README.FIRST located in the 

case directory.

• Before running the simulation, you can check the mesh motion.  

• During this check, you can use large time-steps as we re not computing the solution, we are 

only interested in checking the motion.

• To check the mesh motion, type in the terminal:

1. $> moveDynamicMesh -noFunctionObjects
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• Floating body – Rigid body motion

• Let us run this case. Go to the directory:

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend to open the README.FIRST file and type the commands in the terminal, in this way 

you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

$PTOFC/advanced_physics/rigid_body_motion/floatingObject



Moving bodies hands-on tutorials

Floating body – Rigid body motion

Floating body simulation with VOF and turbulence modeling. 960
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Floating body – Rigid body motion

17 dynamicFvMesh       dynamicMotionSolverFvMesh;

18

19 motionSolverLibs    ("libsixDoFRigidBodyMotion.so");

20

21 solver              sixDoFRigidBodyMotion;

22

23 sixDoFRigidBodyMotionCoeffs

24 {

…

…

…
77 }

• As for prescribed motion, in rigid body motion the mesh morphing is based in diffusing or 

propagating the mesh deformation all over the domain.

• In the dictionary constant/dynamicMeshDict we select the mesh morphing library and rigid 

body motion library (lines 17-21).

• The rigid motion solver will compute the response of the body to external forces.

• In lines 23-77, we define all the inputs required by the rigid motion solver. 

Solver for mesh motion 

method

M
e

th
o

d
 c

o
e

ff
ic

ie
n
ts

Motion library

Mesh motion library for 

boundary patches
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Floating body – Rigid body motion

23 sixDoFRigidBodyMotionCoeffs

24 {

25 patches         (floatingObject);

26

27 innerDistance   0.1;

28 outerDistance   0.4;

33 centreOfMass    (0.5 0.5 0.5);

34 mass            5;

35 momentOfInertia (0.08 0.08 0.1);

37 report          on;

38

45 solver

46 {

47 type Newmark;

48 }

…

…

…

outerDistance

Physical properties of the body

Report on screen position of the body

Rigid body motion solver

Mesh deformation limits. 

The mesh will not be deformed in the fringe located within 

innerDistance and outerDistance (distance normal to the wall)

• The dictionary constant/dynamicMeshDict (continuation).

962

Moving patch

innerDistance

Set it to zero if you do not want to apply mesh morphing to the inner region

Body patch
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Floating body – Rigid body motion

50      constraints

51      {

55 fixedAxis

56 {

57 sixDoFRigidBodyMotionConstraint axis;

58 axis (0 1 0);

59 }

63 fixedLine

64 {

65              sixDoFRigidBodyMotionConstraint line;

66              centreOfRotation (0.5 0.5 0.5);

67 direction (0 0 1);

68 }

70 }

72 restraints

73 {

75 }

77 }

Motion constraints

If you do not  give any 

constraint, the body is free 

to move in all directions.

Body restraints

Restraints can be used to 

damp the acceleration of the 

body.

In this case, we are not 

using restraints

• The dictionary constant/dynamicMeshDict (continuation).
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Floating body – Rigid body motion

• In the dictionary 0/pointDisplacement we select the body motion.

• For rigid body motion, the body motion is computed by the solver, therefore, we use the 

boundary condition calculated.

33  floatingObject

34  {

35      type            calculated;

36      value           uniform (0 0 0);

37  }

• You must assign the boundary condition movingWallVelocity to all patches that are moving. 
This is done in the dictionary 0/U.

33  floatingObject

34  {

35      type            movingWallVelocity;

36      value           uniform (0 0 0);

37  }
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• If you are dealing with turbulence modeling the treatment of the wall functions is the same as if 

you were working with fixed meshes.
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Floating body – Rigid body motion

• And as usual, you will need to adjust the numerics according to your physics.

• In the case directory, you will find the script extractData.  

• This script can be used to extract the position of the body during the simulation. 

• In order to use the extractData script, you will need to save the log file of the simulation.

• At this point, we are ready to run the simulation. 

• We will use the solver interFoam.

• You will find the instructions of how to run the cases in the file README.FIRST located in the 

case directory.
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A crash introduction to:

1. Turbulence modeling in OpenFOAM®

2. Multiphase flows modeling in 

OpenFOAM® 

3. Compressible flows in OpenFOAM®

4. Moving bodies in OpenFOAM®

5. Source terms in OpenFOAM®

6. Scalar transport pluggable solver



Source terms in OpenFOAM®

A crash introduction to source terms OpenFOAM®

• In addition to all modeling capabilities we have seen so far, you can also add source terms to 

the governing equations without the need of modifying the original source code.

• This functionality is provided via the dictionary fvOptions, which is located in the directory 

system.

• There are many source terms implemented in OpenFOAM®, you can even use codeStream to 

program your own source term without the need of recurring to high level programming.

• The fvOptions functionality work with most of the solvers that deal with advanced modeling 

capabilities. 

• Remember, the solver icoFoam is very basic with no modeling capabilities. Therefore, you can 

not use the fvOptions functionality and many other modeling and postprocessing capabilities 

with it.

• You will find the source code of the source terms in the directory:

• OpenFOAM-8/src/fvOptions
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A crash introduction to source terms OpenFOAM®

• To use source terms, you must first select where you want to apply it

• You can apply a source term in the whole domain, a set of cells, a cell zone, or a point (or group 

of points).

• You can create the set of cells at meshing time or you can use the utility topoSet to select a 

group of cells.

• By the way, boundary conditions are source terms added at the boundary patches, and MRF are 

source terms added to a cell selection.

Set of cell

Point selection
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A crash introduction to source terms OpenFOAM®

• The source terms can be selected in the dictionary 
fvOptions, and they can be modified on-the-fly.

• This dictionary file is located in the directory system.

• Hereafter we show a generic fvOptions dictionary.

• According to the source term you selected, you will need 

to give different input parameters in the input coefficients 

section (lines 7-23).

• The input parameters indicated with an arrow can be 

used with any source term. Most of then are self 

explanatory.

• The volumeMode keyword (line 21) let you choose 

between absolute and specific.

• absolute: input values are given as 

quantity/volume.

• specific: input values are given as quantity.

• Remember, you can use the banana method to know all 

source terms and options available.

• You can also read the source code.

1 user_defined_name

2 {

3 type        name_of_source_term;

4

5 active      true;

6

7 input_coefficients

8 {

9 timeStart      0.5;

10 duration       2.0;

11

12 selectionMode   points;

13 points

14 (

15 (3 0 0)

16 );

17

18 //selectionMode   cellZone;

19          //cellZone        filter;

20

21 volumeMode      absolute;

22

...

...

...

23 }

24  }
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• Filter source term

• Let us run this case. Go to the directory:

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend to open the README.FIRST file and type the commands in the terminal, in this way 

you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

$PTOFC/advanced_physics/source_terms/filter/porous_source



• In this case we are  going to use the source term explicitPorositySource.  

• Using this source term we can apply a porous region (e.g., Darcy-Forchheimer) in the cell 

selection.

• The source term is activated after 2 seconds of simulation time.

Source terms hands-on tutorials

Filter source term

http://www.wolfdynamics.com/training/sourceterms/image1.gif

Set of cell

(filter)
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17 filter1

18 {

19 type  explicitPorositySource;

20 active          yes;

22 explicitPorositySourceCoeffs

23 {

25 timeStart       2;

26 duration        5;

28 selectionMode   cellZone;

29 cellZone        filter;

31 type            DarcyForchheimer;

38 DarcyForchheimerCoeffs

39 {

41 d    (5000000 5000000 5000000);

44 f    (0 0 0);

46 coordinateSystem

47 {

49 type    cartesian;

50 origin  (0 0 0);

52 coordinateRotation

53 {

54 type    axesRotation;

55 e1  (1 0 0);

56 e2  (0 1 0);

57 }

59 }

60 }

61 }

62 }

system/fvOptions

Filter source term

Source terms hands-on tutorials
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• The source terms can be selected in the 
dictionary fvOptions, and they can be modified 

on-the-fly.

• In this case we are using the source term 

explicitPorositySource (line 19).  

• Using this source term we can apply a porous 

region (of the type Darcy-Forchheimer) in the cell 

selection (line 28).

• The source term is used in a cellZone (line 28) 

named filter (line 29), this zone must be created 
at meshing time or using the utility topoSet.

• In lines 38-60, we define the input parameters of 

the model.

• In this case, the coefficients f and d are 

resistance/impermiability coefficients, and  e1 and 

e2 are the vectors that are used to specify the 

porosity.  



actions

(

// filter

{

name    filter;

type    cellSet;

action  new;

source  boxToCell;

sourceInfo

{

box (1.5 -10 -10) (2 10 10);

}

}

...

...

...

)

Filter source term

Name of the selection

Select a set of cells

Create a new selection

Use a box to select the set of cells

• To create the cellZone used in fvOptions, we 

first create a cellSet.

• The set of cells (cellSet) is constructed using the 
utility topoSet.

• This utility reads the dictionary topoSetDict, 

which is located in the directory system.

• Hereafter we show the dictionary inputs used to 

create the cellSet named filter.

system/topoSetDict

Source terms hands-on tutorials
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actions

(

...

...

...

{

name    filter;

type    cellZoneSet;

action  new;

source  setToCellZone;

sourceInfo

{

set filter;

}

}

)

Filter source term

Name of the selection

Select a zone set (cellZoneSet)

Create a new selection

Convert the cellSet filter to a cellZoneSet 

named filter

• To create the cellZone used in fvOptions, we 

first create a cellSet.

• Now that we have the cellSet filter, we can 

convert it to a cellZoneSet that can be used by 
fvOptions.

• The name of the new cellZoneSet is filter.

• Remember, you can apply the source terms in a 

cellSet or in a cellZone.

system/topoSetDict

Source terms hands-on tutorials
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Filter source term

• At this point, we are ready to run the simulation. 

• We will use the solver pimpleFoam, which can use source terms.

• Before running the simulation, remember to use the utility topoSet to create the filter 

region used by the source term. 

• You can visualize the region using paraview.

• Finally, remember to adjust the numerics according to your physics.

• You will find the instructions of how to run the cases in the file README.FIRST 

located in the case directory.
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A crash introduction to:

1. Turbulence modeling in OpenFOAM®

2. Multiphase flows modeling in 

OpenFOAM® 

3. Compressible flows in OpenFOAM®

4. Moving bodies in OpenFOAM®

5. Source terms in OpenFOAM®

6. Scalar transport pluggable solver



Scalar transport pluggable solver

• In addition to all modeling capabilities we have seen so far, you can also add scalar transport 

equations (or convection-diffusion equation), without the need of modifying the original source 

code.

• This functionality is provided via functionObjects, and it can be seen as a solver that can be 

plug into another one.

• To setup the scalar transport equation you need to:

• Define the functionObject in the dictionary controlDict.

• Add the discretization schemes and linear solvers for the new equations. 

• Define the boundary conditions and initial conditions of the transported scalars.

• You will find the source code of the scalar transport pluggable solver in the directory:

• OpenFOAM-8/src/functionObjects/solvers

977

The functionObject scalarTransport



The functionObject scalarTransport

• The scalar transport functionObject is defined in 
the dictionary controlDict.

• Remember, the input parameters can be modified 

on-the-fly.scalar1

{

type  scalarTransport;

functionObjectLibs ("libsolverFunctionObjects.so");

enabled true;

writeControl outputTime;

log yes;

nCorr 1;

D 0;

//alphaD 0;

//alphaDt 0;

field s1;

//schemesField U;

}
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Scalar transport pluggable solver

Select scalarTransport functionObject

Number of corrector iterations.  

It is recommended to do t least one iteration.

Diffusion coefficient.

If turbulent modeling is in use, you can define the 

laminar diffusion coefficient alphaD and the turbulent 

diffusion coefficient alphaDt

Name of the new field.  You will need to select the 

discretization schemes and linear solvers for this field.  

You will also need to define the boundary conditions 

and initial conditions for this field.

Option to use the same numerical scheme as the one 

used for the filed U



Boundary conditions

dimensions      [0 0 0 0 0 0 0];

internalField   uniform 0;

boundaryField

{

walls

{

type            zeroGradient;

}

inlet

{

type            fixedValue;

value uniform 1;

}

outlet

{

type            inletOutlet;

inletValue      uniform 0;

value           uniform 0;

}

}

979

Scalar transport pluggable solver

0/s1 

• Assuming that you named the new scalar s1, you 

will need to define the boundary conditions and 

initial conditions for the field s1.

• This is done in the dictionary 0/s1.

• In this case, the scalar is entering in the patch 

inlet with a value of 1 (this is a concentration 

therefore it has no dimensions).

• The initial concentration of the scalar is zero.
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gradSchemes

{

default     Gauss linear;

grad(s1)    cellLimited Gauss linear 1;

}

divSchemes

{

default     none;

div(phi,U)  Gauss linearUpwindV default;

div(phi,s1) Gauss vanLeer;

}

• Finally, and assuming that you named the new scalar s1, you need to define the discretization 

schemes and linear solvers of the new equations.

• Remember, this is a bounded quantity, so it is a good idea to use TVD schemes and gradient 

limiters.

s1

{

solver     smoothSolver;

smoother   symGaussSeidel;

tolerance  1e-08;

relTol     0;

}

system/fvSchemes system/fvSolution

Discretization schemes and linear solvers
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• Scalar transport in an elbow – Internal geometry

• Let us run this case. Go to the directory:

• In the case directory, you will find the README.FIRST file. In this file, you will find the general instructions of 

how to run the case.  In this file, you might also find some additional comments.

• You will also find a few additional files (or scripts) with the extension .sh, namely, run_all.sh, 

run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  These files can be used to run the case 

automatically by typing in the terminal, for example, sh run_solver. 

• We highly recommend to open the README.FIRST file and type the commands in the terminal, in this way 

you will get used with the command line interface and OpenFOAM® commands.  

• If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases. 

$PTOFC/advanced_physics/source_terms/2Delbow_passive_scalar



• Notice that we are adding two scalars, s1 and s2.

Scalar transport in an elbow – Internal geometry
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S2
U → (0 3 0)

S1
U → (2 0 0)

http://www.wolfdynamics.com/training/sourceterms/image2.gif

http://www.wolfdynamics.com/training/sourceterms/image3.gif
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• At this point, we are ready to run the simulation. 

• We will use the solver pisoFoam.

• Remember to adjust the numerics according to your physics.

• Do not forget to create the boundary conditions and initial conditions of the new field variables.

• You will find the instructions of how to run the cases in the file README.FIRST located in the 

case directory.
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Scalar transport in an elbow – Internal geometry



• Some kind of conclusion,

• Good mesh – good results.

• Start robustly and end with accuracy.

• Stability, accuracy and boundedness,                   

play by these terms and you will succeed.

• Do not sacrifice accuracy and stability over 

computing speed.

• Select wisely the boundary conditions.

This is the end



That was only the tip of the iceberg

Now the rest is on you

This is the end



This is the end

• We hope you have found this training useful and we hope to see you in one of our advanced 

training sessions:

• OpenFOAM® – Multiphase flows

• OpenFOAM® – Naval applications

• OpenFOAM® – Turbulence Modeling

• OpenFOAM® – Compressible flows, heat transfer, and conjugate heat transfer

• OpenFOAM® – Advanced meshing

• DAKOTA – Optimization methods and code coupling

• Python – Programming, data visualization, and exploratory data analysis

• Python and R – Data science and big data

• ParaView – Advanced scientific visualization and python scripting

• And many more available on request

• Besides consulting services, we also offer ‘Mentoring Days’ which are days of one-on-one 

coaching and mentoring on your specific problem.

• For more information, ask your trainer, or visit our website

http://www.wolfdynamics.com/

http://www.wolfdynamics.com/


TGIF & TGIO

Enjoy OpenFOAM®

This is the end



guerrero@wolfdynamics.com

www.wolfdynamics.com
Let’s connect
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