’

woltdynamics

multiphysics simulations,
optimization & data analytics

OpenFOAM® Introductory Training
Online session — 2020 Edition

H©

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/

A help is needed, and much appreciated.

If you find errors, have suggestions for better wording, figures, or new material, let us know.
Also, if you find a tutorial that does not work, please let us know.

Follow-up problems, questions, and suggestions at guerrero@wolfdynamics.com

http://creativecommons.org/licenses/by-sa/4.0/
mailto:guerrero@wolfdynamics.com

This offering is not approved or endorsed by OpenCFD Limited, the
producer of the OpenFOAM software and owner of the OPENFOAM® and
OpenCFD® trademarks.

Wolf Dynamics makes no warranty, express or implied, about the
completeness, accuracy, reliability, suitability, or usefulness of the
information disclosed in this training material. This training material is
intended to provide general information only. Any reliance the final user
place on this training material is therefore strictly at his/her own risk. Under
no circumstances and under no legal theory shall Wolf Dynamics be liable
for any loss, damage or injury, arising directly or indirectly from the use or
misuse of the information contained in this training material.

Revision 1-2020
JG

Acknowledgements

This training material and tutorials are based upon personal experience, OpenFOAM® source
code, OpenFOAM® user guide, OpenFOAM® programmer’s guide, and presentations from
previous OpenFOAM® training sessions and OpenFOAM® workshops.

We gratefully acknowledge the following OpenFOAM® users for sharing online their material or for
giving us their consent to use their material:

* Henry Weller and Chris Greenshields. The OpenFOAM Foundation.
* Hrvoje Jasak and Henrik Rusche. Wikki Ltd.

* Eugene de Villiers, Paolo Geremia, and Dan Combest. Engys.

« Hakan Nilsson. Chalmers University of Technology.

» Eric Paterson. Pennsylvania State University.

» Gavin Tabor. University of Exeter.

 Fumiya Nozaki. Yokohama, Japan.

« Marwan Darwish. American University of Beirut.

« Kevin Maki. University of Michigan.

* Tobias Holzmann. HolzmannCFD.

Acknowledgements

The following people have contributed directly to the development of this training material:

« Edoardo Alinovi.

« Matteo Bargiacchi.

« Mattia Cavaiola.

« Peyman Davvalo Khongar.
« Sehrish Naqgvi.
 Damiano Natali.

» Stefano Olivieri.

* Biniyam Sishah.

* Giuseppe Zampogna.

On the training material

The following typographical conventions are used in this
training material

Text in Courier new font indicates Linux commands that should be typed literally by the user
in the terminal.

Text in Courier new bold font indicates directories.

Text in Courier new italic fontindicates human readable files or ascii files.

Text in Arial bold font indicates program elements such as variables, function names, classes,
statements and so on. It also indicate environment variables, and keywords. They also
highlight important information.

Text in Arial underline in blue font indicates URLs and email addresses.

This icon /\ indicates a warning or a caution.

This icon {ﬁj indicates a tip, suggestion, or a general note.
This icon 3 indicates a folder or directory.

Thisicon [E indicates a human readable file (ascii file).

Thisicon B indicates that the figure is an animation (animated gif).

These characters S> indicate that a Linux command should be typed literally by the user in the
terminal.

On the training material

The following typographical conventions are used in this
training material

» Large code listing, ascii files listing, and screen outputs can be written in
a square box, as follows:

1 #include <iostream>

2 using namespace std;

3

4 /l main() is where program execution begins. It is the main function.
5 I/l Every program in c++ must have this main function declared
6

7 int main ()

8 {

9 cout << "Hello world"; /lprints Hello world
10 return 0; lIreturns nothing
11 }

« To improve readability, the text might be colored.
« The fontcan be Courier new or Arial bold.

* And when required, the line number will be shown.

On the training material

Training material

In the USB key you will find all the training material (tutorials, slides, quick reference guides, OpenFOAM®
user guide, OpenFOAM® programmers manual, and lectures notes).

You can extract the training material wherever you want. However, we highly recommend to extract all the
training material in your OpenFOAM® user directory.

From now on, we will refer to the directory where you extracted the training material as,

* SPTOFC
(abbreviation of Path To OpenFOAM® Course)

To uncompress the tutorials go to the directory where you copied the training material and then type in the
terminal,
* $> tar —zxvf file name.tar.gz

In every single tutorial, you will find the file README . FIRST. In this file you will find the general instructions of
how to run the case. You will also find some additional comments.

In some cases, you will also find additional files with the extension .sh. These files can be used to run the
case automatically, but we highly recommend to open the README . FIRST file and type the commands in the

terminal, in this way you will get used with the command line interface and OpenFOAM® commands.
If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases.
You will find the automatic scripts in the cases explained in the lectures notes and some random cases.

A word of caution, use the tutorials included in the training material just for recreational, instructional, &
or learning purposes and not for validation, benchmarking or as standard practices.

On the training material

Exercises
At the end of each section, you will find an exercise section.
The exercise section is optional, self-paced, and do it at anytime.

The proposed exercises are designed to test your knowledge and to
reinforce the concepts addressed during the lectures.

All the concepts to be addressed in the exercise sections have been treated
in the lecture notes, so the reader should not have problems answering the
questions.

If you have doubts, do not hesitate in asking.
To help you answering the exercises, we might give you a few tips.
And if it is necessary, the solution will be given.

Housekeeping issues

« What OpenFOAM® version are we going to use?
* During this training we are going to use OpenFOAM® version 8.

* The one developed by OpenCFD Ltd (http://www.openfoam.org/).

* What Linux flavor should | use?

 We use OpenSUSE 15.1 or 15.2, but you are free to use any Linux flavor.

* What Linux shell should | use?

* During this training we are going to use the BASH shell. If you want to know what shell
you are using, type in the terminal

* $> echo SSHELL
« Ifthe outputis /bin/bash, you are using BASH shell.

» If your output is something else, you are not using BASH shell. In this case, to start using
BASH shell type in the terminal,

e S> bash

» If you do not know what is the terminal or how to use Linux, do not worry we are going to
give a quick introduction later.

http://www.openfoam.org/

Training agenda

Module 0.

+ Training agenda

* On the training material
* Housekeeping issues

» Additional information

Module 1.

* Introduction to OpenFOAM®

+ Afew OpenFOAM® simulations

» Library organization

* OpenFOAM® 101 — My first tutorial

Module 2.
» Solid modeling for CFD — Introduction to Onshape

Module 3.

* Meshing preliminaries

* Mesh quality assessment

* Meshing in OpenFOAM® — blockMesh and snappyHexMesh
* Mesh conversion and manipulation

Module 4.
* Running in parallel

Module 5.
« Sampling and plotting
« Data conversion

Module 6.

» The finite volume method. A crash introduction
* On the CFL number

* Boundary conditions and initial conditions

+ Unsteady and steady simulations

* Assessing convergence

* Velocity pressure-coupling

* Linear solvers

Module 7.

* Implementing boundary conditions and initial conditions using
codeStream

Module 8.
* Advanced modeling capabilities:
* Turbulence modeling
* Multiphase flows
+ Compressible flows
* Moving reference frames and sliding grids
* Moving bodies and rigid body motion
* Source terms and passive scalars

Training agenda

Week 1.

» Course presentation, introduction to OpenFOAM®, running my first simulations, running in parallel

Week 2.

« Solid modeling using Onshape, mesh generation, mesh quality assessment, qualitative and quantitative
postprocessing, scientific visualization

Week 3.

« Introduction to the finite volume method, numerical playground, best standard practices in CFD and
OpenFOAM®, implementing boundary conditions and initial conditions using codeStream

Week 4.

« Implementing boundary conditions and initial conditions using codeStream (continuation), advanced physical
models (turbulence, multiphase, compressible flows, dynamic meshes, source terms).

Week 5.

« Advanced physical models (continuation), extra topics (supplements), tips and tricks, closing remarks

Training agenda

Week 1.
* Module 0, Module 1, Module 4

Week 2.
* Module 2, Module 3, Module 5

Week 3.
* Module 6, Module 7

Week 4.
e Module 7, Module 8

Week 5.

* Module 8, extra topics

da

=
@
o
©
o
=
=

Tra

Geometry description

Mesh generation

Visualization

« The training agenda is organized in such a way that we will address the whole CFD simulation workflow.

Module 1

OpenFOAM® overview — First tutorial —
Working our way in OpenFOAM®

1. OpenFOAM® brief overview

OpenFOAM® brief overview

General description:

OpenFOAM® stands for Open Source Field Operation and Manipulation.

OpenFOAM® is first and foremost a C++ library used to solve partial
differential equations (PDEs), and ordinary differential equations (ODESs).

It comes with several ready-to-use or out-of-the-box solvers, pre-processing
utilities, and post-processing utilities.

It is licensed under the GNU General Public License (GPL). That means itis
freely available and distributed with the source code.

It can be used in massively parallel computers. No need to pay for separate
licenses.

It is under active development.

It counts with a wide-spread community around the world (industry,
academia and research labs).

OpenFOAM® brief overview

Multi-physics simulation capabilities:

 OpenFOAM® has extensive multi-physics simulation capabilities, among
others:

Computational fluid dynamics (incompressible and compressible flows).
Computational heat transfer and conjugate heat transfer.

Combustion and chemical reactions.

Multiphase flows and mass transfer.

Particle methods (DEM, DSMC, MD) and lagrangian particles tracking.
Stress analysis and fluid-structure interaction.

Rotating frames of reference, arbitrary mesh interface, dynamic mesh
handling, and adaptive mesh refinement.

6 DOF solvers, ODE solvers, computational aero-acoustics,
computational electromagnetics, computational solid mechanics, MHD.

OpenFOAM® brief overview

Physical modeling library:

* OpenFOAM® comes with many physical models, among others:

Extensive turbulence modeling capabilities (RANS, DES and LES).

Transport/rheology models. Newtonian and non-Newtonian viscosity
models.

Thermophysical models and physical properties for liquids and gases.
Source terms models.

Lagrangian particle models.

Interphase momentum transfer models for multiphase flows.

Combustion, flame speed, chemical reactions, porous media, radiation,
phase change.

OpenFOAM® brief overview

Under the hood you will find the following:

Finite Volume Method (FVM) based solver.
Collocated polyhedral unstructured meshes.

Second order accuracy in space and time. Many discretization schemes
available (including high order methods).

Steady and transient solvers available.

Pressure-velocity coupling via segregated methods (SIMPLE and PISO).
But coupled solvers are under active development.

Massive parallelism through domain decomposition.

It comes with its own mesh generation tools.

It also comes with many mesh manipulation and conversion utilities.

It comes with many post-processing utilities.

All components implemented in library form for easy re-use.

OpenFOAM® brief overview

OpenFOAM® vs. Commercial CFD applications:

* OpenFOAM® capabilities mirror those of commercial CFD applications.

« The main differences with commercial CFD applications are:

There is no native GUI.

It does not come with predefined setups. The users need to have a basic
understanding of the CFD basics and be familiar with OpenFOAM® command
line interface (CLI).

Knowing your way around the Linux bash shell is extremely useful.

It is not a single executable. Depending of what you are looking for, you will
need to execute a specific application from the CLI.

It is not well documented, but the source code is available.

Access to complete source = no black magic. But to understand the source
code you need to know object-oriented programming and C++.

Solvers can be tailored for a specific need, therefore OpenFOAM® is ideal for
research and development.

It is free and has no limitation on the number of cores you can use.

OpenFOAM® brief overview

Developing new solvers (in case you need it):

» As the user has complete access to the source code, she/he has total

freedom to modify existing solvers or use them as the starting point for new
solvers.

* New solvers can be easily implemented using OpenFOAM® high level
programming, e.g.:

solve

(

8T fvm::ddt(T)
+ fvm::div(phi, T
a7 T V- (¢T)—V-wVT)=0 > ! fvmaplacian(nu,T)

0
);

Correspondence between the implementation and the original equation is clear.

OpenFOAM® brief overview

OpenFOAM® is an excellent piece of C++
and software engineering. Decent piece of
CFD code.

H. Jasak

2. OpenFOAM® directory organization

10

OpenFOAM® directory organization

$WM PROJECT DIR
—— Al lwmake

—— applications
—— bin

—— COPYING

—— doc

— etc

—— platforms
—— README.org
—— Src
-

tutorials
wmake

If you installed OpenFOAM® in the default location, the
environment variable $WM_PROJECT_ DIR should point

to the following directory (depending on the installed
version):

SHOME /OpenFOAM/OpenFOAM-8
or
SHOME /OpenFOAM/OpenFOAM-dev

In this directory you will find all the files containing
OpenFOAM® installation.

In this directory you will also find additional files (such as
README . org, COPYING, etc.), but the most important
one is Allwmake, which compiles OpenFOAM®.

11

OpenFOAM® directory organization

$WM PROJECT DIR
—— Al lwmake

—— applications
—— bin

—— COPYING
—— doc

— etc

—— platforms
—— README.org
—— Src

—— tutorials
L — wmake

OpenFOAM® environment variables

The entries starting with the symbol $ are environment
variables. You can find out the value of an environment
variable by echoing its value, for example:

$> echo $WM PROJECT DIR

will print out the following information on the terminal,
SHOME/OpenFOAM/OpenFOAM-8

To list all the environment variables type in the terminal
window,

S> env

To list all the environment variables related to
OpenFOAM®, type in the terminal:

$> env | grep -i “OpenFOAM’

12

OpenFOAM® directory organization

$WM PROJECT DIR
—— Al lwmake

—— applications
—— bin

—— COPYING
—— doc

— etc

—— platforms
—— README.org
—— Src

—— tutorials
L — wmake

OpenFOAM® aliases

You can go to any of these directories by using the
predefined aliases set by OpenFOAM® (refer to
$WM_PROJECT DIR/etc/config.sh/aliases Or
$WM_PROJECT DIR/etc/config.csh/aliases).

Just to name a few of the aliases defined:
alias foam='cd $WM PROJECT DIR
alias app='cd $FOAM APP’
alias src='cd $SFOAM SRC’
alias tut='cd $FOAM TUTORIALS’

For a complete list type alias in the terminal.

To list all the aliases related to OpenFOAM®, type in the
terminal:

$> alias | grep -i “FOAM’

OpenFOAM® directory organization

$WM_PROJECT DIR

— All;v{nake_ Let us study each directory inside
—— applications

 pin $WM PROJECT DIR

—— COPYING

— doc

— etc « Any modification you add to the source code in
— platforms WM _PROJECT_ DIR will affect the whole library.
— README.org « Unless you know what are you doing, do not
— SIC modify anything in the original installation

—— tutorials (SWM_PROJECT DIR), except for updates!
L — wmake

OpenFOAM® directory organization

The applications directory

$WM PROJECT DIR/applications
—— Al lwmake

—— solvers

—— test

L utilities

Let us visit the applications directory. Type in the terminal app or
$> cd $WM PROJECT DIR/applications. You will find the following sub-directories:

« solvers, which contains the source code for the distributed solvers.

* test, which contains the source code of several test cases that show the usage of
some of the OpenFOAM® classes.

e utilities, which contains the source code for the distributed utilities.

There is also an A11wmake script, which will compile all the content of solvers and
utilities. To compile the test cases in test go to the desired test case directory and
compile it by typing wmake.

15

OpenFOAM® directory organization

The bin directory

SWM_PROJECT_DIR/bin/ Let us visit the bin directory:
foamCleanPolyMesh

foamCleanTutorials The bin directory contains many shell

scripts, such as foamNew, foamLog,
foamCloneCase foamJob, foamNewApp, etc.
foamJob

foamLog This directory also contains the script

foamMonitor paraFoam that will launch paraView.

—— foamNew

—— foamNewApp

—— foamNewBC

—— foamNewFunctionObject
—— parakFoam
-

tools

The directory tree is not complete & 16

OpenFOAM® directory organization

The doc directory

SWM_PROJECT_DIR/doc/ Let us visit the doc directory:
Allwmake

codingStyleGuide.org * The doc directory contains the documentation

of OpenFOAM®, namely; user guide,

Doxygen programmer’s guide and Doxygen generated
Guides documentation in html format.

L— tools
« The Doxygen documentation needs to be
compiled by typing A11wmake doc in

$WM PROJECT DIR.

* You can access the Doxygen documentation
online, http://cpp.openfoam.org/v8

17

http://cpp.openfoam.org/v8

OpenFOAM® directory organization

The etc directory

SWM_PROJECT_DIR/etc/ Let us visit the etc directory:

bashrc

caseDicts * The etc directory contains the environment
files, global OpenFOAM® instructions,

cellModels

templates, and the default thermochemical
codeTemplates database thermoData/thermoData

config.csh

config.sh * Inthe directory caseDicts, you will find many

templates related to the input files used to setup

controlDict a case in OpenFOAM®. We recommend you
cshrc take some time and explore these files.
paralkoam

controlDict, where you can set several
templates debug flags and the defaults units.
thermoData

| README.org - It also contains the super dictionary
L

18

OpenFOAM® directory organization

The platforms directory

$WM_PROJECT DIR/platforms/
—— l1linux64GccDPInt320pt
—— applications

—— bin

— 1ib

L— src

L — 1inux64GccDPInt320ptSYSTEMOPENMPI
L— src

Let us visit the platforms directory.

« This directory contains the binaries generated when compiling the applications
directory and the libraries generated by compiling the source code in the sxc directory.

« After compilation, the binaries will be located in the directory
$WM PROJECT DIR/platforms/linux64GccDPInt320ptSYSTEMOPENMPI/bin
$WM PROJECT DIR/platforms/linux64GccDPOpt/lib).

» After compilation, the libraries will be located in the directory
$WM_ PROJECT DIR/platforms/linux64GccDPInt320ptSYSTEMOPENMPI/1ib

OpenFOAM® directory organization

The src directory

$WM_PROJECT_D IR/src

Allwmake
combustionModels
finiteVolume
fvOptions

lagrangian

OpenFOAM

parallel
MomentumTransportModels
sampling
sixDoFRigidBodyMotion
thermophysicalModels

transportModels
waves

The directory tree is not complete &

Let us visit the src directory. Type in the terminal
srcor $> cd SWM PROJECT DIR/src

« This directory contains the source code for all
the foundation libraries, this is the core of
OpenFOAM®.

* |tis divided in different subdirectories and each
of them can contain several libraries.

A few interesting directories are:

* OpenFOAM. This core library includes the
definitions of the containers used for the
operations, the field definitions, the declaration
of the mesh and mesh features such as zones
and sets.

20

OpenFOAM® directory organization

The src directory

$WM_PROJECT_D IR/src

Allwmake
combustionModels
finiteVolume
fvOptions

lagrangian

OpenFOAM

parallel
MomentumTransportModels
sampling
sixDoFRigidBodyMotion
thermophysicalModels

transportModels
waves

The directory tree is not complete &

A few interesting directories are:

finiteVolume. This library provides all the
classes needed for the finite volume
discretization, such as mesh handling, finite
volume discretization operators (divergence,
laplacian, gradient, fvc/fvm and so on), and
boundary conditions. In the directory
finiteVolume/lnInclude you also find the
very important file fvCFD. H, which is included
in most applications.

MomentumTransportModels, which contains
many turbulence models.

sixDoFRigidBodyMotion. This core library
contains the solver for rigid body motion.

transportModels. This core library contains
many transport models.

21

$WM_ PROJECT DIR/tutorials/

-

OpenFOAM® directory organization

Allclean

Allrun

Alltest

basic
combustion
compressible
discreteMethods
DNS
electromagnetics
financial
heatTransfer
incompressible
I0

lagrangian
mesh
multiphase
resources
stressAnalysis

The tutorials directory

Let us visit the tutorials directory. Type in the
terminal tut or
$> cd SWM PROJECT DIR/tutorials

« The tutorials directory contains example
cases for each solver. These are the tutorials
distributed with OpenFOAM®.

* They are organized according to the physics
involved.

» Use these tutorials as the starting point to
develop you own cases.

there just to show how to use the
applications.

« A word of caution, do not use these
tutorials as best practices, they are &

22

OpenFOAM® directory organization

The wmake directory

$WM PROJECT DIR/wmake/

makefiles
platforms

rules

scripts

src

wclean
wcleanLnIncludeAll
wcleanPlatform
wdep

wmake

wmakeFilesAndOptions
wmakelLnInclude

wmakeLnIncludeAll

wrmo

The directory tree is not complete &

Let us visit the wmake directory.

« OpenFOAM® uses a special make
command: wmake

* wmake understands the file structure in
OpenFOAM® and uses default compiler
directives set in this directory.

« If you add a new compiler name in
OpenFOAM® bashrc file, you should also
tell wmake how to interpret that name.

* Inwmake/rules you will find the default
settings for the available compilers.

* In this directory, you will also find a few
scripts that are useful when organizing your
files for compilation, or for cleaning up.

23

OpenFOAM® directory organization
OpenFOAM® user directory

SHOME /OpenFOAM/
— $WM PROJECT USER DIR <+——
L $WM PROJECT DIR

Let us now study OpenFOAM® user directory $§WM PROJECT USER DIR
When working with OpenFOAM®, you can put your files wherever you want.

To keep things in order, it is recommended to put your cases in your
OpenFOAM® user directory or §WM PROJECT USER DIR.

It is also recommended to put your modified solvers, utilities, and libraries in
your OpenFOAM® user directory or $WM_PROJECT USER DIR. This is done so

you do not modify anything in the original installation.

If you followed the standard installation instructions, the variable
$WM PROJECT USER DIR should point to the directory
$HOME /OpenFOAM/USER NAME-8, where USER_NAME is the name of the

user (e.g., johnDoe).

OpenFOAM® directory organization

Looking for information in OpenFOAM® source code

To locate files you can use the £ind command.

If you want to locate a directory inside $§WM_ PROJECT DIR that contains the string fvPatch in
its name, you can proceed as follows,

* $> find $WM PROJECT DIR -type d -name “*fvPatch*”

L J | J \ J \ J
! 1 I 1

Where to look for Look for Case Look for this
directories sensitive (using wildcards)

If you want to locate a file inside $WM_PROJECT DIR that contains the string fvPatch in its
name, you can proceed as follows,

* $> find $WM PROJECT DIR -type f -name “*fvPatch*”

\ J \ J \ J J
I 1 I I

Where to look for Look for Case Look for this
files sensitive (using wildcards)

If you want to find a string inside a file, you can use the grep command.

For example, if you want to find the string LES inside all the files within the directory
$FOAM SOLVERS, you can proceed as follows,

* $> grep -r -n “LES” $FOAM SOLVERS

The argument -r means recursive and -n will output the line number.
25

OpenFOAM® directory organization

Looking for information in OpenFOAM® source code

» Dictionaries are input files required by OpenFOAM®.

* As you can imagine, there are many dictionaries in OpenFOAM®. The easiest way to find all of
them is to do a local search in the installation directory as follows,

* Forinstance, if you are interested in finding all the files that end with the Dict word in the
tutorials directory, in the terminal type:

* $> find $FOAM TUTORIALS -name “*Dict”
(Case sensitive search)

* $> find $FOAM TUTORIALS -iname ‘*dict’
(Non-case sensitive search)

“

When given the search string, you can use single quotes ‘' or double-quotes
them).

We recommend to use single quotes, but it is up to you.

(do not mixed

26

OpenFOAM® directory organization

Looking for information in OpenFOAM® source code

+ Afew more advanced commands to find information in your OpenFOAM® installation.
» To find which tutorial files use the boundary condition slip:
« $> find $FOAM TUTORIALS -type f | xargs grep -sl ‘slip’

This command will look for all files inside the directory $FOAM TUTORIALS, then the
output is used by grep to search for the string slip.

» To find where the source code for the boundary condition slip is located:
* S$> find SFOAM SRC -name “kglip*”

» To find what applications do not run in parallel:
 $> find $WM PROJECT DIR -type f | xargs grep -sl ‘noParallel’

* OpenFOAM® understands REGEX syntax.

27

OpenFOAM® directory organization

Environment variables

Remember, OpenFOAM® uses its own environment variables.
OpenFOAM® environment settings are contained in the OpenFOAM-8/etc directory.

If you installed OpenFOAM® in the default location, they should be in:
* S$HOME/OpenFOAM/OpenFOAM-8/etc

If you are running bash or ksh (if in doubt type in the terminal echo $SHELL), you sourced the
$WM_PROJECT DIR/etc/bashrc file by adding the following line to your SHOME/.bashrc

file:
* source SHOME/OpenFOAM/OpenFOAM-8/etc/bashrc

By sourcing the file swM PROJECT DIR/etc/bashrc, we start to use OpenFOAM®
environment variables.

By default, OpenFOAM® uses the system compiler and the system MPI compiler.

When you use OpenFOAM® you are using its environment settings, that is, its
path to libraries and compilers. So if you are doing software developing, and
you are having compilation problems due to conflicting libraries or missing
compilers, try to unload OpenFOAM® environment variables

o el

28

5 EOAM® direct ot

3. Directory structure of an application/utility

29

Directory structure of an OpenFOAM® application/utility

Directory structure of a general solver

$WM PROJECT DIR/applications/solvers/solverName/
—— cCcreateFields.H

—— appName.C

L— Make

|— files

optlons

The $WM_PROJECT DIR/applications/solvers/solverName/ directory contains the
source code of the solver.

solverName/appName. C: is the actual source code of the solver.

solverName/createFields. H: declares all the field variables and initializes the solution.

The Make directory contains compilation instructions.
» Make/files:names all the source files (.C), it specifies the solverName name and
location of the output file.

» Make/options: specifies directories to search for include files and libraries to link the
solver against.

Directory structure of an OpenFOAM® application/utility

Directory structure of a general utility

$WM PROJECT DIR/applications/utilities/utilityName/
— utility dictionary
—— utilityName.C

— header files.H

L Make

— rfiles

L— options

The $WM_PROJECT DIR/utilities/utilityName/ directory contains the source code of
the utility.

» utilityName/utilityName. C: is the actual source code of the application.
 utilityName/header files.H: header files required to compile the application.
« utilityName/utility dictionary: application’s master dictionary.

« The Make directory contains compilation instructions.

» Make/files: names all the source files (.C), it specifies the utilityName name
and location of the output file.

» Make/options: specifies directories to search for include files and libraries to link the
solver against. 41

Directory structure of an OpenFOAM® application/utility

« For your own solvers and utilities, it is recommended to put the source code
in the directory $WM PROJECT USER DIR following the same structure as

in $WM_PROJECT DIR/applications/solvers and
$WM_PROJECT DIR/utilities/.

* Also, you will need to modify the files Make/files and Make/options to
point to the new name and location of the compiled binaries and libraries to
link the solver against.

* You can do anything you want to your own copies, so you do not risk
messing things up.

« This is done so you do not modify anything in the original installation, except
for updates!

o aul)

32

> EOAM® direct ot

2 Diree et : lication/utilit
4. Applications/utilities in OpenFOAM®

33

Applications/utilities in OpenFOAM®

OpenFOAM® is not a single executable.

Depending of what you want to do, you will need to use a specific application and
there are many of them.

If you are interested in knowing all the solvers, utilities, and libraries that come with
your OpenFOAM® distribution, read the applications and libraries section in the user
guide (chapter 3).

In the directory $WM PROJECT DIR/doc Yyou will find the documentation in pdf
format.

You can also access the online user guide. Go to the link
http://cfd.direct/openfoam/user-guide/#contents, then go to chapter 3 (applications
and libraries).

If you want to get help on how to run an application, type in terminal

1. $> application name -help

The option —help will not run the application; it will only show all the options
available.

You can also get all the help you want from the source code. Y

http://cfd.direct/openfoam/user-guide/#contents

Applications/utilities in OpenFOAM®

 You will find all the applications in the directory $FOAM SOLVERS (you can use the
alias so1l to go there).

 You will find all the utilities in the directory $FOAM UTILITIES (you can use the alias
util to go there).

« For example, in the directory $SFOAM SOLVERS, you Will find the directories containing
the source code for the solvers available in the OpenFOAM® installation (version 8):

* basic » financial

« combustion * heatTransfer

« compressible * incompressible
« discreteMethods * lagrangian

« DNS multiphase

* electromagnetics « stressAnalysis

 The solvers are subdivided according to the physics they address.

* The utilities are also subdivided in a similar way.
35

Applications/utilities in OpenFOAM®

* For example, in the sub-directory incompressible you will find several sub-
directories containing the source code of the following solvers:

» adjointShapeOptimizationFoam pimpleFoam
 boundaryFoam « pisoFoam

* icoFoam « shallowWaterFoam
« nonNewtonianlcoFoam simpleFoam

 Inside each directory, you will find a file with the extension *.C and the same name
as the directory. This is the main file, where you will find the top-level source code
and a short description of the solver or utility.

* For example, in the file incompressible/icoFoam/icoFoam.C you will find the
following description:

Transient solver for incompressible, laminar flow of Newtonian fluids.

36

Applications/utilities in OpenFOAM®

Remember, OpenFOAM® is not a single executable.

You will need to find the solver or utility that best fit what you want to do.

A few solvers that we will use during this course:

icoFoam: laminar incompressible unsteady solver. Be careful, do not use this
solver for production runs as it has many limitations.

simpleFoam: incompressible steady solver for laminar/turbulent flows.
pimpleFoam: incompressible unsteady solver for laminar/turbulent flows.
rhoSimpleFoam: compressible steady solver for laminar/turbulent flows.
rhoPimpleFoam: unsteady compressible solver for (laminar/turbulent flows.

interFoam: unsteady multiphase solver for separated flows using the VOF
method (laminar and turbulent flows).

laplacianFoam: Laplace equation solver.
potentialFoam: potential flow solver.
scalarTransportFoam: steady/unsteady general transport equation solver.

37

Applications/utilities in OpenFOAM®

« Take your time and explore the source code.

» Also, while exploring the source code be careful not to add unwanted modifications in
the original installation.

« If you modify the source code, be sure to do the modifications in your user directory
instead of the main source code.

38

. EOAM® direct (oot
2 Direct truct . lication/utili

| Applicati utilities in.O EOAME
5. Directory structure of an OpenFOAM® case

39

Directory structure of an OpenFOAM® case

case_name

—— system

Directory structure of a general case

—— polyMesh

boundary
faces
neighbour
owner
points

\'— transportProperties

—— controlDict
—— fvSchemes
L rfvSolution

L time directories

OpenFOAM® uses a very particular directory
structure for running cases.

You should always follow the directory structure,
otherwise, OpenFOAM® will complain.

To keep everything in order, the case directory is
often located in the path
$WM_PROJECT USER DIR/run.

This is not compulsory but highly advisable. You can
copy the case files anywhere you want.

The name of the case directory is given by the user
(do not use white spaces or strange symbols).

Depending of the solver or application you would like
to use, you will need different files in each sub-
directory.

Remember, you always run the applications and
utilities in the top level of the case directory (the
directory with the name case_name). Not in the
directory system, not in the directory constant, not
in the directory 0.

40

Directory structure of an OpenFOAM® case

Directory structure of a general case

case name case_name: the name of the case directory is given by
- 0 the user (do not use white spaces or strange
D symbols).
L U This is the top-level directory, where you run the
constant applications and utilities.
polyMesh system: contains run-time control and solver
boundary numerics.
Faces constant: contains physical properties,
, turbulence modeling properties, advanced physics
—— nelighbour and so on.
OWI?er constant/polyMesh: contains the
—— points polyhedral mesh information.
| transportProperties 0: contains boundary conditions (BC) and initial
—— system conditions (IC).
— controlDict time_directories: contains the solution and
—— fvSchemes derived fields. These directories are created by the
L fvSolution solver automatically and according to the preset
| time directories saving frequency, e.g., 1, 2, 3, 4, ..., 100.

41

5 EOAM® direct ot

2 Direet ruct : lication/utilil

| Applicati utilities in.O EOAME
5—Plrectoprstreyreofan-Uoen=00 B case

6. Running my first OpenFOAM® case setup blindfold

42

Running my first OpenFOAM® case setup blindfold

Before we start — Always remember the directory structure

case name
—— O
—— constant
L — polyMesh
—— system
L — time directories

» To keep everything in order, the case directory is often located in the path
$WM_PROJECT USER DIR/run.

« This is not compulsory but highly advisable, you can put the case in any directory of your preference.
« The name of the case directory if given by the user (do not use white spaces).

* You run the applications and utilities in the top level of this directory.

« The directory system contains run-time control and solver numerics.

« The directory constant contains physical properties, turbulence modeling properties, advanced physics
and so on.

* The directory constant/polyMesh contains the polyhedral mesh information.

« The directory 0 contains boundary conditions (BC) and initial conditions (IC).

43

Running my first OpenFOAM® case setup blindfold

Before we start — Setting OpenFOAM® cases

« As you will see, it is quite difficult to remember all the dictionary files needed to run
each application.

« Itis even more difficult to recall the compulsory and optional entries of each input file.

* When setting a case from scratch in OpenFOAM®, what you need to do is find a
tutorial or a case that close enough does what you want to do and then you can adapt
it to your physics.

« Having this in mind, you have two sources of information:

. $WM_PROJECT_DIR/tutorials
(The tutorials distributed with OpenFOAM®)

* SPTOFC

(The tutorials used during this training)

« If you use a GUI, things are much easier. However, OpenFOAM® does not come
with a native GUI interface.

« We are going to do things in the hard way (and maybe the smart way), we are going
to use the Linux terminal

44

Running my first OpenFOAM® case setup blindfold

h=1.0m

. No-slip wall

Flow in a lid-driven square cavity — Re =100
Incompressible flow

U= 1m/s

|=1.0m

Physical and numerical side of the
problem:

The governing equations of the problem are the
incompressible laminar Navier-Stokes equations.

We are going to work in a 2D domain, but the
problem can be easily extended to 3D.

To find the numerical solution we need to
discretize the domain (mesh generation), set the
boundary and initial conditions, define the flow
properties, setup the numerical scheme and solver
settings, and set runtime parameters (time step,
simulation time, saving frequency and so on).

For convenience, when dealing with
incompressible flows we will use relative pressure.

All the dictionaries files have been already preset.

45

Running my first OpenFOAM® case setup blindfold

Workflow of the case

icoFoam

L e

46

Running my first OpenFOAM® case setup blindfold

A word of caution about the solver icoFoam

The solver icoFoam is targeted for laminar incompressible unsteady solver.

* We do not recommend the use of this solver for production runs as it has no
modeling capabilities and limited post-processing features.

Instead of using icoFoam, you are better of with pisoFoam or pimpleFoam.

47

Running my first OpenFOAM® case setup blindfold

At the end of the day, you should get something like this

o<

Mesh (very coarse and 2D)

Z X EUOBA% z_x E_025
Pressure field (relative pressure) Velocity magnitude field

48

Running my first OpenFOAM® case setup blindfold

At the end of the day, you should get something like this

Y centerline

 And as CFD is not only about pretty colors, we should also
validate the results

X centerline

T ¥ ¥] T B /l
e—e Approximated solution e—e Approximated solution e
e—e Ghiaet al. e—e (hia et al. /,/
0.2k
08} o
',f“":.' S S v 2
/ °~.-\ 5}
Y N
o \ | /
2 o
X, o 06F J
£
\ T
= oot - 2 4
/ 5 s
o "‘3
L 1]
I > 04 b
[] \
¢
01k &
N\ \
L)
\)
L}
N g 0.2k o
-0.2= \- / - o\g
\
L]
> %
-“n
-0.3 1 1 1 1 00] k I 1 L L 1
0.0 0.2 0.4 0.6 0.8 10 04 02 0.0 0.2 0.4 0.6 0.8 10 12
X centerline U,

High-Re Solutions for incompressible flow using the navier-stokes equations and a multigrid method
U. Ghia, K. N. Ghia, C. T. Shin.

Journal of computational physics, 48, 387-411 (1982) 49

Running my first OpenFOAM® case setup blindfold

* Let us run our first case. Go to the directory:

SPTOFC/1010F/cavity2D

* In the case directory, you will find the README . FIRST file. In this file, you will find the general instructions of
how to run the case. In this file, you might also find some additional comments.

« You will also find a few additional files (or scripts) with the extension .sh, namely, run all. sh,
run mesh.sh, run sampling.sh, run solver.sh, and soon. These files can be used to run the case

automatically by typing in the terminal, for example, sh run solver.

* We highly recommend you to open the README . FIRST file and type the commands in the terminal, in this
way, you will get used with the command line interface and OpenFOAM® commands.

« If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases.

50

Running my first OpenFOAM® case setup blindfold

Loading OpenFOAM® environment

» If you are using the lab workstations, you will need to source OpenFOAM® (load
OpenFOAM® environment).

» To source OpenFOAM®, type in the terminal:
e S> 0f8

» To use PyFoam (a plotting utility) you will need to source it. Type in the terminal:

* S> anaconda3l

« Remember, every time you open a new terminal window you need to source
OpenFOAM® and PyFoam.

« Also, you might need to load OpenFOAM® again after loading PyFoam.

» By default, when installing OpenFOAM® and PyFoam you do not need to do this.
This is our choice as we have many things installed and we want to avoid conflicts

between applications.
51

Running my first OpenFOAM® case setup blindfold

What are we going to do?

« We will use the lid-driven square cavity tutorial as a general example to show you how to set up
and run solvers and utilities in OpenFOAM®.

* In this tutorial we are going to generate the mesh using blockMesh.

» After generating the mesh, we will look for topological errors and assess the mesh quality. For
this we use the utility checkMesh. Later on, we are going to talk about what is a good mesh.

* Then, we will find the numerical solution using icoFoam, which is a transient solver for
incompressible, laminar flow of Newtonian fluids. By the way, we hope you did not forget where
to look for this information.

» And we will finish with some quantitative post-processing and qualitative visualization using
paraFoam and OpenFOAM® utilities.

* While we run this case, we are going to see a lot of information on the screen (standard output
stream or stdout), but it will not be saved. This information is mainly related to convergence of
the simulation, we will talk about this later on.

« Afinal word, we are going to use the solver icoFoam but have in mind that this is a very basic
solver with no modeling capabilities and limited post-processing features.

» Therefore, is better to use pisoFoam or pimpleFoam which are equivalent to i coFoam but
with many more features.

52

Running my first OpenFOAM® case setup blindfold

Running the case blindfold

Let us run this case blindfold.

Later we will study in detail each file and directory.

Remember, the variable SPTOFC is pointing to the path where you unpacked the
tutorials.

You can create this environment variable or write down the path to the directory.

In the terminal window type:

1. | $> cd SPTOFC/1010F/cavity

$> 1s -1

$> blockMesh

$> checkMesh

$> icoFoam

$> postProcess -func sampleDict -latestTime

$> gnuplot gnuplot/gnuplot script

© N o 0o B~ WD

$> paraFoam

53

Running my first OpenFOAM® case setup blindfold

Running the case blindfold

* In step 1 we go to the case directory. Remember, SPTOFC is pointing to the path where you
unpacked the tutorials.

* In step 2 we just list the directory structure (this step is optional). Does it look familiar to you? In
the directory 0 you will the initial and boundary conditions, in the constant directory you will
find the mesh information and physical properties, and in the directory system you will find the

dictionaries that controls the numerics, runtime parameters and sampling.
* In step 3 we generate the mesh.

* In step 4 we check the mesh quality. We are going to address how to assess mesh quality later
on.

* In step 5 we run the simulation. This will show a lot information on the screen, the standard
output stream will not be saved.

* In step 6 we use the utility postProcess to do some sampling only of the last saved solution
(the 1atestTime flag). This utility will read the dictionary file named sampleDict located in
the directory system.

« In step 7 we use a gnuplot script to plot the sampled values. Feel free to take a look and reuse
this script.

» Finally, in step 8 we visualize the solution using paraFoam. In the next slides we are going to
briefly explore this application.

54

Running my first OpenFOAM® case setup blindfold

w ~
Menu Bar ﬁ File Edit Wiew Sources Filters Tools Catalyst Macros Help

peBE» ?2F N KA Tme) 0 [ofst

ToolbarS —m—m m—m—1 @ - TREsdRsdl: [Fee

Crash introduction to paraFoam

ParaView 4.4.0 64-bit

Pipeline Browser

Pipeline Browser ————p . s e

Properties panel —————— rroseries [nformaion |

Apply button
Press this button to
load the case or to
apply a filter

ppppppppp

i+ Apply Reset 3 Delete

Farch ... (Use Esc to clear text)
= Properties (cavityOpenFOAM) o | €
Refresh Times Skip Zero Time

X| Cache Mesh

Include Sets Groups Only
Include Zones Patch Names
%/ Interpolate volFields Extrapolate Patches
Update GUI

Use WTKPolyhedron

‘ - s Z X
% internalMesh

wall - group

empty - group

movingWall - patch

fivedWalls - patch

G

RenderViewl @

\ I

Advanced Toggle

\
3D View/Canvas

55

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam — Toolbars

P B wa ?2 F &M « Main Controls

K< > B VCR Controls (animation controls)
Time:[p [0 = * Current Time Controls

I % & S ‘e @sidcor - « Active Variable Controls

T Representation Toolbar

Outline
Points
Surface

Surface With Edges
Wireframe

R AR R G GO 3 g ¢4 « Camera Controls (view orientation)
26 @G « Center Axes Controls

H 90 ® Q=20 « Common Filters

L B2 & QF « Data Analysis Toolbar

56

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam — Mesh visualization

Select surface With Edges in the Representation Toolbar Fit to screen Select the -Z view

Select Solid Color inthe LI Paraviewff 4.0 64-bit SieIE!
ACtIVe Varlable COntrOIS File Edit Wiew Sources Filters Tools Catalyst Macros
— B o ?2F &N KA DDM@ Time: =ofs1

B & S @ solid Color | 7| “|surface With Edges |~ PS5 i SO CQp -5 I &3 .u @& G
E90PRPOE2L® L 82 » 8F %

Pipeline Browser .. O Layout #1 X L+ |

Click on the eyeball in B buitin: B BED R EE A A X RenderViewl (m|8 0] # |x]
the Pipeline Browser {0 — =————)p =
hide/unhide the object

Properties | Information |

Properties

Apply Beset 3 Delete ?

Search ... (use Esc to clear text)

%/ Interpolate volFields Extrapolate Patches

Update GUI

Use WTKPolyhedron

‘ «|Mesh Parts
Select mesh parts to visualize. X amaltosh
By default it will automatically — e———p 0

. fivedWalls - patch
select internalMesh frontAndBack - patch

‘ *®|Volume Fields

X p
= U

Lagrangian Fields

Select the volume fields to
visualize. By default it will select
Uandp

57

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam — 3D View and mouse interaction

Mouse interaction in the

3D view

[/ ParaView 4.4.0 64-bit

Rotate

Select view orientation in the Camera Controls

File Edit Wiew Sources Filters Tools Catalyst Macros Help

peBE» ?2F N KA Tme) 013

il
i % & &t [@sold color - -] ‘[suface withEdges [-] * [€] BE] ©3 28 £ 8% 28 28 &2 @ @ G
EOCPRIVOELO % Lo we %
Pipeline Browser O Layout #1 X L+ |

%o BN BB B R R oA

RenderViewl @

ppppppppp

%/ Interpolate volFields Extrapolate Patches

Update GUI

Use WTKPolyhedron

frontAndBack - patch

‘ *®|Volume Fields

X p
= U

Lagrangian Fields

8] AN

I

\
3D View/Canvas

58

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam - Fields visualization

Select Last Frame in the VCR Controls Current Time Controls

'ﬂ - ParaView 4.4.0 64-bit 2
File Edit Wiew Sources Filters Tools Catalyst Macros Help

o A ? & % '17(< <l » > pl & Times0 S0 [=lofs1

()% = e Qlou | [Magnit[-] [Surface DRE g4 (Beea
/@@@@"@ MG o (Ll DM 22 ok
Turn on/off color bar >

Pipelin: Olayout #1 X | + |

oo B OB EY B R BB OE oA K RenderViewl @

x

Select U in Active Variable Controls

T
B builtin:
cavityOpenFOA" .

Select surface in the
Representation Toolbar

Select Magnitude in the

Properties | Information |

Properties
drop down menu »
P, ~—=T i 2
Search ... (use Esc to clear text)
%/ Interpolate volFields Extrapolate Patches
Update GUI
agnitude
Use WTKPolyhedron —1.000e+00
[%/Mesh Parts
% internalMesh
wall - group

empty - group
movingWwall - patch
fivedWalls - patch
frontAndBack - patch

[¥volume Fields
R

u
u_o

Lagrangian Fields —0.000s+00

Select volume fields to visualize.
By default it will select U and p.

59

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam - Filters

Filters are functions that generate, extract or derive features from the input data.

They are attached to the input data.
You can access the most commonly used filters from the

it

st

OEE2®

You can access all the filters from the menu Filter.

W FaraView 44.0 64-bit

File Edit View Sources Filters Tools Catalyst Macros

Search.

Recent

AMR
Annotation

CTH

Common

Data Analysis
Material Analysis
Quadrature Points
Statistics
Temporal
Alphabetical

Cul+Space

AMR Contour

Connect:

CutPlane
AMR Dual Clip

Add Field Arrays
Angular Periodic Filter

Annotate Global Data
Annctate Time Filter

Block Scalars

Calculator

Cell Centers

Cell Data to Point Data
C

an

Clean Cells to Grid
Clean to Grid

Clip
Clip
C t
Compute Derivatives
Compute Quartiles
Connectivity
Contingency Statistics
Contour

Delaunay 20
Delaunay 30
Descriptive Statistics
Elevation

Environment Annotation

act Bag Plots
Extract Block

Extract CTH Parts
Extract Cells By Region

Extract Component
Extract Edges
Extract Generic

Extract Location
Extract Region Surface
[Extract Sefection
Extract Subse
Extract Surface
WP FFT Of Selection Over Time

(Gaussian Resampling

Generate lds

‘Generate Quadrature Points

Generate Quadrature Scheme Dictionary
© oiyph
Glyph With Custom Source
Gradient
‘Gradient Of Unstructured DataSet
Grid Connectivity
Group Datasets

| Histogram
-
image C c
ImageResampling
Integrate Variables
Interpolate to Quadrature Points
Intersect Fragments
150 Volume
K Means
Legacy Glyph

Lewel Scala

e Data T

Median
Merge Blocks
Mesh Quality
Multicorrelative Statistics

@ Normal Glyphs
O pth L

.

E<]

Outline
Outline Comers
Outline Cury
ParticlePath
ParticleTracer

Pass Arrays

Plot Data

Plot Global Variables Over Time
Plot On Intersection Curves

Plot On So

Plot Over Line
Plat Selection Over Time
Point Data to Cell Data
Principal Component Analysis
Probe Location

Programmable Filter
Python Annotation
Python Calculator
Quadric Clustering
Random Attributes
Random Vectors
Rectili
Rectilinear Grid Connectivity
Reflect

inea ta Point Set

Scatter Plot
Shrink

U Slice

Slice (demand-driven-composite)

ta

StreakLine

Stream Tracer

Stream Tracer With Custom Source
Subdivide

Surface Flow

Common Filters toolbar

Surface Vectors

Struc

Temporal Cache

Temparal Interpolator
Temporal Particles To Pathiines
Temporal Shift Scale
Temporal Snap-to-Time-Step
Temporal Statistics

Tessellate
Tetrahedralize

Texture Map to Cylinder
Texture Map to Plane
Texture Map 1o Sphere
Threshold

Transform

Tran

Tube
Warp By Scalar
Warp By Vector
Youngs Material Interface

60

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam - Filters

Filters are attached
to the input data

Even if the case is 2D, it will be
visualized as if it were a 3D case.

Notice that there is only one cell in
the Z direction.

Let us use the slice filter. This filter
will create a cut plane.

Let us create a slice normal to the
Z direction.

T~

@ W cavityOpenFOAM;

L ParaView 4.4.0 64-bit ORCRES

File Edit Wiew Sources Filters Tools Catalyst Macros Help

PpEBE® » ?2F D KA DP S Tmels0 50 [=of 51
@ .1 == ‘® eU ~||Magnit. | ~| | Surface With Edges |~| = [ﬁ) ;‘2 n‘, @,‘. ,‘A f_g g; @ @ G
008V OELGL L we ¥

Pipeline Browser Olayout #1X | + |
B buitin: oo @K R A A X

RenderViewl @

Properties | Information |
Properties
Apply Reset Delete
2RRY L=5 #D U Magnitude
Search ... (use Esc to clear text) = EEE:Ee
‘Pownt Fields

= Display (UnstructuredGridReprasentation)
Cube Axes Visibility
Representation | surface With Edges

Coloring

o u ~ | Magnitude

B show & Edit

61

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam - Slice filter

1. Select the s1ice filter

ParaView 4.4.0 64-bit
File Edit Wiew Sources Filters Tools Catalyst Macros Help

o 2?2 md KA > S Tme

50 [5]of 51
2 ey | [Magniti+| [surface DRE g4 (Beea
E90PRPOESEL0®L La2wd+
Pipeline Browser O Layout #1 X L+ |
. B builtin: B %o B L] R E BB om A X
If you want to erase a filter, ® W cmvtyopenroan
right click on it and select ———————pp = FEE
Delete
Properties | Information |
Properties
4. PreSS Apply _> 1 Apply D Beset 3 Delete ?
Search ... (use Esc to clear text)
= Properties (Slicel) o€ |
3. Optional - Turn off the siee Wpe Flane =

. ﬁ fShowP\anes
option Show Plane >

Note: Use 'P' key to pick origin position on mesh
Snap Picked Point on Mesh Point

Origin | 0.5 0.5 0.5
Normal 0 0 1
X Normal Reset Bounds
¥ Normal
Z Normal

Camera Normal Center on Bounds
Reset Camera to Normal
Crinkle slice
¥ Triangulate the slice

. . Value Range: [-0.866025, 0.866025]
2. Select the direction z Normal. "
Additionally you can choose the

%

RenderViewl @

agnitude
—1.000e+00

—0.000e+00

origin of the plane (by default is the

mid section)

62

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam — Glyph filter

4. Color the colors using Solid Color
1. Select the G1yph filter. This , _ _ :
filter will be applied on the P e T T A T o
Slicel filter 2 BB . ? F & 4 Q> S mmelso S0 [Slof51

SN O YT I -] [surface DRE g4 (Beea
BO008 P0oc 200 e re
Pipeline Browser O Layout #1 X L+ |
ﬁbuwlt\n: & %o @O R RE R A an ol il @

n
@ W cavityDpenFOAM
N

Notice that the filter @ @islicel

Glyph was applied on — —— o EEEH

the slicel filter.

L

Properties | Information |
eeeeeeeee

3. Press Appl vy ﬁ 1 Apply. B Reset 3 Delete

¥

R\
3
)

e
(’}“
N N
\'_‘}

RS S T

\\QQ&P%
e

Shaft Resolution = J————— |6
Shaft Radius O= 0.03

N
2RRR RN

Invert

\

-
N

VLV ENLLL

Active Attributes =
. . - =
| R W -
2. Filter options ot E \\ Mﬁ// / =X
Orientation %ﬁ‘/'//% -
rient Bt = 5
x o. t A——;T/://;/// 0.5
Scaling W / / /7_"
Scale Mode off ‘__:/0/ / J——
Scale Factor — O [o1 X - '-—,é-—
Notice that the vectors are plotted in the Masking
X Glyph Mode | uniform Spatial Distribution
cell vertices. To plot the vectors at the e ——

MNumber Of 5000

cell centers, use the filter ce11l
centers and replot the vectors.

63

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam — Plot Over Line filter

1.a. Select the P1ot Over Line

filter.
m Paraview 4.4.0 64-bit SR
File Edit Wiew Sources Filters Tools Catalyst Macros Help
PpOBEOma 2w KA>PMS o s s
1.b. Alternative, you can select P1ot TEELEY D1 e) HE s 388 [Feeca
Over Line filter from the Data —— —
An I | T I r Pipeline Browser Olayout #1x | + |
a ys S 00 ba ﬁbuwlt\n: o0 B O I B R BB oE oA RenderViewl [E]@w
@ ¢CSV|ty0penFOAM
/ (0.5,1,1)
Notice that we are using the filter in
aclean Pipeline
Properties
3.Press Apply — =———pp [ciapply | Ot | %oDelete | ?] 7
['iearch ... (use Esc to clear text)] EEEEY
[= Properties (PlotOverLinel) I@@‘
Probe Type [H\gh Resolution Line Source -
(%t Show Line
[F\ck Both Points v] [Snap On Mesh Point
Pointl 0.5 | [o][1 |
Peintz (0.5][1][1]
[X Axis] =
[Y Axis] ;
[7 fais o 0.5.0. 1 ~00008+00
2. Enter the coordinates of the line e = (0.5,0,1)

64

Running my first OpenFOAM® case setup blindfold

Crash introduction to paraFoam - Filters

4. Optional — Use the VCR Control to change the frame.
The line chart view will be updated automatically

m ParaView 4.4.0 64-bit W ¥
File Edit Wiew Sources Filters Tools Catalyst Macros Ip
PpEBE® » ? & x '7(< <l » > pl & Times0 50 [=lof51
; - ¢ = A 7| 7|Representation e Xl D L . 2 @ @ -
FO0UBPOELeL e re
Pipeline Browser O Layout #1 X L+ |
B buitin: H & oo @R R sRendeviews (mB[ofex] 8 8 w@ o Linechartview1 (m][B o] # [x]
. _ .Ecawtyt)penFOAM
3. Optional Tp save the >« mEEEE —
sampled data in CSV —ux
. . 094 -
format, click on the filter. —uz
Then click on the File 05 |
menu and select the
option Ssave Data 07
064
054
Properties | Information |
Properties
0.44
! Apply Reset 3 Delete ?
Search ... (use Esc to clear text) 0.34
X Axis Parameters [+]
Use Index For Xaxis 024
X Array Name | arc_length -
Series Parameters 014
“/ariable | | Legend Name |
xp Hr 0
X arc_length [l arc_length
2. Select the variables to
. . . _’ x U A E
plot in the line chart view % Ux B X 3 04
U Magnit...] U Magnitude =
- n 02 . - ! ! ,
= = 0 0z 04 06 08 1
8] I

1. Click on the line chart view (the blue frame indicates that it is the active view)

65

Running my first OpenFOAM® case setup blindfold

5] Running the case blindfold with log files

» In the previous case, we ran the simulation but we did not save the standard output
stream (stdout) in a Iogfile.

* We just saw the information on-the-fly.
« Our advice is to always save the standard output stream (stdout) in a 1ogfile.

» ltis of interest to always save the 1og as if something goes wrong and you would like
to do troubleshooting, you will need this information.

« Also, if you are interested in plotting the residuals you will need the 1ogfile.

* By the way, if at any point you ask us what went wrong with your simulation, it is likely
that we will ask you for this file.

« We might also ask for the standard error stream (stderr).

66

Running my first OpenFOAM® case setup blindfold

5] Running the case blindfold with log files
* There are many ways to save the Iog files.
* From now on, we will use the Linux tee command to save Iogfiles.

« To save a 1og file of the simulation or the output of any utility, you can proceed as

follows:

1. $> foamCleanTutorials

2. $> blockMesh | tee log.blockMesh
3. $> checkMesh | tee log.checkMesh
4. $> icoFoam | tee log.icoFoam

1

The vertical bar or pipelining operator is used to concatenate commands

* You can use your favorite text editor to read the log file (e.g., gedit, vi, emacs).

67

Running my first OpenFOAM® case setup blindfold

5] Running the case blindfold with log files

In step 1 we erase the mesh and all the folders, except for 0, constant and system. This
script comes with your OpenFOAM® installation.

In step 2, we generate the mesh using the meshing tool blockMesh. We also redirect the
standard output to an ascii file with the name l1og.blockMesh (it can be any name). The tee
command will redirect the screen output to the file 1og.blockMesh and at the same time will
show you the information on the screen.

In step 3 we check the mesh quality. We also redirect the standard output to an ascii file with the
name Iog.checkMesh (it can be any name).

In step 4 we run the simulation. We also redirect the standard output to an ascii file with the
name log.icoFoam (it can be any name). Remember, the tee command will redirect the
screen output to the file 1og. icoFoam and at the same time will show you the information on

the screen.

To postprocess the information contained in the solver log file 1og. icoFoam, we can use the
utility foamLog. Type in the terminal:

* $> foamLog log.icoFoam

This utility will extract the information inside the file 1og. i coFoam. The extracted information is
saved in an editable/plottable format in the directory 1ogs.

At this point we can use gnuplot to plot the residuals. Type in the terminal:

i $> gnuplot 68

Running my first OpenFOAM® case setup blindfold

5] Running the case blindfold with log files

To plot the information extracted with foamLog using gnuplot, we can proceed as
follows (remember, at this point we are using the gnuplot prompt):

1. | gnuplot> set logscale y
Set log scale in the y axis

2. | gnuplot> plot ‘logs/p 0’ using 1:2 with lines
Plot the file p_0 located in the directory logs, use columns 1 and 2 in the file p_0, use lines to output the plot.

3. gnuplot> plot ‘logs/p 0’ using 1:2 with lines, ‘logs/pFinalRes 0’ using 1:2 with lines
Here we are plotting to different files. You can concatenate files using comma (,)

4. gnuplot> reset
To reset the scales

5. | gnuplot> plot ‘logs/CourantMax 0’ u 1:2 w 1
To plot file CourantMax_0. The letter u is equivalent to using. The letters w | are equivalent to with lines

6. gnuplot> set logscale y
7. | gnuplot> plot [30:50][] ‘logs/Ux 0’ u 1:2 w 1 title ‘Ux’,‘logs/Uy 0’ u 1:2 w 1 title ‘Uy’
Set the x range from 30 to 50 and plot tow files and set legend titles

8. gnuplot> exit
To exit gnuplot

69

Running my first OpenFOAM® case setup blindfold

5] Running the case blindfold with log files
« The output of step 3 is the following:

1 T T T T T T T T
'logs/p_0'

using 1:2' —
using 1:2

ogs/p_
'legs/pFAnalRes_0"'

< JNRY - I—————

« The fact that the initial residuals (red line) are dropping to the same value of the final
residuals (monotonic convergence), is a clear indication of a steady behavior.

70

Running my first OpenFOAM® case setup blindfold

[5] Running the case blindfold with log files and plotting the residuals

« ltis also possible to plot the 1og information on the fly.
* The easiest way to do this is by using PyFoam (you will need to install it):
. $> pyFoamPlotRunner.py [options] <foamApplication>

» If you are using the lab workstations, you will need to source PyFoam. To source PyFoam, type in the
terminal:

. $> anaconda3

» If you need help or want to know all the options available,
. $> pyFoamPlotRunner.py —--help

« Torun this case with pyFoamPlotRunner.py, inthe terminal type:
. $> pyFoamPlotRunner.py icoFoam

» If you do not feel comfortable using pyFoamPlotRunner.py to run the solver, it is also possible to plot the
information saved in the 1og file using PyFoam.

« To do so you will need to use the utility pyFoamPlotWatcher.py. For example,
* S$> icoFoam | tee log.icoFoam

* Then, in a new terminal window launch pyFoamPlotWatcher, as follows,
. $> pyFoamPlotWatcher.py log.icoFoam

* You can also use pyFoamPlotWatcher.py to plot the information saved in an old 1og file.

71

Running my first OpenFOAM® case setup blindfold

[5] Running the case blindfold with log files and plotting the residuals

* This is a screenshot on my computer. In this case, pyFoamPlotRunner is plotting
the initial residuals and continuity errors on the fly.

X a
Residuals File Edit View Bookmarks Settings Help o Gnuplot
-oSEIEEREEY ! ! ‘ ‘ ! ! ! ‘ - min(U) = (0.00028445255 -0.00028138798 0) at lc Cont inuity ~
NFPURI = F max(U) = (0.00028445255 -0.00028138798 0) at lc 1e-17 — 519
. Globall ——
1.01000000000 |- Time = 49.99 a1 | 4e-13
: 3e-13
Do COEBETED |5 - 5 Courant Number mean: 0.044365026 max: 0.16800273 1 °
R — smoothSolver: Solving for Ux, Imtwlrenmml= 68-18 1 i .\ VM 2e-19 5 0
= smoothSolver: Solving for Uy, Initial residual = ; i w | 0]
1500001000000 |- DICPCG: Solving for p, Initial residual = 6. 72917454&1 i i . 1*1i
G time step continuity errors : sum local = 2.509686% % | M “|\ H |4 o E
10000100000 - ExecutionTime = 4.58 s ClockTime = 15 s ER “| ”| Hh ‘ M M |“” 3
= 3% 115
)+ 00000010000 1 fieldMinMax minmaxdomain write: “ M‘l V‘
1.00000001000 - min(p) = -0.37208362 at location (0.025 0.975 € 0 | . i -2e-15
max(p) = 0.77640927 at location (0.975 0.975 0. | ! | .
1.00000000100 - Im"l.n(U) = (0.00028445255 -0.00028138799 0) at lc - | :
max(U) = (0.00028445255 -0.00028138799 0) at 1c -4e-19
1.00000000010 g : : . :
TiIE () Time = 50 e T T T T L
I 45.8749, 3.44348e-12 Time [s]

Courant Number mean: 0.044365026 max: 0.16800273 ¥=-1.91343 y= 5.87315e-18 y2= 6.25679e-20

smoothSolver: Solving for Ux, Initial residual = 1.0907508e-09, Final residual = 1.0907508e-09, No Iterations 0@
smoothSolver: Solving for Uy, Initial residual = 1.4677462e-09, Final residual = 1.4677462e-09, No Iterations @
DICPCG: Solving for p, Initial residual = 1.0020944e-06, Final residual = 1.0746895e-07, No Iterations 1

time step continuity errors : sum local = 4.0107145e-11, global = -5.0601748e-20, cumulative = 2.637831e-18
ExecutionTime = 4.59 s ClockTime = 15 s

. fieldMinMax minmaxdomain write:
woltdynamics min(p) = -0.37208345 at location (0.025 0.975 0.5)

e — max(p) = 0.77640927 at location (0.975 0.975 0.5)
onthmisation & ot analutics min(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)
o b max(U) = (0.00028445255 -0.00028138799 0) at location (0.025 @.025 0.5)
End L
>] cavity : pyFoamPlotWatch
@ - - i icavityf Dolphin A Gnuplot ‘A Gnuplot <2> . cavity : pyFoamPlotWatch — Kons... ® it I a11:25PM =

72

Running my first OpenFOAM® case setup blindfold

Stopping the simulation

* Your simulation will automatically stop at the time value you set using the keyword endTime in
the controlDict dictionary.

endTime 50;

« If for any reason you want to stop your simulation before reaching the value set by the keyword
endTime, you can change this value to a number lower than the current simulation time (you
can use 0 for instance). This will stop your simulation, but it will not save your last time-step or
iteration, so be careful.

1 R B L *\
2 | ========= | |
3 1 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 1 \\ / O peration | Version: 8 |
5 | \\ / A nd | Web: www .OpenFOAM. org |
6 | \\/ M anipulation | |
7 Ao */
8 FoamFile
9 {
10 version 2.0;
11 format ascii;
12 class dictionary;
13 object controlDict;
14 }
15 //*************************************//
16
17 application icoFoam;
18
19 startFrom startTime;
20
21 startTime 0;
22
28, stopAt endTime;
24
25 endTime 50; 4

73

Running my first OpenFOAM® case setup blindfold

Stopping the simulation

« If you want to stop the simulation and save the solution, in the controlDict dictionary made
the following modification,

stopAt writeNow;
This will stop your simulation and will save the current time-step or iteration.

1 [rmmm *e CHd —F o *\
2 | ========= [|
3 1 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 1 \\ / O peration | Version: 8 |
5 | \\ / A nd | Web: www . OpenFOAM. org |
6 | \\/ M anipulation | |
7 Ao */
8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object controlDict;

14 }

15 //*************************************//
16

17 application icoFoam;

18

19 startFrom startTime;

20

21 startTime 0;

22

23 stopAt writeNow; 4

24

25 endTime 50;

74

Running my first OpenFOAM® case setup blindfold

Stopping the simulation

« The previous modifications can be done on-the-fly, but you will need to set the
keyword runTimeModifiable to true in the controlbDict dictionary.

« By setting the keyword runTimeModifiable to true, you will be able to modify most of
the dictionaries on-the-fly.

1 [——————— I ———————————______*_ G~k ————————————————————————_—___—_% \
2 | ========= | |
3 1 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 I \\ / O peration | Version: 8 I
5 | \\ / A nd | Web: www . OpenFOAM. org |
6 | \\/ M anipulation | |
7 \ o e % /
8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object controlDict;

14 }

44

45 runTimeModifiable true; 4

46

75

Running my first OpenFOAM® case setup blindfold

Stopping the simulation

* You can also kill the process. For instance, if you did not launch the solver in background, go to its terminal
window and press ctr1-c. This will stop your simulation, but it will not save your last time-step or iteration, so

be careful.

« If you launched the solver in background, just identify the process id using top or htop (or any other process
manager) and terminate the associated process. Again, this will not save your last time-step or iteration.

» To identify the process id of the OpenFOAM® solver or utility, just read screen. At the beginning of the output
screen, you will find the process id number.

0 0 S S S S S S S S S S *\
| ========= | |

I\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

I\ / O peration | Version: 8

| \\ / A nd | Web: www .OpenFOAM. org

| \\/ M anipulation |
S0 0 S S S S */

Build : 4.x-e964d879e2b3

Exec : icoFoam

Date : Mar 11 2017

Time : 23:21:50

Host : "linux-ifxc"

PID : 3100 < Process id number
Case : /home/joegi/my cases course/5x/1010F/cavity

nProcs : 1

sigFpe : Enabling floating point exception trapping (FOAM SIGFPE) .

fileModificationChecking : Monitoring run-time modified files using timeStampMaster
allowSystemOperations : Allowing user-supplied system call operations
//*************************************//

76

Running my first OpenFOAM® case setup blindfold

Stopping the simulation

« When working locally, we usually proceed in this way:

* $> icoFoam | tee log.icofoam

This will run the solver icoFoam (by the way, this works for any solver or utility), it will save the
standard output stream in the file 1og. icofoam and will show the solver output on the fly.

« If at any moment we want to stop the simulation, and we are not interested in saving the last
time-step, we press ctrl-c.

« If we are interested in saving the last time step, we modify the controlDict dictionary and
add the following keyword

stopAt writeNow;

 Remember, this modification can be done on the fly. However, you will need to set the keyword
runTimeModifiable to yes in the controlDict dictionary.

77

Running my first OpenFOAM® case setup blindfold

Cleaning the case folder

« If you want to erase the mesh and the solution in the current case folder, you can type in the
terminal,

S> foamCleanTutorials

If you are running in parallel, this will also erase the processoxrN directories. We will talk about
running in parallel later.

» If you are looking to only erase the mesh, you can type in the terminal,
$> foamCleanPolyMesh

« If you are only interested in erasing the saved solutions, in the terminal type,

S> foamListTimes -rm

« If you are running in parallel and you want to erase the solution saved in the processorN
directories, type in the terminal,

$> foamListTimes —-rm -processor

78

7. A deeper view to my first OpenFOAM® case setup

79

A deeper view to my first OpenFOAM® case setup

« We will take a close look at what we did by looking at the case files.

» The case directory originally contains the following sub-directories: 0, constant, and
system. After running i coFoam it also contains the time step directories 1, 2, 3,
...,48, 49, 50, the post-processing directory postProcessing, and the
log.icoFoamfile (if you chose to redirect the standard output stream).

» The time step directories contain the values of all the variables at those time
steps (the solution). The 0 directory is thus the initial condition and boundary

conditions.

« The constant directory contains the mesh and dictionaries for thermophysical,
turbulence models and advanced physical models.

 The system directory contains settings for the run, discretization schemes and
solution procedures.

 The postProcessing directory contains the information related to the
functionObjects (we are going to address functionObjects later).

« The icoFoam solver reads these files and runs the case according to those
settings.

80

A deeper view to my first OpenFOAM® case setup

Before continuing, we want to point out the following:

Each dictionary file in the case directory has a header.
Lines 1-7 are commented.
You should always keep lines 8 to 14, if not, OpenFOAM® will complain.

According to the dictionary you are using, the class keyword (line 12)
will be different. We are going to talk about this later on.

From now on and unless it is strictly necessary, we will not show the
header when listing the dictionaries files.

1 [——————— I ———————————______*_ G~k ————————————————————————_—___—_% \
2 I ==—==——== | |
3 1 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 I\ / O peration | Version: 8 |
5 I\ 7/ A nd | Web: www . OpenFOAM. org I
6 | \\/ M anipulation | |
7 K /
8 FoamFile

9 {

10 version 2.0

11 format ascii;

12 lass dictionary; 4

13 object controlDict;

14 }

81

A deeper view to my first OpenFOAM® case setup

Let us explore the case directory

82

A deeper view to my first OpenFOAM® case setup

D The constant directory

(and by the way, open each file and go thru its content)

 In this directory you will find the sub-directory polyMesh and the dictionary file
transportProperties.

» The transportProperties file is a dictionary for the dimensioned scalar nu, or the
kinematic viscosity.

.01; //Re 100

17 nu nu [0
0.001, //Re 1000

0
18 //nu nu [

* Notice that line 18 is commented.
* The values between square bracket are the units.

 OpenFOAM® is fully dimensional. You need to define the dimensions for C
each field dictionary and physical properties defined.

* Your dimensions shall be consistent.

83

A deeper view to my first OpenFOAM® case setup

Dimensions in OpenFOAM® (metric system)

Property Unit

Mass Kilogram

Length meters

Time second

Temperature Kelvin

Quantity moles
Current ampere
Luminuous intensity candela

Symbol
kg
m
s
K

mol

cd

[1(kg), 2 (m), 3 (s), 4 (K), 5 (mol), 6 (A), 7 (cd)]

84

A deeper view to my first OpenFOAM® case setup

D The constant directory

(and by the way, open each file and go thru its content)

» Therefore, the dimensioned scalar nu or the kinematic viscosity,

17 nu nu [02-100001] 0.01;

has the following units
[O m*2 s*-1 0 0 O O]

Which is equivalent to
2
m
v =0.01—
S
85

A deeper view to my first OpenFOAM® case setup

D The constant directory

(and by the way, open each file and go thru its content)

In this case, as we are working with an incompressible flow, we only need to define
the kinematic viscosity.

Later on, we will ask you to change the Reynolds number, to do so you can change
the value of nu. Remember,

_pxUxL UXL
- i’ =—

Re

You can also change the free stream velocity U or the reference length L.

86

A deeper view to my first OpenFOAM® case setup

D The constant directory

(and by the way, open each file and go thru its content)

Depending on the physics involved and models used, you will need to define more
variables in the dictionary transportProperties.

For instance, for a multiphase case you will need to define the density rho and
kinematic viscosity nu for each single phase. You will also need to define the surface

tension 0.

Also, depending of your physical model, you will find more dictionaries in the constant
directory.

For example, if you need to set gravity, you will need to create the dictionary g.

If you work with compressible flows you will need to define the dynamic viscosity mu,
and many other physical properties in the dictionary thermophysicalProperties.

As we are not dealing with compressible flows (for the moment), we are not going into
details.

87

A deeper view to my first OpenFOAM® case setup

D The constant/polyMesh directory

(and by the way, open each file and go thru its content)

» In this case, the polyMesh directory is initially empty. After generating the mesh, it
will contain the mesh in OpenFOAM® format.

» To generate the mesh in this case, we use the utility b1 ockMesh. This utility reads
the dictionary blockMeshDict located in the system folder.

» We will briefly address a few important inputs of the b1 ockMeshDict dictionary.
« Do not worry, we are going to revisit this dictionary during the meshing session.

* However, have in mind that rarely you will use this utility to generate a mesh for
complex geometries.

* Go to the directory system and open blockMeshDict dictionary with your favorite
text editor, we will use gedit.

88

A deeper view to my first OpenFOAM® case setup

) The system/blockMeshDict dictionary

« The blockMeshDict dictionary first defines a list with a number of vertices:

+ The keyword convertToMeters (line 17), is a scaling factor. In this case
L. convertioweters 1 we do not scale the dimensions.
19 in 0;
20 2:2 1 * In the section vertices (lines 37-58), we define the vertices coordinates of
21 ymin 0; < the geometry. In this case, there are eight vertices defining the geometry.
22 ymax 1 OpenFOAM® always uses 3D meshes, even if the simulation is 2D.
23 zmin O;
24 1;
25 e * We can directly define the vertex coordinates in the section vertices
26 xcells 20; (commented lines 49-56), or we can use macro syntax.
27 ycells 20; <
A BeSR 2 * Using macro syntax we first define a variable and its value (lines 19-24),
29 . .
37 e e and then we can use them by adding the symbol $ to the variable name
38 ((lines 39-46).
39 ($xmin $ymin $zmin) //vertex 0
I <:mx :Y“'in :zm:m; x"er:ex : + Inlines 26-28, we define a set of variables that will be used at a later time.
ac
15 i e iomin) iy i These variables are related to the number of cells in each direction.
43 ($xmin $ymin $zmax) //vertex 4 i i . i
44 ($xmax S$ymin $zmax) //vertex 5 * Finally, notice that the vertex numbering starts from 0 (as the counters in
45 GFer¥s LR Es G NSO c++). This numbering applies for blocks as well.
46 ($xmin $ymax $zmax) //vertex 7
47
48 /*
49 (0 0 0)
50 (1 00)
51 (110)
52 (0 10)
53 (0 0 0.1)
54 (1 00.1)
55 (110.1)
56 (010.1)
57 */
58 iE

89

A deeper view to my first OpenFOAM® case setup

) The system/blockMeshDict dictionary

« The blockMeshDict dictionary also defines the boundary patches:

* In the section boundary, we define all the surface
o e patches where we want to apply boundary conditions.
movingWa 4 ame
X { et " * This step is of paramount importance, because if we do
o R L S not define the surface patches, we will not be able to
7 C e 4 Connectivity apply the boundary conditions.
e ;) « For example:
81 fixedWalls . . .
82 { * Inline 73 we define the patch name movingWall
3 txpe wall; (the name is given by the user).
85 (
86 (047 3) * Inline 75 we give a base type to the surface patch.
87 (2 6 5 1) . .
= (1540 In this case wall (do not worry we are going to talk
ot })i about this later on).
02 il + Inline 78 we give the connectivity list of the
> cYpe empty; vertices that made up the surface patch or face,
05 (thatis, (3 7 6 2). Have in mind that the vertices
o e need to be neighbors and it does not matter if the
- })i ordering is clockwise or counterclockwise.
e « Remember, faces are defined by a list of 4 vertex
numbers, e.g., (3 7 6 2).

90

A deeper view to my first OpenFOAM® case setup

) The system/blockMeshDict dictionary

To sum up, the blockMeshDict dictionary generates in this case a single block with:

X/Y/Z dimensions: 1.0/1.0/1.0

Cells in the X, Y and Z directions: 20 x 20 x 1 cells.

One single hex block with straight lines.

Patch type wall and patch name fixedWalls at three sides.
Patch type wall and patch name movingWall at one side.

Patch type empty and patch name frontAndBack patch at two sides.

If you are interested in visualizing the actual block topology, you can use paraFoam
as follows,

$> paraFoam -block

91

A deeper view to my first OpenFOAM® case setup

) The system/blockMeshDict dictionary

As you can see, the blockMeshDict dictionary can be really tricky.

If you deal with really easy geometries (rectangles, cylinders, and so on), then you

can use blockMesh to do the meshing, but this is the exception rather than the rule.

When using snappyHexMesh, (a body fitted mesher that comes with OpenFOAM®)
you will need to generate a background mesh using bl ockMesh. We are going to
deal with this later on.

Our best advice is to create a template and reuse it.

Also, take advantage of macro syntax for parametrization, and #calc syntax to
perform inline calculations (lines 30-35 in the blockMeshDict dictionary we just

studied).

We are going to deal with #codeStream syntax and #calc syntax during the
programming session.

92

A deeper view to my first OpenFOAM® case setup

[3) The constant/polyMesh/boundary dictionary

« First of all, this file is automatically generated after you create the mesh
using blockMesh oOr snappyHexMesh, or when you convert the mesh from

a third-party format.

* In this file, the geometrical information related to the base type patch of
each boundary (or surface patch) of the domain is specified.

 The base type boundary condition is the actual surface patch where we are
going to apply a numerical type boundary condition (or numerical boundary
condition).

« The numerical type boundary condition assign a field value to the surface
patch (base type).

« We define the numerical type patch (or the value of the boundary
condition), in the directory 0 or time directories.

93

A deeper view to my first OpenFOAM® case setup

[3) The constant/polyMesh/boundary dictionary

* In this case, the file boundary is divided as follows

18 3 < Number of surface patches
o ¢ . In the list bellow there must be 3 patches
movingWall .
21 { definition.
22 type wall;
23 inGroups 1(wall) ; movingWaII
24 nFaces 20;
25 startFace 760;
26 } frontAndBack
27 fixedWalls
28 {
29 type wall;
30 inGroups 1(wall) ;
31 nFaces 60; \"
32 startFace 780;
88 } = C
34 frontAndBack g =
35 { 5 '8
36 type empty; g X
37 inGroups 1 (empty) ; = =
38 nFaces 800;
39 startFace 840;
40 }
41) ¥
=l frontAndBack
fixedWall

94

A deeper view to my first OpenFOAM® case setup

[3) The constant/polyMesh/boundary dictionary

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

movingWall
{
type
inGroups
nFaces
startFace
}
fixedWalls
{
type
inGroups
nFaces
startFace
}
frontAndBack
{
type
inGroups
nFaces
startFace

» Name
wall; @t Type
1(wall);

20;
760;

<
wall; <«
1(wall) ;

60;
780;

<
empty; <
1 (empty) ;

800;
840;

In this case, the file boundary is divided as follows

Name and type of the surface patches

* The name and type of the patch is given by
the user.

* In this case the name and type was assigned
in the dictionary b1ockMeshDict.

* You can change the name if you do not like it.
Do not use strange symbols or white spaces.

* You can also change the base type. For
instance, you can change the type of the
patch movingWall from wall to patch.

* When converting the mesh from a third party
format, OpenFOAM® will try to recover the
information from the original format. But it
might happen that it does not recognizes the
base type and name of the original file. In this
case you will need to modify this file manually.

95

A deeper view to my first OpenFOAM® case setup

[3) The constant/polyMesh/boundary dictionary

In this case, the file boundary is divided as follows

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

movingWall

{

}

type
inGroups
nFaces
startFace

fixedWalls

{

}

type
inGroups
nFaces
startFace

frontAndBack

{

type
inGroups
nFaces
startFace

wall;

1(wall); €——
20; '
760;

wall;

1(wall); <
60;

780; '
empty;

1 (empty) ; €
800;

840; I

inGroups keyword

This keyword is optional. You can erase this information safely.

It is used to group patches during visualization in
ParaView/paraFoam. If you open this mesh in paraFoam you will
see that there are two groups, namely: wall and empty.

As usual, you can change the name.

If you want to put a surface patch in two groups, you can proceed
as follows:

2(wall wall1)

In this case the surface patch belongs to the groups wall and
wall1.

Groups can have more than one patch.

nFaces and startFace keywords

Unless you know what you are doing, you do not need to &
modify this information.

This information is related to the starting face and ending face of
the boundary patch in the mesh data structure.

This information is created automatically when generating the
mesh or converting the mesh.

96

A deeper view to my first OpenFOAM® case setup

[3) The constant/polyMesh/boundary dictionary

There are a few base type patches that are constrained or paired. This means that the type
should be the same in the boundary file and in the numerical boundary condition defined in the
field files, e.qg., the files 0/U and 0/p.

In this case, the base type of the patch frontAndBack (defined in the file boundary), is
consistent with the numerical type patch defined in the field files 0/U and 0/p. They are of
the type empty.

Also, the base type of the patches movingWall and fixedWalls (defined in the file boundary),
is consistent with the numerical type patch defined in the field files 0/U and 0/p.

This is extremely important, especially if you are converting meshes as not always the type of
the patches is set as you would like.

Hence, it is highly advisable to do a sanity check and verify that the base type of the patches
(the type defined in the file boundary), is consistent with the numerical type of the patches
(the patch type defined in the field files contained in the directory 0 (or whatever time directory
you defined the boundary and initial conditions).

If the base type and numerical type boundary conditions are not consistent, OpenFOAM® will
complain.

Do not worry, we are going to address boundary conditions later on.

97

A deeper view to my first OpenFOAM® case setup

[3) The constant/polyMesh/boundary dictionary

The following base type boundary conditions are constrained or paired.
That is, the type needs to be same in the boundary dictionary and field
variables dictionaries (e.g. U, p).

constant/polyMesh/boundary 0/U - 0/p (IC/BC)
symmetry symmetry
symmetryPlane symmetryPlane
empty empty
wedge wedge
cyclic cyclic

processor processor

98

A deeper view to my first OpenFOAM® case setup

[3) The constant/polyMesh/boundary dictionary

 The base type patch can be any of the numerical or derived type
boundary conditions available in OpenFOAM®. Mathematically speaking;
they can be Dirichlet, Neumann or Robin boundary conditions.

constant/polyMesh/boundary 0/U - 0/p (IC/BC)

fixedValue
zeroGradient
inletOutlet
slip
h
patc totalPressure
supersonicFreeStream

andsoon ...

Refer to the doxygen documentation for a list of all numerical
type boundary conditions available.

99

A deeper view to my first OpenFOAM® case setup

[3) The constant/polyMesh/boundary dictionary

« The wall base type boundary condition is defined as follows:

constant/polyMesh/boundary 0/U (IC/BC) 0/p (IC/BC)

type fixedValue;

value uniform (U V W); zeroGradient

wall

« This boundary condition is not contained in the patch base type boundary
condition group, because specialize modeling options can be used on this
boundary condition.

« An example is turbulence modeling, where turbulence can be generated or
dissipated at the walls.

100

A deeper view to my first OpenFOAM® case setup

[3) The constant/polyMesh/boundary dictionary

The name of the base type boundary condition and the name of the

numerical type boundary condition needs to be the same, if not,
OpenFOAM® will complain.

Pay attention to this, specially if you are converting the mesh from another
format.

constant/polyMesh/boundary 0/U (IC/BC) 0/p (IC/BC)
movingWall movingWall movingWall
fixedWalls fixedWalls fixedWalls
frontAndBack frontAndBack frontAndBack

As you can see, all the names are the same across all the dictionary files.

101

A deeper view to my first OpenFOAM® case setup

D The system directory

(and by the way, open each file and go thru its content)

* The system directory consists of the following compulsory dictionary files:
* controlDict
e fvSchemes
* fvSolution
* controlDict contains general instructions on how to run the case.
« fvSchemes contains instructions for the discretization schemes that will be used for the
different terms in the equations.
« fvSolution contains instructions on how to solve each discretized linear equation system.
* Do not worry, we are going to study in details the most important entries of each dictionary (the
compulsory entries).

» If you forget a compulsory keyword or give a wrong entry to the keyword, OpenFOAM® will
complain and it will let you what are you missing. This applies for all the dictionaries in the
hierarchy of the case directory.

» There are many optional parameters, to know all of them refer to the doxygen documentation or
the source code. Hereafter we will try to introduce a few of them.

* OpenFOAM® will not complain if you are not using optional parameters, after all, they are
optional. However, if the entry you use for the optional parameter is wrong OpenFOAM® will let

you know.
102

A deeper view to my first OpenFOAM® case setup

3] The controlDict dictionary

* The controlDict dictionary contains runtime simulation controls, such
as, start time, end time, time step, saving frequency and so on.

9 opienten icoFoam; * Most of the entries are self-explanatory.

18

19 startFrom startTime; * This case starts from time 0 (keyword startFrom — line 19 — and

23 I 0 keyword startTime —line 21 —). If you have the initial solution in a

22 different time directory, just enter the number in line 21.

28 stopAt endTime;

2; endTine w0 * The case will stop when it reaches the desired time set using the keyword
26 stopAt (line 23).

27 deltaT 0.01;

22 eecontrol . * It will run up to 50 seconds (keyword endTime — line 25 -).

30
31 writeInterval a2

» The time step of the simulation is 0.01 seconds (keyword deltaT

32 — line 27 -).

38 purgeWrite 0;

34 _ y * It will write the solution every second (keyword writelnterval — line 31 —)
35 writeFormat ascii; . . . R .

36 of simulation time (keyword runTime — line 29 —).

37 writePrecision 8;

38 It will keep all the solution directories (keyword purgeWrite — line 33 -).
39 writeCompression off; .

e If you want to keep only the last 5 solutions just change the value to 5.

41 timeFormat general; i . i . . .

42 * It will save the solution in ascii format (keyword writeFormat — line 35 -)
43 timePrecision 6;

is with a precision of 8 digits (keyword writePrecision — line 37 —).

o muntinclodifiable tmes * And as the option runTimeModifiable (line 45) is on (true), we can

modify all these entries while we are running the simulation.

* FYI, you can modify the entries on-the-fly for most of the dictionaries files.

103

A deeper view to my first OpenFOAM® case setup
B

17
18
19
20
21
22
28
24
25)
26
27
28
29
30
31
32
35
34
35
36
37
38
39
40
41
42
43
44
45

application
startFrom
startTime
stopAt
endTime
deltaT
writeControl
writeInterval
purgeWrite

writeFormat

icoFoam;

startTime;

0;

banana; 4—
50;

0.01;

runTime;

1;

0;

ascii;

writePrecision 8;

writeCompression off;

timeFormat

timePrecision

general;

6;

runTimeModifiable true;

The controlDict dictionary

So how do we know what options are available for each keyword?
The hard way is to refer to the source code.
The easy way is to use the banana method.

So what is the banana method? This method consist in inserting a dummy word
(that does not exist in the installation) and let OpenFOAM® list the available
options.

For example. If you add banana in line 23, you will get this output:
banana is not in enumeration
4
(
nextWrite
writeNow
noWriteNow
endTime
)
So your options are nextWrite, writeNow, noWriteNow, endTime

And how do we know that banana does not exist in the source code? Just type in
the terminal:

* $> src
* $> grep -r -—n banana .

If you see some bananas in your output someone is messing around with your
installation.

Remember, you can use any dummy word, but you have to be sure that it does

not exist in OpenFOAM®. 104

A deeper view to my first OpenFOAM® case setup

3] The controlDict dictionary

17
18
19
20
21
22
28
24
25)
26
27
28
29
30
31
32
35
34
35
36
37
38
39
40
41
42
43
44
45

application
startFrom
startTime
stopAt
//endTime
deltaT
writeControl
writeInterval
purgeWrite

writeFormat

icoFoam;
startTime;
0;
endTime;
50; “------
0.01;
runTime;
1;
0;

ascii;

writePrecision 8;

writeCompression off;

timeFormat

timePrecision

general;

6;

runTimeModifiable true;

* If you forget a compulsory keyword, OpenFOAM® will tell you what
are you missing.

» So if you comment line 25, you will get this output:

--> FOAM FATAL IO ERROR
keyword endTime is undefined in dictionary ..

* This output is just telling you that you are missing the keyword
endTime.

* Do not pay attention to the words FATAL ERROR, maybe the
developers of OpenFOAM® exaggerated a little bit.

105

A deeper view to my first OpenFOAM® case setup

B The fvSchemes dictionary

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
310
40
41
42
43
44
45
46
47
48
49
50
51

ddtSchemes
{

default backward;
}
gradSchemes
{
default Gauss linear;
grad (p) Gauss linear;
}
divSchemes
{
default none;
div(phi,U) Gauss linear;
div ((nuEff*dev2 (T (grad(U))))) Gauss linear;
}
laplacianSchemes
{
//default Gauss linear orthogonal;

default Gauss linear limited 1;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{
//default orthogonal;
default limited 1;

The fvSchemes dictionary contains the information related to
the discretization schemes for the different terms appearing in
the governing equations.

As for the controlDict dictionary, the parameters can be
changed on-the-fly.

Also, if you want to know what options are available, just use
the banana method.

In this case we are using the backward method for time
discretization (ddtSchemes). For gradients discretization
(gradSchemes) we are using Gauss linear method. For the
discretization of the convective terms (divSchemes) we are
using linear interpolation for the term div(phi,U).

For the discretization of the Laplacian (laplacianSchemes and
snGradSchemes) we are using the Gauss linear method with
limited 1 corrections (to handle mesh non-orthogonality and
non-uniformity).

The method we are using is second order accurate but
oscillatory. We are going to talk about the properties of the
numerical schemes later.

Remember, at the end of the day we want a solution that is

second order accurate. .

A deeper view to my first OpenFOAM® case setup

3] The fvSolution dictionary

* The fvSolution dictionary contains the instructions of how

to solve each discretized linear equation system. The equation
17 solvers € solvers, tolerances, and algorithms are controlled from the sub-
o I dictionary solvers.
20 { g . . .
21 solver PCG; * In the dictionary file fvSolution (and depending on the solver
i B oner 2%, you are using), you will find the additional sub-dictionaries
= e 0; PISO, PIMPLE, SIMPLE, and relaxationFactors. These
39 } entries will be described later.
40
:; r;Final +— * As forthe controlbDict and fvSchemes dictionaries, the
a3 $p; parameters can be changed on-the-fly.
44 relTol 0;
o J » Also, if you want to know what options are available just use
a7 u the banana method.
48 {
49 solver smoothSolver; ° : :
o S erer ymGanesSesdol In this case, to solve the pressure (p) we are using the PCG
51 tolerance le-08; method, with the preconditioner DIC, an absolute tolerance
52 relTol 0; .
53 y equal to 1e-06 and a relative tolerance relTol equal to 0.
54 }
5 » The entry pFinal refers to the final pressure correction (notice
PISO 4— . . .
57 { that we are using macro syntax), and we are using a relative
58 nCorrectors 1; H 1
o ANonoe thooanalCorrectors 0; tolerapce reIToI.eqqu to 0. We are putting more computational
60 pRefCell 0; effort in the last iteration.
61 pRefValue 0;
ez} * In this case, we are using the same tolerances for p and

pFinal. However, you can use difference tolerances, where
usually you use a tighter tolerance in pFinal.

107

A deeper view to my first OpenFOAM® case setup

3] The fvSolution dictionary

7 solvers » To solve U we are using the smoothSolver method, with the
18 { smoother symGaussSeidel, an absolute tolerance equal to
ot p 1e-08 and a relative tolerance relTol equal to 0.

21 solver PCG; I . . .

22 preconditioner DIC; » The solvers will iterative until reaching any of the tolerance
23 tolerance le-06; . .

21 relTol 0; values set by the user or reaching a maximum value of

i } iterations (optional entry).

40 f '

a1 pFinal * FYI, solving for the velocity is relative inexpensive, whereas
1o ; : : .

o 5o; solving for the pressure is expensive.

44 relTol 0; T f .

a5 } * The PISO sub-dictionary contains entries related to the

ie . :

o .) pressure-velocity coupling method (the PISO method).

48 { . . .

a9 solver smoothSolver; * In this case we are doing only one PISO correction and no
50 smoother symGaussSeidel; H

. N ipiiton orthogonal corrections.

52 relTol 0;

53 } * You need to do at least one PISO loop (nCorrectors).

54 }

55

56 PISO 44—

57 {

58 nCorrectors 1;

59 nNonOrthogonalCorrectors 0;

60 pRefCell 0;

61 pRefValue 0;

62 }

108

A deeper view to my first OpenFOAM® case setup

D The system directory

(optional dictionary files)

* In the system directory you will also find these two additional files:
* decomposeParDict

* sampleDict

 decomposeParDict is read by the utility decomposePar. This dictionary
file contains information related to the mesh partitioning. This is used when
running in parallel. We will address running in parallel later.

« sampleDict is read by the utility postProcess. This utility sample field
data (points, lines or surfaces). In this dictionary file we specify the sample
location and the fields to sample. The sampled data can be plotted using
gnuplot or Python.

109

A deeper view to my first OpenFOAM® case setup

3] The sampleDict dictionary

- Type of sampling, sets will sample along a line.

/ Format of the output file, raw format is a generic format
e o — that can be read by many applications. The output file is
15 eetrormat raw; ¢ human readable (ascii format).
20
e < Interpolation method at the solution level (location of the
26 fields interpolation points).
27 (
2 L < Fields to sample.
30 ’
31 sets
S Sample method. How to interpolate the solution to the
2;‘ 11 4// sample entity (line in this case)
38 type lineFace;
a4 — " 0.5 o ocation of the sample line. We define start and en
1 Y v < Location of th ple line. We define start and end
e } end (2 0.50); point, and the axis of the sampling.
:Z 12
49 {
- B lineFace; < Sample method from the solution to the line.
axis Y/
- P SN
60 }
61
2) \ Location of the sample line. We define start and end
point, and the axis of the sampling.

110

A deeper view to my first OpenFOAM® case setup

3] The sampleDict dictionary

17
18
19
20
23
24
26
27
28
29
30
31
32
33
34
35
38
43
44
45
46
47
48
49
52
57
58
59
60
61
62

type sets;

setFormat raw;

interpolationScheme cellPointFace;

fields

lineFace;
X;

(-1 0.5 0);
2 0.5 0);

axis
start
end

lineFace;
axis
start
end

The sampled information is always saved in the
directory,

postProcessing/name of input dictionary

As we are sampling the latest time solution (50) and
using the dictionary sampleDict, the sampled data

will be located in the directory:

postProcessing/sampleDict/50

Thefiles 11 U.xyand 12 U.xy located in the
directory postProcessing/sampleDict/50

contain the sampled data. Feel free to open them using
your favorite text editor.

\ Name of the output file

Name of the output file
111

A deeper view to my first OpenFOAM® case setup

D The 0 directory

(and by the way, open each file and go thru its content)

» The 0 directory contains the initial and boundary conditions for all primitive variables,
in this case p and U. The U file contains the following information (velocity vector):

17 dimensions [01-10000]; <« Dimensions of the field —
18 S
19 internalField uniform (0 0 0);
20
21 boundaryField
22 {
23 movingWall
24 { Uniform initial conditions.
25 type fixedValue;
26 value uniform (1 0 0); The velocity field is initialize to (0 0 0) in all
i ’ the domain
_3,3 fixedWalls Remember velocity is a vector with three
31 — . components, therefore the notation (0 0 0).
32 value uniform (0 0 0);
33 }
34 Not
£ X ote:
22 {rontAndBac If you take some time and compare the files 0/U and
37 " - constant/polyMesh/boundary, you will see that the name and type of each
ne , ype empty numerical type patch (the patch defined in 0,/0), is consistent with the base

29 g type patch (the patch defined in the file constant/polyMesh/boundary).

112

A deeper view to my first OpenFOAM® case setup
-

The 0 directory

(and by the way, open each file and go thru its content)

The 0 directory contains the initial and boundary conditions for all primitive variables,
in this case p and U. The U file contains the following information (velocity):

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
i35
34
35
36
37
38
39

dimensions

internalField

boundaryField

{

movingWall
{
type
value

}

fixedWalls
{
type
value

}

frontAndBack
{

type
}

[01-10000]; <

uniform (0 0 0);

fixedValue;

uniform (1

fixedValue;

uniform (O

Dimensions of the field m

0 0);

0 0);

empty; <

S

Numerical boundary condition for the patch

movingWall

Numerical boundary condition for the patch
fixedWalls

Numerical boundary condition for the patch
frontAndBack (this is a constrained boundary
condition).

113

A deeper view to my first OpenFOAM® case setup

D The 0 directory

(and by the way, open each file and go thru its content)

» The 0 directory contains the initial and boundary conditions for all primitive variables,
in this case p and U. The p file contains the following information (modified pressure):

2

m
17~ dimensions [02-20000]; < Dimensions of the field —
18 S
19 internalField uniform O;
20
21 boundaryField
22 {
23 movingWall
24 { \ Uniform initial conditions.
25 type zeroGradient;
26 } The modified pressure field is initialize to 0
27 _ in all the domain. This is relative
28 fixedWalls
29 { pressure.
30 type zeroGradient;
31 }
32
33 frontAndBack
;: ¢ £ £y Note:
36 } 2 SR If you take some time and compare the file_s 0/p and
37) cons t_an t/polyMesh/boundary, you \{wll see that the name a_nd type of each

numerical type patch (the patch defined in 0/p), is consistent with the base
S8 type patch (the patch defined in the file constant/polyMesh/boundary).
114

A deeper view to my first OpenFOAM® case setup

D The 0 directory

(and by the way, open each file and go thru its content)

The 0 directory contains the initial and boundary conditions for all primitive variables,
in this case p and U. The p file contains the following information (modified pressure):

2
m

17 dimensions [02-20000]; <« Dimensions of the field —-

18 S

19 internalField uniform O;

20

21 boundaryField

22 {
23 movingWall

24 { . oy

o5 — zeroGradient; < Num_erlcal boundary condition for the patch
26 } movingWall

27

28 fixedWalls

29 { . iy

20 type zeroGradient; <4 l_lumerlcal boundary condition for the patch
31 } fixedWalls

32

33 frontAndBack

34 { . iy

a5 — empty; <€ Numerical boundary condition for the patch

36 } frontAndBack (this is a constrained boundary

37} condition).
38

115

A deeper view to my first OpenFOAM® case setup

A very important remark on the pressure field /\

We just used icoFoam which is an incompressible solver.
Let us be really loud on this. All the incompressible solvers implemented in OpenFOAM®
(icoFoam, simpleFoam, pisoFoam, and pimpleFoam), use the modified pressure, that is,

2

p . . m
P == with units —
0 S

Or in OpenFOAM® jargon: dimensions [0 2 -2 0 0 0 0]

So when visualizing or post processing the results do not forget to multiply the pressure by
the density in order to get the right units of the physical pressure, that is,

kg

m - s2

Or in OpenFOAM® jargon: dimensions [1 -1 -2 0 0 0 0]

116

A deeper view to my first OpenFOAM® case setup

Coming back to the headers, and specifically the headers related to the field variable
dictionaries (e.g. U, p, gradu, and so on).

In the header of the field variables, the class type should be consistent with the type
of field variable you are using.

Be careful with this, specially if you are copying and pasting files.
If the field variable is a scalar, the class should be volScalarField.

YA e e P *e Ct —Fmm e *\
| ========= I I
I\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / O peration | Version: 8
I \\ / A nd | Web: www . OpenFOAM. org I
| \\/ M anipulation |
L 2 */
FoamFile
{

version 2.0;

format ascii;

class volScalarField; <

object P/
;/ X ok Kk ko k K k ok K k k K k k K k k K k k K Kk k K Kk k kK * k kK * k k * k *x x [/

117

A deeper view to my first OpenFOAM® case setup

* |f the field variable is a vector, the class should be volVectorField.

[*mm e ¥ Ctd —Fmm e *\
| ========= I I
I\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / O peration | Version: 8
| \\ / A nd | Web: www .OpenFOAM. org |
I \\/ M anipulation |
A\ K oo - */
FoamFile
{

version 2.0;

format ascii;

class volVectorField; <

object U;
}

« If the field variable is a tensor (e.g. the velocity gradient tensor), the class should be

volTensorField.

YA e E L e P Hm Gt —Fmm e - *\
| ========= I I
I\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / O peration | Version: 8
| \\ / A nd | Web: www . OpenFOAM. org |
| \\/ M anipulation |
A\ o */
FoamFile
{

version 2.0;

format ascii;

class volTensorField; <

object gradu;
} 118

A deeper view to my first OpenFOAM® case setup

The output screen

« Finally, let us talk about the output screen, which shows a lot of information.

4 cavity : pyFoamPlotWatch — Konsole

File Edit View Bookmarks Settings Help

max(U) = (0.00028445255 -0.00028138798 0) at location (0.025 0.025 0.5)
Time = 49.99

Courant Number mean: 0.044365026 max: 0.16800273
smoothSolver: Solving for Ux, Initial residual = 1.1174405e-09, Final residual = 1.1174405e-09, No Iterations 0@
smoothSolver: Solving for Uy, Initial residual = 1.4904251e-09, Final residual = 1.4904251e-09, No Iterations @
DICPCG: Solving for p, Initial residual = 6.7291723e-07, Final residual = 6.7291723e-07, No Iterations @

time step continuity errors : sum local = 2.5096865e-10, global = -1.7872395e-19, cumulative = 2.6884327e-18
ExecutionTime = 4.58 s ClockTime = 15 s

fieldMinMax minmaxdomain write:

min(p) = -0.37208362 at location (0.025 0.975 0.5)
max(p) = 0.77640927 at location (0.975 0.975 0.5)
min(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)
max(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)
Time = 50 - Simulation time
Courant number

Courant Number mean: ©.044365026 max: 0.16800273 -

smoothSolver: Solving for Ux, Initial residual = 1.0907508e-09, Final residual = 1.0907508e-09, No Iterations @
smoothSolver: Solving for Uy, Initial residual = 1.4677462e-09, Final residual = 1.4677462e-09, No Iterations @
DICPCG: Solving for p, Initial residual = 1.0020944e-06, Final residual = 1.0746895e-07, No Iterations 1

time step continuity errors : sum local = 4.0107145e-11, global = -5.0601748e-20, cumulative = 2.637831e-18
ExecutionTime = 4.59 s ClockTime = 15 s -

Execution time (wall time)

fieldMinMax minmaxdomain write:
min(p) -0.37208345 at location (0.025 0.975 0.5)
max(p) 0.77640927 at location (0.975 0.975 0.5)

min(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)
max(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

-+ . .
End , End of the simulation
. cavity : pyFoam|
@ - - i i cavity — Dolphin i Pictures — Dolphin . cavity : pyFoamPlotWatch — Kons...

’

woltdynamics

multiphysics simulations,
optimization & data analytics

Velocity residuals

Pressure residuals
No orthogonal corrections
Only one PISO correction

Continuity errors
Additional information

Minimum and maximum values of each field

® it &4 ~ 11:30PM =

119

A deeper view to my first OpenFOAM® case setup

The output screen

» By default, OpenFOAM® does not show the minimum and maximum information. To print out this information,
we use functionObjects. We are going to address functionObjects in detail when we deal with post-
processing and sampling.

« But for the moment, what we need to know is that we add functionObjects at the end of the controlbDict
dictionary. In this case, we are using a functionObject that prints the minimum and maximum information of
the selected fields.

» This information complements the residuals information and it is saved in the postProcessing directory. It
gives a better indication of stability, boundedness and consistency of the solution.

49 functions
50 {
51 Name of the folder where the output of
52 //11111110110170070170071171177111071111111111111111111 1] LLLLLL kbbbt 7 the functionObject will be saved
53
54 minmaxdomain 4-—
55 {
56 type fieldMinMax; functionObject to use
57
58 functionObjectLibs ("libfieldFunctionObjects.so") ;
59
e aEbleel Sy JfETe en S Turn on/off functionObject
61
62 mode component;
63
64 iteControl timeStep; . . .
65 zﬁt;ﬁ‘;eﬁial ime P < Output interval of functionObject
66
67 log true; <« Save output of the functionObject in a ascii file
68
63 fields (p U); ¢ Field variables to sample
7 }
91
92 };
120

A deeper view to my first OpenFOAM® case setup

The output screen

Another very important output information is the CFL or Courant number.

The Courant number imposes the CFL number condition, which is the maximum allowable
CFL number a numerical scheme can use. For the n - dimensional case, the CFL number
condition becomes,

CFL = At Z

’L_

max
Ax; —

In OpenFOAM®, most of the solvers are implicit, which means they are unconditionally
stable. In other words, they are not constrained to the CFL number condition.

However, the fact that you are using a numerical method that is unconditionally stable, does
not mean that you can choose a time step of any size.

The time-step must be chosen in such a way that it resolves the time-dependent features, and it
maintains the solver stability.

For the moment and for the sake of simplicity, let us try to keep the CFL number below 5.0 and
preferably close to 1.0 (for good accuracy).

Other properties of the numerical method that you should observe are: conservationess,
boundedness, transportiveness, and accuracy. We are going to address these properties and
the CFL number when we deal with the FVM theory. 121

A deeper view to my first OpenFOAM® case setup

The output screen
« To control the CFL number you can change the time step or you can change the mesh.
* The easiest way is by changing the time step.

* For atime step of 0.01 seconds, this is the output you should get for this case,

Time = 49.99
CFL number at
time stepn -1

Courant Number mean: 0.044365026 max: 0.16800273 4
smoothSolver: Solving for Ux, Initial residual = 1.1174405e-09, Final residual = 1.1174405e-09, No Iterations 0
smoothSolver: Solving for Uy, Initial residual = 1.4904251e-09, Final residual = 1.4904251e-09, No Iterations 0
DICPCG: Solving for p, Initial residual = 6.7291723e-07, Final residual = 6.7291723e-07, No Iterations 0

time step continuity errors : sum local = 2.5096865e-10, global = -1.7872395e-19, cumulative = 2.6884327e-18
ExecutionTime = 4.47 s ClockTime = 5 s

fieldMinMax minmaxdomain output:
min(p) = -0.37208362 at location (0.025 0.975 0.5)

max (p) = 0.77640927 at location (0.975 0.975 0.5)

min(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

max (U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)
Time = 50

CFL number at

Courant Number mean: 0.044365026 max: 0.16800273 4 e step n

smoothSolver: Solving for Ux, Initial residual = 1.0907508e-09, Final residual = 1.0907508e-09, No Iterations 0
smoothSolver: Solving for Uy, Initial residual = 1.4677462e-09, Final residual = 1.4677462e-09, No Iterations 0
DICPCG: Solving for p, Initial residual = 1.0020944e-06, Final residual = 1.0746895e-07, No Iterations 1

time step continuity errors : sum local = 4.0107145e-11, global = -5.0601748e-20, cumulative = 2.637831le-18
ExecutionTime = 4.47 s ClockTime = 5 s

fieldMinMax minmaxdomain output:
min(p) = -0.37208345 at location (0.025 0.975 0.5)
max (p) 0.77640927 at location (0.975 0.975 0.5)
min(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)
max (U) (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

122

A deeper view to my first OpenFOAM® case setup

The output screen
« To control the CFL number you can change the time step or you can change the mesh.
* The easiest way is by changing the time step.

* For atime step of 0.1 seconds, this is the output you should get for this case,

Time = 49.9
CFL number at
time stepn -1

Courant Number mean: 0.4441161 max: 1.6798756 4
smoothSolver: Solving for Ux, Initial residual = 0.00016535808, Final residual = 2.7960145e-09, No Iterations 5
smoothSolver: Solving for Uy, Initial residual = 0.00015920267, Final residual = 2.7704949e-09, No Iterations 5
DICPCG: Solving for p, Initial residual = 0.0015842846, Final residual = 5.2788554e-07, No Iterations 26

time step continuity errors : sum local = 8.6128916e-09, global = 3.5439859e-19, cumulative = 2.494008le-17
ExecutionTime = 0.81 s ClockTime =1 s

fieldMinMax minmaxdomain output:
min(p) = -0.34322821 at location (0.025 0.975 0.5)
max (p) = 0.73453489 at location (0.975 0.975 0.5)

min(U) = (0.0002505779 -0.00025371425 0) at location (0.025 0.025 0.5)
max (U) = (0.0002505779 -0.00025371425 0) at location (0.025 0.025 0.5)
Time = 50
CFL number at
Courant Number mean: 0.44411473 max: 1.6798833 4 time step n
smoothSolver: Solving for Ux, Initial residual = 0.00016378098, Final residual = 2.7690608e-09, No Iterations 5 p

smoothSolver: Solving for Uy, Initial residual = 0.00015720331, Final residual = 2.7354499e-09, No Iterations 5
DICPCG: Solving for p, Initial residual = 0.0015662416, Final residual = 5.2290439e-07, No Iterations 26

time step continuity errors : sum local = 8.5379223e-09, global = -3.6676527e-19, cumulative = 2.4573316e-17
ExecutionTime = 0.81 s ClockTime =1 s

fieldMinMax minmaxdomain output:
min(p) = -0.34244269 at location (0.025 0.975 0.5)
max (p) = 0.73656831 at location (0.975 0.975 0.5)
min(U) = (0.00025028679 -0.00025338014 0) at location (0.025 0.025 0.5)
max (U) (0.00025028679 -0.00025338014 0) at location (0.025 0.025 0.5)

123

A deeper view to my first OpenFOAM® case setup

The output screen
To control the CFL number you can change the time step or you can change the mesh.
The easiest way is by changing the time step.

For a time step of 0.5 seconds, this is the output you should get for this case,

Time = 2
CFL number at
time stepn -1

Courant Number mean: 1.6828931 max: 5.6061178 4
smoothSolver: Solving for Ux, Initial residual = 0.96587058, Final residual = 4.9900041e-09, No Iterations 27
smoothSolver: Solving for Uy, Initial residual = 0.88080685, Final residual = 9.7837781e-09, No Iterations 25
DICPCG: Solving for p, Initial residual = 0.95568243, Final residual = 7.9266324e-07, No Iterations 33

time step continuity errors : sum local = 6.3955627e-06, global = 1.3227253e-17, cumulative = 1.4125109e-17
ExecutionTime = 0.04 s ClockTime = 0 s

fieldMinMax minmaxdomain output:

min(p) = -83.486425 at location (0.975 0.875 0.5) Compare these values with the values
max (p) = 33.078468 at location (0.025 0.925 0.5) » of the previous cases. For the
min(U) = (0.1309243 -0.13648118 0) at location (0.025 0.025 0.5) L
max (U) = (0.1309243 -0.13648118 0) at location (0.025 0.025 0.5) physics involve these values are
unphysical.
Time = 2.5
Courant Number mean: 8.838997 max: 43.078153 4 (.:FL number at
#0 Foam: :error: :printStack (Foam: :Ostream&) at ?°?:°? time Step n (Way
#1 Foam::sigFpe::sigHandler (int) at 2?:°? too high)

#2 ? in "/1ibé64/libc.so.6"

#3 Foam: :symGaussSeidelSmoother: :smooth (Foam: :word consté&, Foam::Field<double>&, Foam::lduMatrix const&, Foam::Field<double> constg,
Foam: :FieldField<Foam: :Field, double> consté&, Foam: :UPtrList<Foam: :ldulnterfaceField const> const&, unsigned char, int) at ??:?

#4 Foam: :symGaussSeidelSmoother: :smooth (Foam: :Field<double>&, Foam: :Field<double> consté&, unsigned char, int) const at ?7?:?

#5 Foam: :smoothSolver: :solve (Foam: :Field<double>&, Foam: :Field<double> consté&, unsigned char) const at ??:?

#6 2 at 272:?
\ The solver crashed.

The offender? Time step too large.

124

A deeper view to my first OpenFOAM® case setup

The output screen
Another output you should monitor are the continuity errors.
These numbers should be small (it does not matter if they are negative or positive).

If these values increase in time (about the order of 1e-2), you better control the case setup because
something is wrong.

The continuity errors are defined in the following file
$WM PROJECT DIR/src/finiteVolume/cfdTools/incompressible/continuityErrs.H

Time = 50

Courant Number mean: 0.44411473 max: 1.6798833

smoothSolver: Solving for Ux, Initial residual = 0.00016378098, Final residual = 2.7690608e-09, No Iterations 5
smoothSolver: Solving for Uy, Initial residual = 0.00015720331, Final residual = 2.7354499e-09, No Iterations 5
DICPCG: Solving for p, Initial residual = 0.0015662416, Final residual = 5.2290439e-07, No Iterations 26

time step continuity errors : sum local = 8.5379223e-09, global = -3.6676527e-19, cumulative = 2.4573316e-17
ExecutionTime = 0.81 s ClockTime =1 s

fieldMinMax minmaxdomain output:

min(p) = -0.34244269 at location (0.025 0.975 0.5)

max (p) = 0.73656831 at location (0.975 0.975 0.5)

min(U) = (0.00025028679 -0.00025338014 0) at location (0.025 0.025 0.5) L.

max (U) = (0.00025028679 -0.00025338014 0) at location (0.025 0.025 0.5) Continuity errors

125

A deeper view to my first OpenFOAM® case setup

Error output

» If you forget a keyword or a dictionary file, give a wrong option to a compulsory or optional entry,
misspelled something, add something out of place in a dictionary, use the wrong dimensions,
forget a semi-colon and so on, OpenFOAM® will give you the error FOAM FATAL IO ERROR.

« This error does not mean that the actual OpenFOAM® installation is corrupted. It is telling you
that you are missing something or something is wrong in a dictionary.

+ Maybe the guys of OpenFOAM® went a little bit extreme here.

Oy Sy S S S S S S *\
| ========= | |
I\ / F ield | OpenFOAM: The Open Source CFD Toolbox

I \\ / O peration | Version: 8

| \\ 7/ A nd | Web: www . OpenFOAM. org

| \\/ M anipulation | |
S0 Oy OSSOSO NS S SO Sy SS S SS S */
Build : 5.x-5d8318b22cbe

Exec : icoFoam

Date : Nov 02 2014

Time : 00:33:41

Host : "linux-cfd"

PID : 3675

Case : /home/cfd/my cases course/cavity

nProcs : 1

sigFpe : Enabling floating point exception trapping (FOAM SIGFPE) .
fileModificationChecking : Monitoring run-time modified files using timeStampMaster
allowSystemOperations : Allowing user-supplied system call operations

//*************************************//

Create time

--> FOAM FATAL IO ERROR: 4

126

A deeper view to my first OpenFOAM® case setup

Error output

» Also, before entering into panic read carefully the output screen because OpenFOAM® is telling
you what is the error and how to correct it.

Build : 6.x-5d8318b22cbe

Exec : icoFoam

Date : Nov 02 2014

Time : 00:33:41

Host : "linux-cfd"

PID : 3675

Case : /home/cfd/my cases_course/cavity

nProcs : 1

sigFpe : Enabling floating point exception trapping (FOAM SIGFPE) .
fileModificationChecking : Monitoring run-time modified files using timeStampMaster
allowSystemOperations : Allowing user-supplied system call operations

//*************************************//

Create time

--> FOAM FATAL IO ERROR:

banana endTime is not in enumeration: 4 The Origin of the error
4
(

endTime

nextWrite < Possible options to correct the error
noWriteNow

writeNow

)

file: /home/cfd/my cases_course/cavity/system/controlDict.stopAt at line 24. 4—— Location of the error

From function NamedEnum<Enum, nEnum>::read(Istreamé&) const
in file lnInclude/NamedEnum.C at line 72.

FOAM exiting

127

A deeper view to my first OpenFOAM® case setup

Error output

« Itis very important to read the screen and understand the output.

“Experience is simply the name we give our mistakes.”

» Train yourself to identify the errors. Hereafter we list a few possible errors.
» Missing compulsory file p

--> FOAM FATAL IO ERROR:
cannot find file

file: /home/joegi/my cases_course/6/1010F/cavity/0/p at line 0.

From function regIOobject: :readStream/()
in file db/regIOobject/regIOobjectRead.C at line 73.

FOAM exiting

128

A deeper view to my first OpenFOAM® case setup

Error output

» Mismatching patch name in file p

--> FOAM FATAL IO ERROR:
Cannot find patchField entry for xmovingWall

file: /home/joegi/my cases_course/6/1010F/cavity/0/p.boundaryField from line 25 to line 35.
From function GeometricField<Type, PatchField, GeoMesh>::GeometricBoundaryField: :readField (const

DimensionedField<Type, GeoMesh>&, const dictionaryé&)
in file /home/joegi/OpenFOAM/OpenFOAM-6/src/OpenFOAM/1lnInclude/GeometricBoundaryField.C at line 209.

FOAM exiting

« Missing compulsory keyword in fvSchemes

--> FOAM FATAL IO ERROR:
keyword div(phi,U) is undefined in dictionary
"/home/joegi/my cases_course/6/1010F/cavity/system/fvSchemes.divSchemes"

file: /home/joegi/my cases_course/6/1010F/cavity/system/fvSchemes.divSchemes from line 30 to line 30.

From function dictionary: :lookupEntry (const word&, bool, bool) const
in file db/dictionary/dictionary.C at line 442.

FOAM exiting

129

A deeper view to my first OpenFOAM® case setup

Error output
* Missing entry infile fvSolution at keyword PISO

--> FOAM FATAL IO ERROR:
"ill defined primitiveEntry starting at keyword 'PISO' on line 68 and ending at line 68"

file: /home/joegi/my cases_course/6/1010F/cavity/system/fvSolution at line 68.

From function primitiveEntry::readEntry (const dictionary&, Istream&)
in file lnInclude/IOerror.C at line 132.

FOAM exiting

» Incompatible dimensions. Likely the offender is the file U

--> FOAM FATAL ERROR:
incompatible dimensions for operation
[U[01 -21000] 1+ [U[0O1-2200 0]]

From function checkMethod (const fvMatrix<Type>&, const fvMatrix<Type>&)
in file /home/joegi/OpenFOAM/OpenFOAM-6/src/finiteVolume/lnInclude/fvMatrix.C at line 1295.

FOAM aborting

#0 Foam: :error::printStack (Foam: :Ostream&) at ??2:?

#1 Foam::error::abort() at ??:°?

#2 void Foam: :checkMethod<Foam: :Vector<double> > (Foam: :fvMatrix<Foam: :Vector<double> > constég,

Foam: : fvMatrix<Foam: :Vector<double> > consté&, char const*) at ??:?

#3 2 at 272:°?

#4 2 at 272:°?

#5 _ libc_start main in "/1libé64/libc.so.6"

#6 ? at /home/abuild/rpmbuild/BUILD/glibc-2.19/csu/../sysdeps/x86_64/start.S:125

Aborted 130

A deeper view to my first OpenFOAM® case setup

Error output

« Missing keyword deltaT in file controlDict

--> FOAM FATAL IO ERROR:
keyword deltaT is undefined in dictionary "/home/joegi/my cases_course/6/1010F/cavity/system/controlDict"

file: /home/joegi/my cases_course/6/1010F/cavity/system/controlDict from line 17 to line 69.

From function dictionary: :lookupEntry (const word&, bool, bool) const
in file db/dictionary/dictionary.C at line 442.

FOAM exiting

* Missing file points in directory polyMesh. Likely you are missing the mesh.

--> FOAM FATAL ERROR:
Cannot find file "points" in directory "polyMesh" in times 0 down to constant

From function Time::findInstance(const fileName&, const word&, const IOobject::readOption, const wordé&)
in file db/Time/findInstance.C at line 203.

FOAM exiting

131

A deeper view to my first OpenFOAM® case setup

Error output

Unknown boundary condition type.

--> FOAM FATAL IO ERROR:
Unknown patchField type sfixedValue for patch type wall

Valid patchField types are

74

(
SRFFreestreamVelocity
SRFVelocity
SRFWallVelocity
activeBaffleVelocity

variableHeightFlowRateInletVelocity
waveTransmissive

wedge

zeroGradient

)
file: /home/joegi/my cases_course/6/1010F/cavity/0/U.boundaryField.movingWall from line 25 to line 26.
From function fvPatchField<Type>: :New(const fvPatch&, const DimensionedField<Type, volMesh>&, const
dictionaryé&)
in file /home/joegi/OpenFOAM/OpenFOAM-6/src/finiteVolume/lnInclude/fvPatchFieldNew.C at line 143.

FOAM exiting

132

A deeper view to my first OpenFOAM® case setup

Error output

* This one is especially hard to spot

/S 0 S S S S S S S *\

| e | |

I\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 8 |

| \\ / A nd | Web: www .OpenFOAM. org

| \\/ M anipulation |

i 0000000 0 S */

Build : 6.x-5d8318b22cbe

Exec : icoFoam

Date : Nov 02 2014

Time : 00:33:41

Host : "linux-cfd"

PID : 3675

fileName: :stripInvalid() called for invalid fileName /home/cfd/my cases_course/cavity0
For debug level (= 2) > 1 this is considerd fatal

Aborted

» This error is related to the name of the working directory. In this case the name of the
working directory is cavity O (there is a blank space between the word cavity and

the number 0).
* Do not use blank spaces or funny symbols when naming directories and files. &

* Instead of cavity 0 you could use cavity O.

133

A deeper view to my first OpenFOAM® case setup

Error output

* You should worry about the STGFPE error signal. This error signal indicates that something
went really wrong (erroneous arithmetic operation).

* This message (that seems a little bit difficult to understand), is giving you a lot information.

* Forinstance, this output is telling us that the error is due to SIGFPE and the class associated to
the error is 1duMatrix. Itis also telling you that the GAMGSolver solver is the affected one
(likely the offender is the pressure).

#0 Foam: :error: :printStack (Foam: :Ostream&) at ?7?:?

#1 Foam::sigFpe::sigHandler (int) at ??:?

#2 in "/1ib64/libc.so.6"

#3 Foam: :DICPreconditioner: :calcReciprocalD (Foam: :Field<double>&, Foam: :lduMatrix const&) at ??:?

#4 Foam: :DICSmoother: :DICSmoother (Foam: :word consté&, Foam::lduMatrix const&, Foam: :FieldField<Foam: :Field, double>
consté&, Foam: :FieldField<Foam: :Field, double> consté&, Foam: :UPtrList<Foam: :ldulnterfaceField const> consté&) at ??:°?
#5 Foam: :1lduMatrix: :smoother: :addsymMatrixConstructorToTable<Foam: :DICSmoother>: :New (Foam: :word consté&,

Foam: :1duMatrix consté&, Foam: :FieldField<Foam: :Field, double> consté&, Foam: :FieldField<Foam: :Field, double> constg,
Foam: :UPtrList<Foam: :1lduInterfaceField const> const&) at ??:?

#6 Foam::lduMatrix: :smoother: :New(Foam: :word consté&, Foam::lduMatrix const&, Foam: :FieldField<Foam: :Field, double>
consté&, Foam: :FieldField<Foam: :Field, double> const&, Foam: :UPtrList<Foam: :lduInterfaceField const> constg,

Foam: :dictionary consté&) at ?°?:?

#7 Foam: :GAMGSolver: :initVcycle (Foam: :PtrList<Foam: :Field<double> >&, Foam: :PtrList<Foam: :Field<double> >&,

Foam: : PtrList<Foam: :1lduMatrix: :smoother>&, Foam: :Field<double>&, Foam: :Field<double>&) const at ?7?:°?

#8 Foam: :GAMGSolver: :solve (Foam: :Field<double>&, Foam: :Field<double> consté&, unsigned char) const at ??:?

#9 Foam::fvMatrix<double>: :solveSegregated (Foam: :dictionary consté&) at ??:?

#10 Foam: :fvMatrix<double>: :solve (Foam: :dictionary consté&) at ??:?

#11

at ??2:?

#12 _ libc_start main in "/1ib64/libc.so.6"
#13

at /home/abuild/rpmbuild/BUILD/glibc-2.17/csu/../sysdeps/x86_ 64/start.S:126
Floating point exception 134

A deeper view to my first OpenFOAM® case setup

5] Dictionary files general features

+ OpenFOAM® follows same general syntax rules as in C++.
« Commenting in OpenFOAM® (same as in C++):
I*

Il This is a line comment This is a block comment
*/

« Asin C++, you can use the #include directive in your dictionaries (do not forget to create the respective include file):

#include “initialConditions”

« Scalars, vectors, lists and dictionaries.
« Scalars in OpenFOAM® are represented by a single value, e.g.,
3.14159
* Vectors in OpenFOAM® are represented as a list with three components, e.g.,
(1.0 0.0 0.0)

» Asecond order tensor in OpenFOAM® is represented as a list with nine components, e.g.,

135

A deeper view to my first OpenFOAM® case setup

5] Dictionary files general features

« Scalars, vectors, lists and dictionaries.
List entries are contained within parentheses (). Alist can contain scalars, vectors, tensors, words, and so on.

» Alist of scalars is represented as follows:
name_of_the_list

(
0
1
2
);

« Alist of vectors is represented as follows:
name_of_the_list

(
(000)
(100)
(200)
);

« Alist of words is represented as follows
name_of_the_list

(

“word1”

“word2”

“word3”
);

136

A deeper view to my first OpenFOAM® case setup

5] Dictionary files general features

* OpenFOAM® uses dictionaries to specify data in an input file (dictionary file).

* Adictionary in OpenFOAM® can contain multiple data entries and at the same time dictionaries can contain
sub-dictionaries.

» To specify a dictionary entry, the name is followed by the keyword entries in curly braces:

solvers < Dictionary solvers
{
p < Sub-dictionary p
{
solver PCG;
preconditioner DIC;
tolerance 1e-06;
relTol 0;
}
U < Sub-dictionary U
{
solver PBiCGStab;
preconditioner DILU;
tolerance 1e-06;
relTol 0;

} 137

A deeper view to my first OpenFOAM® case setup

5] Dictionary files general features

* Macro expansion.

« We first declare a variable (x = 10) and then we use it through the $ macro substitution ($x).

vectorField (20 0 0); \ /IDeclare variable
internalField uniform $vectorField; /IUse declared variable
scalarField 101328; /IDeclare variable

type fixedVaIue;v\

value uniform $scalarField; /IlUse declared variable

* You can use macro expansion to duplicate and access variables in dictionaries

p /I Declare/create the dictionary p
{
solver PCG;
preconditioner DIC;
tolerance 1e-06;
relTol 0;
}
$p; /[To create a copy of the dictionary p
$p.solver; /ITo access the variable solver in the dictionary p

138

A deeper view to my first OpenFOAM® case setup

5] Dictionary files general features

* Instead of writing (the poor man’s way):

leftWall rightWall topWall
{ { {
type fixedValue; type fixedValue; type fixedValue;
value uniform (0 0 0); value uniform (0 0 0); value uniform (0 0 0);
} } }

* You can write (the lazy way):

“(left|right|top)Wall”

{
type fixedValue;

value uniform (0 0 0);

}

* You could also try (even lazier):

113 *Wallﬂ

{
type fixedValue;

value uniform (0 0 0);

+ OpenFOAM® understands the syntax of regular expressions (regex or regeaxp).
139

A deeper view to my first OpenFOAM® case setup

5] Dictionary files general features

* Inline calculations.
* You can use the directive #calc to do inline calculations, the syntax is as follows:

X =10.0; /IDeclare variable
Y = 3.0; /IDeclare variable
Z #calc “$X*$Y -12.07; /IDo inline calculation. The result is saved in the variable Z

« Withinline calculations you can access all the mathematical functions available in C++.

« Macro expansions and inline calculations are very useful to parametrize dictionaries and avoid repetitive tasks.
« Switches: they are used to enable or disable a function or a feature in the dictionaries.

+ Switches are logical values. You can use the following values:

Switches
false true
off on
no yes
n y
f t
none true

* You can find all the valid switches in the following file:

OpenFOAM-6/src/OpenFOAM/primitives/bools/Switch/Switch.C 140

A deeper view to my first OpenFOAM® case setup

Solvers and utilities help

* If you need help about a solver or utility, you can use the option ~help. For
instance:

* S$> icoFoam —-help
will print some basic help and usage information about i coFoam

« Remember, you have the source code there so you can always 35
check the original source.

141

A deeper view to my first OpenFOAM® case setup

Solvers and utilities help

To get more information about the boundary conditions, post-processing utilities, and the API read the
Doxygen documentation.

If you did not compile the Doxygen documentation, you can access the information online,
http://cpp.openfoam.org/v6/

ama OPENFOAM v50 C++ Source Code Guide
m mm TheOpenFOAM Foundation

Main Page | Related Pageq ‘ Modules ‘ Namespaces ~ | Classes ~ | Files ~ ‘ 4 API documentation Q- Search
Free, Open Source Software from the OpenFOAM Foundation

About OpenFOAM

OpenFOAM is a free, open source CFD software package released free and open-source under the GNU General Public License by the, OpenFOAM Foundation. It has a large user base across most areas of engineering and science, from both commercial and academic
organisations. OpenFOAM has an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics. More ...

OpenFOAM Directory Structure

OpenFOAM comprises of four main directories.

» src: the core OpenFOAM libraries

» applications: solvers and utilities

» tutorials: test-cases that demonstrate a wide-range of OpenFOAM functionality
» doc: documentation

Using OpenFOAM < Boundary conditions and post-processing
: ;Lézit;:r:s?gj:;:‘?ﬁr;agespace Foam::functionObjects uti I ities docu me ntation

Versions

» OpenFOAM-dev

« Version 5.0 (current)
» Version 4.1

* Version 3.0.1

Generated by d@z :::fo @m 1,5,131 42

http://cpp.openfoam.org/v8/

A deeper view to my first OpenFOAM® case setup

Exercises

Run the case with Re = 10 and Re = 1000. Feel free to change any variable to achieve the Re value (velocity,
viscosity or length). Do you see an unsteady behavior in any of the cases? What about the computing time,
what simulation is faster?

Run the tutorial with Re = 100, a mesh with 120 x 120 x 1 cells, and using the default setup (original
controlDict, fvSchemes and fvSolution). Did the simulation converge? Did it crash? Any comments.

If your simulation crashed, try to solve the problem.
(Hint: try to reduce the time-step to get a CFL less than 1)

Besides reducing the time-step, can you find another solution?
(Hint: look at the PISO options)

Change the base type of the boundary patch movingWall to patch. (the boundary file). Do you get the same
results? Can you comment on this?

Try to extent the problem to 3D and use a uniform mesh (20 x 20 x 20). Compare the solution at the mid
section of the 3D simulation with the 2D solution. Are the solutions similar?

How many time discretization schemes are there in OpenFOAM®? Try to use a different discretization
scheme.

Run the simulation using Gauss upwind instead of Gauss linear for the term div(phi,U) (fvSchemes). Do
you get the same quantitative results?

Sample the field variables U and P at a different location and plot the-regplts using gnuplot.
What density value do you think we were using? What about dynamic viscosity?

Hint: the physical pressure is equal to the modified pressure and 143

8. 3D Dam break — Free surface flow

144

3D Dam break — Free surface flow

Dam break free surface flow

Physical and numerical side of the

Box with open top problem:
GraV|ty * In this case we are going to use the volume of
l fluid (VOF) method.

* This method solves the incompressible Navier-
Stokes equations plus an additional equation to
track the phases (free surface location).

* As this is a multiphase case, we need to define
the physical properties for each phase involved
(viscosity, density and surface tension).

« The working fluids are water and air.

« Additionally, we need to define the gravity vector
Water column and initialize the two flows.

« This is a three-dimensional and unsteady case.

Obstacle » The details of the case setup can be found in
the following reference:

A Volume-of-Fluid Based Simulation Method for Wave
Impact Problems.
Journal of Computational Physics 206(1):363-393.

June, 2005.
145

3D Dam break — Free surface flow

Workflow of the case

setFields

A 4

interFoam

146

3D Dam break — Free surface flow

At the end of the day, you should get something like this

Initial conditions — Coarse mesh Solution at Time = 1 second — Coarse mesh

147

3D Dam break — Free surface flow

VOF Fraction (Free surface tracking) — Very fine mesh

http://www.wolfdynamics.com/validations/3d_db/dbreak.gif

3D dam-break simulation using

OpenFOAM 4.x

148

http://www.wolfdynamics.com/validations/3d_db/dbreak.gif

3D Dam break — Free surface flow

Let us run this case. Go to the directory:

$PTOFC/1010F/3d damBreak

In the case directory, you will find the README . FIRST file. In this file, you will find the general instructions of
how to run the case. In this file, you might also find some additional comments.

You will also find a few additional files (or scripts) with the extension .sh, namely, run all.sh,
run mesh.sh, run sampling.sh, run solver.sh, and soon. These files can be used to run the case

automatically by typing in the terminal, for example, sh run solver.

We highly recommend you to open the README . FIRST file and type the commands in the terminal, in this
way, you will get used with the command line interface and OpenFOAM® commands.

If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases.

149

3D Dam break — Free surface flow

What are we going to do?

* We will use this case to introduce the multiphase solver interFoam.

 interFoamis a solver for 2 incompressible, isothermal immiscible fluids using a VOF
(volume of fluid) phase-fraction based interface capturing approach

« We will define the physical properties of two phases, and we are going to initialize
these phases.

« We will define the gravity vector in the dictionary g.

 After finding the solution, we will visualize the results. This is an unsteady case so
now we are going to see things moving.

« We are going to briefly address how to post-process multiphase flows.

« We are going to generate the mesh using snappyHexMesh, but for the purpose of this
tutorial we are not going to discuss the dictionaries.

 Remember, different solvers have different input dictionaries.

150

3D Dam break — Free surface flow

[The constant directory

* In this directory, we will find the following compulsory dictionary files:

* g
* transportProperties

* momentumilransport

« g contains the definition of the gravity vector.

 transportProperties contains the definition of the physical properties of
each phase.

« momentumTransport contains the definition of the turbulence model to use.

151

3D Dam break — Free surface flow

[3) The g dictionary file

10
11
12
L]
14
15
17
18
19

FoamFile

{
version
format
class
location
object

}

dimensions
value

2.0;

ascii;
uniformDimensionedVectorField;
"constant";

g’

[01 -2 000 0];
(0 0 -9.81);

This dictionary file is located in the directory
constant.

For multiphase flows, this dictionary is
compulsory.

In this dictionary we define the gravity vector (line
19).

Pay attention to the class type (line 12).

152

3D Dam break — Free surface flow

[3) The transportProperties dictionary file

Primary phase

/
17 phases (water air);
18
19 water
20 {
21 transportModel Newtonian;
22 nu [02 -1 000 0] 1e-06;
23 rho [1 -3000 0 0] 1000;
24 }
25
26 air
27 {
28 transportModel Newtonian;
29 nu [02 -1 000 0] 1.48e-05;
30 rho [1-300000] 1;
31 }
32
33 sigma [10-2000 0] 0.07;

This dictionary file is located in the directory
constant.

We first define the name of the phases (line 17).
In this case we are defining the names water and
air. The first entry in this list is the primary phase
(water).

The name of the primary phase is the one you will
use to initialize the solution.

The name of the phases is given by the user.

In this file we set the kinematic viscosity (nu),
density (rho) and transport model
(transportModel) of the phases.

We also define the surface tension (sigma).

153

3D Dam break — Free surface flow

* In this dictionary file we select what model we would like to use (laminar or

turbulent).

Ei

The momentumTransport dictionary file

» This dictionary is compulsory.

 In this case we use a RANS turbulence model (kEpsilon).

17
18
19
20
21
22
23
24
25
26

simulationType RAS;

RAS
{

RASModel kEpsilon;
turbulence on;

printCoeffs on;

154

3D Dam break — Free surface flow

-

The 0 directory

* In this directory, we will find the dictionary files that contain the boundary and
initial conditions for all the primitive variables.

» As we are solving the incompressible RANS Navier-Stokes equations using
the VOF method, we will find the following field files:

alpha.water
p rgh

U

k

epsilon

nut

(volume fraction of water phase)

(pressure field minus hydrostatic component)
(velocity field)

(turbulent kinetic energy field)

(rate of dissipation of turbulence energy field)
(turbulence viscosity field)

155

3D Dam break — Free surface flow

[3) Thefile 0/alpha.water

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
85
34
5
36
37
38
89
40
41
42
43
44
45
46
47
48
49
50
Sl
52
53
54

dimensions

internalField

boundaryField

{

front

type

bottom
{
type

top

{
type
inletValue
value

}

stlSurface

{
type

}

[000O0O0O0O];

uniform 0;

zeroGradient;

zeroGradient;

zeroGradient;

zeroGradient;

zeroGradient;

inletOutlet;
uniform O;
uniform O;

zeroGradient;

This file contains the boundary and initial conditions
for the non-dimensional scalar field alpha.water

This file is named alpha.water, because the

primary phase is water (we defined the primary
phase in the transportProperties dictionary).

Initially, this field is initialized as 0 in the whole
domain (line 19). This means that there is no water in
the domain at time 0. Later, we will initialize the
water column and this file will be overwritten with a
non-uniform field for the internalField.

For the front, back, left, right, bottom and
stlSurface patches we are using a zeroGradient
boundary condition (we are just extrapolating the
internal values to the boundary face).

For the top patch we are using an inletOutlet
boundary condition. This boundary condition avoids
backflow into the domain. If the flow is going out it
will use zeroGradient and if the flow is coming back
it will assign the value set in the keyword inletValue
(line 46).

156

3D Dam break — Free surface flow

B The file 0/p rgh

17 dimensions [1 -1 -2000 0]; . . . L. .
18 « This file contains the boundary and initial conditions
S, | neermalfield unifomm 07 for the dimensional scalar field p_rgh. The
T Eemtaroo dimensions of this field are given in Pascal (line 17)
> crene This scalar field contains the value of the static
25 type ST RO pressure field minus the hydrostatic component.
26 value uniform O;
o back - This field is initialized as 0 in the whole domain (line
19).
33 left
38 cight * Forthe front, back, left, right, bottom and
is botton stiSurface patches we are using the
fixedFluxPressure boundary condition (refer to the
25 oF source code or doxygen documentation to know
20 type et more about this boundary condition).
Bils PO uniform 0;
52 u; .
53 Ehi phi; » For the top patch we are using the totalPressure
o ;:j zhor. boundary condition (refer to the source code or
56 gamma 1; doxygen documentation to know more about this
i’ , undgomm 07 boundary condition).
59 stlSurface
60 {
61 type fixedFluxPressure;
62 value uniform O;
63 }
64
65 }
157

3D Dam break — Free surface flow

B The file 0/U
17 dimensions [0 -1 -1 000 0]; el .
18 « This file contains the boundary and initial conditions
S, o nremmalfield unifom (000 for the dimensional vector field U.
21 boundaryField
22 { » We are using uniform initial conditions and the
" crene numerical value is (0 0 0) (keyword internalField in
25 type fizfedValue; ||ne 19)
26 value uniform (0 0 0);
i o The front, back, left, right, bottom and stiSurface
i Lece patches are no-slip walls, therefore we impose a
fixedValue boundary condition with a value of (0 0 0)
> Tigne at the wall.
43 bottom
* For the top patch we are using the
1 oF pressurelnlterOutletVelocity boundary condition
20 type e Tnleroutistyelocity; (refer to the source code or doxygen documentation
52 } ' to know more about this boundary condition).
53 stlSurface
54 {
55 type fixedValue;
56 value uniform (0 O 0);
57 }
58
59 }

158

3D Dam break — Free surface flow

B The file 0/k

17 dimensions [0O2 -2 00 0 0], . i . .. L.
18 . is fi [u initi iti

_ _ . This file contains the boundary and initial conditions
19 internalField uniform 0.1; | | | .
20 ’ for the dimensional scalar field k
21 boundaryField
22 { » This scalar (turbulent kinetic energy), is related to the
23 “(front|back|left|right|bottom|stlSurface)”
0 { turbulence model.
25 type kgRWallFunction; . . L . .
26 value $internalField; * This field is initialized as 0.1 in the whole domain,
27 }
28 and all the boundary patches take the same value
29 top H H
2 : ($internalField).
31 t inletOutlet; .
- e « For the front, back, left, right, bottom and
" T A stISurface patches we are using the
35 kgRWallFunction boundary condition, which applies
36 }

a wall function at the walls (refer to the source code
or doxygen documentation to know more about this
boundary condition).

« For the top patch we are using the inletOutlet
boundary condition, this boundary condition handles
backflow (refer to the source code or doxygen
documentation to know more about this boundary
condition).

* We will deal with turbulence modeling later.

159

3D Dam break — Free surface flow

B The file 0/epsilon

17 dimensions [0O2 -300 0 0],

18 _ . « This file contains the boundary and initial conditions
19 internalField uniform 0.1; | | | i .

20 ’ for the dimensional scalar field epsilon

21 boundaryField

22 { » This scalar (rate of dissipation of turbulence energy),
23 “(front|back|left|right|bottom|stlSurface)” .

24 (is related to the turbulence model.

25 type epsilonWallFunction; . . L . .

26 value $internalField; * This field is initialized as 0.1 in the whole domain,

27 }

28 and all the boundary patches take the same value
29 top H H

i { ($internalField).

31 t inletOutlet; .

32 et s;nierial;em; * Forthe front, back, left, right, bottom and

" T Sinternairield; stlSurface patches we are using the

35 epsilonWallFunction boundary condition, which

36 }

applies a wall function at the walls (refer to the
source code or doxygen documentation to know
more about this boundary condition).

« For the top patch we are using the inletOutlet
boundary condition, this boundary condition handles
backflow (refer to the source code or doxygen
documentation to know more about this boundary
condition).

* We will deal with turbulence modeling later.

160

3D Dam break — Free surface flow

B The file 0/nut
17 dimensions [02 -1000 0]; . : . . L
18 _ . « This file contains the boundary and initial conditions
S, nremnaimield uniform 07 for the dimensional scalar field nut.
21 boundaryField
22 { » This scalar (turbulent viscosity), is related to the
23 “(front|back|left|right|bottom|stlSurface)” t
o { urbulence model.
25 type nutkWallFunction; . . L . i
26 value $internalField; « Thisfield is initialized as 0 in the whole domain, and
27
28 : all the boundary patches take the same value
i o ($internalField).
31 type calculated; .
32 valua $internalField;; * Forthe front, back, left, right, bottom and
" . stlSurface patches we are using the
35} nutkWallFunction boundary condition, which applies

a wall function at the walls (refer to the source code
or doxygen documentation to know more about this
boundary condition).

* For the top patch we are using the calculated
boundary condition, this boundary condition
computes the value of nut from k and epsilon (refer to
the source code or doxygen documentation to know
more about this boundary condition).

* We will deal with turbulence modeling later.

161

3D Dam break — Free surface flow

D The system directory

The system directory consists of the following compulsory dictionary files:
* controlDict
* fvSchemes

e fvSolution

controlDict contains general instructions on how to run the case.

fvSchemes contains instructions for the discretization schemes that will be
used for the different terms in the equations.

fvSolution contains instructions on how to solve each discretized linear
equation system.

162

3D Dam break — Free surface flow

Ei

The controlDict dictionary

17
18
19
20
20
22
23
24
25
26
27
28
29
30
Sl
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51

application
startFrom
startTime
stopAt
endTime
deltaT
writeControl
writeInterval
purgeWrite

writeFormat

interFoam;

startTime;

0;

endTime;

8K

0.0001;

adjustableRunTime;

0.02;

OF;

ascii;

writePrecision 8;

writeCompression uncompressed;

timeFormat

timePrecision

general;

8F

runTimeModifiable yes;

adjustTimeStep yes;

maxCo
maxAlphaCo
maxDeltaT

o o+
o U o

This case starts from time O (startTime), and it will run up to 8
seconds (endTime).

The initial time step of the simulation is 0.0001 seconds
(deltaT).

It will write the solution every 0.02 seconds (writelnterval) of
simulation time (runTime). It will automatically adjust the time
step (adjustableRunTime), in order to save the solution at the
precise write interval.

It will keep all the solution directories (purgeWrite).
It will save the solution in ascii format (writeFormat).

The write precision is 8 digits (writePrecision). It will only save
eight digits in the output files.

And as the option runTimeModifiable is on, we can modify all
these entries while we are running the simulation.

In line 47 we turn on the option adjustTimeStep. This option
will automatically adjust the time step to achieve the maximum
desired courant number (lines 49-50). We also set a maximum
time step in line 51.

Remember, the first time step of the simulation is done using
the value set in line 27 and then it is automatically scaled to

achieve the desired maximum values (lines 49-51).
163

3D Dam break — Free surface flow

3] The controlDict dictionary

55
56

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

144

functions

{

minmaxdomain

{

type fieldMinMax;

functionObjectLibs ("libfieldFunctionObjects.so");
enabled true; //true or false

mode component;

writeControl timeStep;
writeInterval 1;

log true;

fields (p p_rgh U alpha.water k epsilon);

» Let us take a look at the functionObjects definitions.

* Inlines 60-76 we define the fieldMinMax functionObject
which computes the minimum and maximum values of
the field variables (p p_rgh U alpha.water k epsilon).

164

3D Dam break — Free surface flow

3] The controlDict dictionary

55
56

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

144

functions

{

water in domain

{

type volRegion;
functionObjectLibs ("libfieldFunctionObjects.so") ;
enabled true;

enabled true;
//writeControl outputTime;

writeControl timeStep;
writeInterval 1;

log true;
regionType all;
operation volIntegrate;
fields

(

alpha.water

);

» Let us take a look at the functionObjects definitions.

* Inlines 81-102 we define the volRegion functionObject
which computes the volume integral (vollntegrate) of the
field variable alpha.water in all the domain.

 Basically, we are monitoring the quantity of water in the
domain.

165

3D Dam break — Free surface flow

3] The controlDict dictionary

55 functions » Let us take a look at the functionObjects definitions.
56 { . . - L]
* Inlines 107-131 we define the probes functionObject
107 r 1 . . .
oy e which sample the selected fields (lines 124-127) at the
109 type ~ probes; _ selected locations (lines 112-122).
110 functionObjectLibs ("libsampling.so") ;
111
112 e e » This sampling is done on-the-fly. All the information
113 (.
o (082450002 0 0.021) sample by this fur!ctlonObject is saved in the directory
115 (0.82450002 0 0.061) ./postProcessing/probesl
116 (0.82450002 0 0.101)
117 (0.82450002 0 0.141) ° H H H
e (0 8035 0 0.160) As we are sampling starting from time 0, the sampled
119 (0.7635 0 0.161) data will be located in the directory:
120 (0.7235 0 0.161)
o s SO 1 o] postProcessing/probesl/0
123 . . .
124 fields » Feel free to open the files located in the directory
o . o zan postProcessing/probesl/0 using your favorite text
127) ; editor.
128
129 writeControl timeStep;
130 writeInterval 1;
131 }
144 };
Sampling locations
(probelLocations)

166

3D Dam break — Free surface flow

3] The controlDict dictionary

55
56

135
136
137
138
139
140
141

144

functions

{

yplus
{
type yPlus;
functionObjectLibs ("libutilityFunctionObjects.so ");
enabled true;
writeControl outputTime;

Let us take a look at the functionObjects definitions.

In lines 135-141 we define the yplus functionObject
which computes the yplus value.

This quantity is related to the turbulence modeling.

This functionObject will save the yplus field in the
solution directories with the same saving frequency as the
solution (line 140).

It will also save the minimum, maximum and mean values
of yplus in the directory:

postProcessing/yplus

167

3D Dam break — Free surface flow

B The fvSchemes dictionary

17
18
19
21
22
28]
24
25
26
27
28
29
30
Sl

33

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

ddtSchemes
{
default Euler;
}
gradSchemes
{
default Gauss linear;
grad (U) celllLimited Gauss linear 1;
}
divSchemes

{
div(rhoPhi,U) Gauss linearUpwindV grad(U) ;

div(phi,alpha) Gauss interfaceCompression vanlLeer 1;

div(phi,k) Gauss upwind;

div(phi,epsilon) Gauss upwind;

div(((rho*nuEff) *dev2 (T (grad(U))))) Gauss linear;
}

laplacianSchemes

{

default Gauss linear corrected;

}

interpolationSchemes

{

default linear;
}
snGradSchemes
{
default corrected;

}

In this case, for time discretization (ddtSchemes) we are using the
Euler method.

For gradient discretization (gradSchemes) we are using the Gauss
linear as the default method and slope limiters (cellLimited) for the
velocity gradient or grad(U).

For the discretization of the convective terms (divSchemes) we are
using linearUpwindV interpolation method for the term
div(rhoPhi,U).

For the term div(phi,alpha) we are using interfaceCompression
vanLeer interpolation scheme.

» This is an interface compression corrected scheme used to
maintain sharp interfaces in VOF simulations.

* The coefficient defines the degree of compression, where 1 is
suitable for most VOF applications.

For the terms div(phi,k) and div(phi,epsilon) we are using upwind
(these terms are related to the turbulence modeling).

For the term div(((rho*nuEff)*dev2(T(grad(U))))) we are using
linear interpolation (this term is related to the turbulence modeling).

For the discretization of the Laplacian (laplacianSchemes and
snGradSchemes) we are using the Gauss linear corrected method

In overall, this method is second order accurate but a little bit
diffusive. Remember, at the end of the day we want a solution that is
second order accurate.

168

3D Dam break — Free surface flow

3] The fvSolution dictionary

17 solvers + To solve the volume fraction or alpha.water (lines 19-32) we
o U aiohewater. e are using the smoothSolver method.

i U oalphacors 3 * In line 25 we turn on the semi-implicit method MULES. The

2 o weyetes 1 keyword nLimiterlter controls the number of MULES iterations
24 over the limiter.

25 MUI:E?Corr yes; . o))

2 RS * To have more stability it is possible to increase the number of
28 solver smoothSolver; loops and corrections used to solve alpha.water (lines 21-22).
29 smoother symGaussSeidel;

i colerance o * The keyword cAlpha (line 23) controls the sharpness of the

32 } interface (1 is usually fine for most cases).

33

o ‘{“P°°"'P°°"Fi“al’" * In lines 34-40 we setup the solver for pcorr and pcorrFinal

36 solver PCG; (pressure correction).

37 preconditioner DIC;

i o arance o * In this case pcorr is solved only one time at the beginning of
i } the computation.

o Bxan * In lines 42-49 we setup the solver for p_rgh.

44 solver PCG;
45 preconditioner DIC; » The keyword minlter (line 48), means that the linear solver will
46 tolerance le-06; . .

o elTol 0 01; do at least one iteration.

48 minIter iy

49 }

169

3D Dam break — Free surface flow

Ei

The fvSolution dictionary

Sl
52
53
54
55
56
57/
58
59
60
61
62
63
72
73
74
75
76
77
78
79
80
81
82

p_rghFinal

{

}

$p_rgh;
relTol
minIter

"(U|UFinal) "

{

}

solver
Preconditioner
tolerance
relTol

"(k|epsilon) . *"

{

solver
Preconditioner
tolerance
relTol

PBiCGStab;

DILU;
le-08;
0;

PBiCGStab;

DILU;
le-08;
OF;

* Inlines 51-56 we setup the solver for p_rghFinal. This
correspond to the last iteration in the loop (we can use a tighter
convergence criteria to get more accuracy without increasing
the computational cost)

* Inlines 58-72 we setup the solvers for U and UFInal.

* Inlines 74-80 we setup the solvers for the turbulent quantities,
namely, k and epsilon.

170

3D Dam break — Free surface flow

3] The fvSolution dictionary

62 * Inlines 83-89 we setup the entries related to the pressure-

se P velocity coupling method used (PIMPLE in this case). Setting

84 { . . .

85 momentumPredictor yes; the keyword nOuterCorrectors to 1 is equivalent to running

- Moorcomrectors using the PISO method.

88 nNonOrthogonalCorrectors 1; . . .

89} » To gain more stability we can increase the number of correctors
oy elaxationFactors (lines 87-88), however this will increase the computational cost.
02 | telas * Inlines 91-101 we setup the under-relaxation factors related to

o b o the PIMPLE method outer iterations.

96 }

97 equations » The values defined correspond to the industry standard of
0 Ce o the SIMPLEC method.

100 }

101} « By using under-relaxation we ensure diagonal equality.

102

» Be careful not use too low values as you will loose time
accuracy.

* If you want to disable under-relaxation, comment out
these lines.

» The option momentumPredictor (line 85), is recommended for
highly convective flows.

171

3D Dam break — Free surface flow

D The system directory

* In the system directory you will find the following optional dictionary files:
* decomposeParDict

* setFieldsDict

* decomposeParDict is read by the utility decomposePar. This dictionary
file contains information related to the mesh partitioning. This is used when
running in parallel.

« setFieldsDict is read by the utility setFields. This utility set values on
selected cells/faces.

172

3D Dam break — Free surface flow

2] The setFieldsDict dictionary

* This dictionary file is located in the directory system.

* Inlines 17-20 we set the default value to be 0 in the whole

17 defaultFieldValues domain (no water).
18 (
se ,, ciScalemieldvalue aiphawater ¢ * Inlines 22-32, we initialize a rectangular region (box)
21 containing water (alpha.water 1).
22 regions
o el * Inthis case, setFields will look for the dictionary file
oxloCe
25 { alpha.water and it will overwrite the original values
26 box (1.992 -10 0) (5 10 0.55); d t th H d f d : . l .
o ol dvaluss according to the regions defined in setFieldsDict.
) (T . . .
29 volScalarFieldValue alpha.water 1 * We initialize the water phase because is the primary phase in
i ;) the dictionary transportProperties.

32)i
» If you are interested in initializing the vector field U, you can

proceed as follows volVectorFieldValue U (0 0 0)

Air
alpha.water =0

» 1

boxToCell region

173

3D Dam break — Free surface flow

[3) The decomposeParDict dictionary

» This dictionary file is located in the directory system.
« This dictionary is used to decompose the domain in order to run in parallel.

* The keyword numberOfSubdomains (line 17) is used to set the number of cores we want to use in the
parallel simulation.

» In this dictionary we also set the decomposition method (line 19).
* Most of the times the scotch method is fine.

* In this case we set the numberOfSubdomains to 4, therefore we will run in parallel using 4 cores.

17 numberOfSubdomains 4;
18

19 method scotch;

20

* When you run in parallel, the solution is saved in the directories processorN, where N stands for processor

number. In this case you will find the following directories with the decomposed mesh and solution:

processor0, processorl, processor2, and processor3. -

3D Dam break — Free surface flow

Running the case

Let us first generate the mesh.

To generate the mesh will use snappyHexMesh (sHM), do not worry we will talk about
sHM tomorrow.

$>
$>
$>
$>
$>
$>
$>
$>
$>

© o N o a0 bk~ w0 D=

foamCleanTutorials

rm —-rf O

blockMesh

surfaceFeatures

snappyHexMesh -overwrite

createPatch -dict system/createPatchDict.0 -overwrite
createPatch -dict system/createPatchDict.l -overwrite
checkMesh

paraFoam

175

3D Dam break — Free surface flow

Running the case

* Let us run the simulation in parallel using the solver interFoam.
« We will talk more about running in parallel tomorrow

* To run the case, type in the terminal:

$> rm —-rf O

$> cp -r 0 org O

$> setFields

$> paraFoam

decomposePar

$> mpirun -np 4 interFoam -parallel | tee log.interFoam

S> reconstructPar

©® N o 0o K WD~
Ur
v

$> paraFoam

176

3D Dam break — Free surface flow

Running the case

 In steps 1-2 we copy the information of the backup directory 0 _org into the directory
0. We do this because in the next step the utility setFields will overwrite the file
0/alpha.water, SO itis a good idea to keep a backup.

* In step 3 we initialize the solution using the utility setFields. This utility reads the
dictionary setFieldsDict located in the system directory.

* In step 4 we visualize the initialization using paraFoam.

* In step 5 we use the utility decomposePar to do the domain decomposition needed
to run in parallel.

* In step 6 we run the simulation in parallel. Notice that np means number of
processors and the value used should be the same number as the one you set in the
dictionary decomposeParDict.

« If you want to run in serial, type in the terminal: interFoam | tee log

» In step 7 we reconstruct the parallel solution. This step is only needed if you are
running in parallel.

« Finally, in step 8 we visualize the solution.

177

3D Dam break — Free surface flow

» To plot the sampled data using gnuplot you can proceed as follows. To enter to the
gnuplot prompt type in the terminal:

1. | $> gnuplot

« Now that we are inside the gnuplot prompt, we can type,

1. | set xlabel 'Time (seconds)'
2. | set ylabel 'Water volume integral'

3. | gnuplot> plot 'postProcessing/water in domain/0/volRegion.dat' u 1:2 w 1 title
'Water in domain'

4. | set xlabel 'Time (seconds)'
5. | set ylabel 'Pressure'

6. | plot 'SPHERIC Test2/case.txt' u 1:2 w 1 title 'Experiment',
'postProcessing/probesl/0/p' u 1:2 w 1 title 'Numerical simulation'

7. | gnuplot> exit
To exit gnuplot

178

3D Dam break — Free surface flow

* The output of steps 3 and 6 is the following:

Numerical simulation

W\ [
- —
alpha.water vs. time p vs. time (at probe 0)

179

3D Dam break — Free surface flow

The output screen

Courant Number mean: 0.0099001831 max: 0.50908228 4 Flow courant number
Interface Courant Number mean: 0.0012838336 max: 0.05362054
deltaT = 0.00061195165

Time = 0.41265658 Interface courant number. When solving multiphase flows, is always
desirable to keep the interface courant number less than 1.

PIMPLE: iteration 1

smoothSolver: Solving for alpha.water, Initial residual = 0.00035163885, Final residual = 9.3476388e-11, No Iterations 2 4— alpha'water
Phase-1 volume fraction = 0.20706923 Min(alpha.water) = -9.1300674e-12 Max(alpha.water) = 1.0000113 residuals
MULES: Correcting alpha.water nAlphaSubCyvcles 1

MULES: Correcting alpha.water 4— nAlphaCorr 3 On'?’ one |00)|(D

MULES: Correcting alpha.water

Phase-1 volume fraction = 0.20706923 Min(alpha.water) = -1.2354076e-07 Max(alpha.water) = 1.0000113

DILUPBiCGStab: Solving for Ux, Initial residual = 0.00057936556, Final residual = 2.3207684e-09, No Iterations 1

DILUPBiCGStab: Solving for Uy, Initial residual = 0.0021990412, Final residual = 7.228845e-09, No Iterations 1

DILUPBiCGStab: Solving for Uz, Initial residual = 0.00041048425, Final residual = 3.946807e-10, No Iterations 1

DICPCG: Solving for p rgh, Initial residual = 0.0013260985, Final residual = 1.2556023e-05, No Iterations 4

DICPCG: Solving for p rgh, Initial residual = 1.4873252e-05, Final residual = 8.7706547e-07, No Iterations 13

time step continuity errors : sum local = 2.166836e-08, global = -4.8300033e-11, cumulative = -5.8278026e-05 3 pressure correctors
DICPCG: Solving for p_rgh, Initial residual = 1.6925332e-05, Final residual = 8.9811533e-07, No Iterations 9 and no non-orthogon3l
DICPCG: Solving for p rgh, Initial residual = 1.1731393e-06, Final residual = 4.991128e-07, No Iterations 1 corrections

time step continuity errors : sum local = 1.2328745e-08, global = -3.6165262e-09, cumulative = -5.8281643e-05
DICPCG: Solving for p rgh, Initial residual = 8.2834963e-07, Final residual = 4.6047958e-07, No Iterations 1
DICPCG: Solving for p rgh, Initial residual = 4.6053278e-07, Final residual = 4.65519e-07, No Iterations 1 4— Tighter tolerance
time step continuity errors : sum local = 1.1498949e-08, global = -3.1908629e-09, cumulative = -5.8284834e-05 hFinal) i I lied
DILUPBiCGStab: Solving for epsilon, Initial residual = 0.001169828, Final residual = 9.2601488e-11, No Iterations 2 (p—rg_ _ma).IS el ya_pp e
DILUPBiCGStab: Solving for k, Initial residual = 0.0014561556, Final residual = 9.4651262e-11, No Iterations 2 to this iteration (the final
ExecutionTime = 23.21 s ClockTime = 24 s one)
\ Turbulence variables residuals
fieldMinMax minmaxdomain write:

min (p) -9.8942827 in cell 5509 at location (2.490155 0.025000016 1) on processor 2

max (p) = 4703.3656 in cell 1485 at location (3.1948336 -0.425 0) on processor 2

min(p_rgh) = -7.9025882 in cell 1241 at location (0.82088765 -0.20846334 0.043756428) on processor 1

max (p_rgh) = 4831.247 in cell 3285 at location (3.1948341 -0.475 0.42499986) on processor 2

min(U) = (-0.96505264 -0.019641482 -0.052664083) in cell 2 at location (2.1879167 -0.42500042 0.024999822) on processor 2

max (U) = (0.32541708 0.29383224 2.7117589) in cell 5246 at location (0.8884354 0.087713417 0.16296979) on processor 1 '

min (alpha.water) = -1.2354076e-07 in cell 2653 at location (0.84202094 -0.10628417 0.0062556498) on processor 1

max (alpha.water) = 1.0000113 in cell 224 at location (2.6411358 -0.42500003 0.074999874) on processor 2

min(k) = 0.0041733636 in cell 2510 at location (0.65789113 -0.0062500875 0.0062360099) on processor 1

max (k) = 0.83402261 in cell 6589 at location (1.2803306 -0.025028634 0.17499623) on processor 1

min (epsilon) = 0.018352121 in cell 2510 at location (0.65789113 -0.0062500875 0.0062360099) on processor 1

max (epsilon) = 11.712212 in cell 1933 at location (0.83147515 -0.19630576 0.068753535) on processor 1

Minimum and maximum
values of field variables

volFieldValue water in domain write: i i .
volIntegrate() of alpha.water = 0.66459985 <« Volume integral functionObject

180

3D Dam break — Free surface flow

Post-processing multiphase flows in paraFoam

To visualize the volume fraction, proceed as follows,

4. To animate the solution, press P1lay in the
VCR Controls

2. Select alpha.water in

ParaView 5.0.” s4-bit (Legacy Rendering Backend)

File Edit Wiew Sources Filters Tools Catalyst Macros Help

peRe»a

the Active Variable drop-
down menu

3. Select Surface in the /

Representation drop-down
menu

1. In the Properties tab select
alpha.water in Volume Fields

_’ ® alphawater

[ﬁ‘ e k @ alpha.water A
E9UPRTQELD |

Pipeline Browser

Surface

T
B builtin:
-3 3D _dampBreak.OpenFOAM

Properties | Information |

Properties
Delete ?

earch ... (use Esc to dear text)

“|Mesh Parts

® internalMesh
wall - group
left - patch
right - patch
stiSurface - patch
back - patch
bottom - patch
top - patch
front - patch

| X Volume Fields

% p_rgh
»® U

?@RH_DQQDDDDDU@ Time: 0
IREsdkkLai [Feea

O Layout #1 X +
F o B % oE &R T R R

RenderViewl @

0.000e+00 025 0.75 1.000e+00

IIIII\I\IWHHHH

Air
alpha.water = 0

Water
alpha.water = 1

Interface
alpha.water = 0.5

181

3D Dam break — Free surface flow

Post-processing multiphase flows in paraFoam

» To visualize a surface representing the interface, proceed as follows,

5. To animate the solution, press Play in the
VCR Controls

ParaView 5.0.” s4-bit (Legacy Rendering Backend)

File Edit Wiew Sources Filters Tools Catalyst Macros Help

PEBE D6 ?Fud KA DB Tme
D iEI 556 e @solid color | Surface - ;{ E Py ﬂ ﬂ;’; g;; ,;:g ;‘_ﬂ ﬂ;‘, @ @ @
1. Select the filter CoNtour ———G @ @@ @ Q=2 @ & L9 » 9 +

Pipeline Browser [EIES] O Layout#1 X | +

[- e = — -

Ebul\t\n: 5 @)% S R RN e B om oA A ? & RenderView1 @
@ {030_dampBreak.OpenFOAM
@

\ Properties | Information |

Properties

4. Press apply

"] # Delete ?
Search ... (use Escto dear text)

2. Select alpha.water or the field you = Praperties (Contour) E|E
want to use to plot the iso-surface (it =~ =t | o siphaacer
has to be a scalar) % Compuite Normals

Compute Scalars

Qutput Points

. Same as input
Precision E

%X| Generate Triangles

Isosurfaces

3. Enter the value 0.5 which Value Range: [0, 1]
corresponds to the interface —P [i]os Iso-surface representing the interface
between water and air @ between water and air

182

3D Dam break — Free surface flow

Post-processing multiphase flows in paraFoam

» To visualize all the cells representing the water fraction, proceed as follows,

5. To animate the solution, press Play in the
VCR Controls

ParaView 5.0.” s4-bit (Legacy Rendering Backend)

File Edit Wiew Sources Filters Tools Catalyst Macros Help

PEBE D6 ?Fud KA DB Tme

@"a 056 fe @ alphawater - | Surface - ;{ E Py ﬂ ﬂ;’; g;; ;:g ;‘_ﬂ ﬂ;i @ @ @
1. Select the filter Threshold PR IO 2@ B [0 B ok
Pipeline Browser O Layout#1 X | + |
ﬁbui\tm: 5 o @ [H R KRR EE R AN ?E RenderView1 @

@ {030_dampBreak.OpenFOAM
@ i@ Contour1

@
0.000e+00 025 0.75 1.000e+00

™ —

Properties | Information |
\ Properties

-] # Delete

4. Press apply

Search ... (use Escto dear text)

2. Select alpha.water or the field D PR Ry Bmjc
you want to use to visualize the =P sciers (@ siphaater

H - ‘
cells (it has to be a scalar) Minimum —————— |05
Max\mum:@ 1

%] All Scalars
Use C uous Cell Range
Display (UnstructuredGridRepresentatic || (3 | Y || (

Cube Axes Visibility

nepreseriaion ourhue Cells representing the
3. Select the range you want to Coloring water location
visualize. To visualize the o alphawater -

water select Minimum 0.5 and
Maximum 1.

183

3D Dam break — Free surface flow

Exercises

Instead of using the boundary condition totalPressure and pressurelnletOutletVelocity for the patch top, try
to use zeroGradient. Do you get the same results? Any comments?

(Hint: this combination of boundary conditions might give you an error, if so, read carefully the screen
and try to find a fix, you can start by looking at the file fvSolution)

Instead of using the boundary condition fixedFluxPressure for the walls, try to use zeroGradient. Do you get
the same results? Any comments?

Run the simulation in a close domain. Does the volume integral of alpha.water remains the same? Why the
value is not constant when the domain is open?

Use a functionObject to measure the average pressure on the obstacle.

How many initialization methods are there available in the dictionary setFieldsDict?
(Hint: use the banana method)

Run the simulation using Gauss upwind instead of Gauss vanLeer or Gauss interfaceCompression
vanLeer 1 for the term div(phi,alpha) (fvSchemes). Do you get the same quantitative results?

184

3D Dam break — Free surface flow

Exercises

Run a numerical experiment for cAlpha equal to 0, 1, and 2. Do you see any difference in the solution? What
about computing time?

Use the solver GAMG instead of using the solver PCG for the variable p_rgh. Do you see any difference on
the solution or computing time?

Increase the number of nOuterCorrector to 2 and study the output screen. What difference do you see?
Turn off the MULES corrector (MULESCorr). Do you see any difference on the solution or computing time?
If you set the gravity vector to (0 0 0), what do you think will happen?

Try to break the solver and identify the cause of the error. You are free to try any kind of setup.

185

9. Flow past a cylinder — From laminar to turbulent flow

186

Flow past a cylinder — From laminar to turbulent flow

« At this point we all have a rough idea of what is going
on with all these dictionary files.

* Unless it is strictly necessary, from now on we will not

go into details about the dictionaries and files we are
using.

 Remember, if you are using the lab computers, do not
forget to load the environment variables.

187

Flow past a cylinder — From laminar to turbulent flow

20

Flow around a cylinder — 10 < Re <2 000 000
Incompressible and compressible flow

20

>
N

S

o

e

20 30

All the dimensions are in meters

Physical and numerical side of the
problem:

In this case we are going to solve the flow
around a cylinder. We are going to use
incompressible and compressible solvers, in
laminar and turbulent regime.

Therefore, the governing equations of the
problem are the incompressible/compressible
laminar/turbulent Navier-Stokes equations.

We are going to work in a 2D domain.

Depending on the Reynolds number, the flow
can be steady or unsteady.

This problem has a lot of validation data.

188

Flow past a cylinder — From laminar to turbulent flow

Workflow of the case

icoFoam
OB pisoFoam
One single mesh can be used with all 7
solvers and utilities pimpleFoam

pimpleDyMFoam
simpleFoam
rhoPimpleFoam
interFoam
sonicFoam
potentialFoam
mapFields

______________ + functionObjects

postProcessing
utilities

189

Flow past a cylinder — From laminar to turbulent flow

N
‘;/-\41’ Creeping flow (no separation)

\C)/* Steady flow Re <5
_/\ A pair of stable vortices

HOQH in the wake 5 < Re < 40 _ 46

Steady flow

Laminar vortex street
(Von Karman street)
Unsteady flow

40 - 46 <Re <150

J

Laminar boundary layer up to
the separation point, turbulent
wake

Unsteady flow

150 < Re <300)

Transition to turbulence

300 <Re<3x10°)

Boundary layer transition to
turbulent
Unsteady flow

3x10°<Re<3x10°

J
N
/*\0\‘ 5 Turbulent vortex street, but the 6
wake is narrower than in the
_’O Q Q laminar case 3 X 10 > Re
Unsteady flow
J

Cq

St

Vortex shedding behind a cylinder

10 10

Drag coefficient

40 10° 10° 10* 10° 10 107

Strouhal number

190

Flow past a cylinder — From laminar to turbulent flow

Some experimental () and numerical (N) results of the flow past a circular
cylinder at various Reynolds numbers

Reference cqy—Re =20 L., —Re =20 cqy—Re =40 L, — Re =40

[1] Tritton ® 2.22 - 1.48 -

[2] Cuntanceau and Bouard (F) - 0.73 - 1.89
[3] Russel and Wang (N) 2.13 0.94 1.60 2.29
[4] Calhoun and Wang (N) 2.19 0.91 1.62 2.18
[5] Ye etal. N) 2.03 0.92 1.52 2.27
[6] Fornbern (N) 2.00 0.92 1.50 2.24
[7] Guerrero N) 2.20 0.92 1.62 2.21

L,, = length of recirculation bubble, c4 = drag coefficient, Re = Reynolds number,

[1] D. Tritton. Experiments on the flow past a circular cylinder at low Reynolds numbers. Journal of Fluid Mechanics, 6:547-567, 1959.

[2] M. Cuntanceau and R. Bouard. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. Journal of Fluid
Mechanics, 79:257-272, 1973.

[3] D. Rusell and Z. Wang. A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow. Journal of Computational Physics, 191:177-205, 2003.

[4] D. Calhoun and Z. Wang. A cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. Journal of Computational Physics. 176:231-275, 2002.

[5] T. Ye, R. Mittal, H. Udaykumar, and W. Shyy. An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries. Journal of Computational Physics,
156:209-240, 1999.

[6] B. Fornberg. A numerical study of steady viscous flow past a circular cylinder. Journal of Fluid Mechanics, 98:819-855, 1980.

[7] J. Guerrero. Numerical simulation of the unsteady aerodynamics of flapping flight. PhD Thesis, University of Genoa, 2009.

191

Flow past a cylinder — From laminar to turbulent flow

Some experimental () and numerical (N) results of the flow past a circular
cylinder at various Reynolds numbers

Reference cq—Re =100 c,— Re =100 cqy—Re =200 c,— Re =200
[1] Russel and Wang (N) 1.38 + 0.007 +0.322 1.29 + 0.022 +0.50
[2] Calhoun and Wang V) 1.35+0.014 +0.30 1.17 £ 0.058 +0.67
[3] Braza et al. N) 1.386+ 0.015 +0.25 1.40 £ 0.05 +0.75
[4] Choi et al. N) 1.34 + 0.011 +0.315 1.36 + 0.048 +0.64
[5] Liu etal. N) 1.35+0.012 +0.339 1.31 £ 0.049 +0.69
[6] Guerrero (N) 1.38 £ 0.012 +0.333 1.408 + 0.048 +0.725

c, = lift coefficient, ¢4 = drag coefficient, Re = Reynolds number

[1] D. Rusell and Z. Wang. A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow. Journal of Computational Physics, 191:177-205, 2003.

[2] D. Calhoun and Z. Wang. A cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. Journal of Computational Physics. 176:231-275, 2002.
[3] M. Braza, P. Chassaing, and H. Hinh. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. Journal of Fluid Mechanics, 165:79-130,
1986.

[4] J. Choi, R. Oberoi, J. Edwards, an J. Rosati. An immersed boundary method for complex incompressible flows. Journal of Computational Physics, 224:757-784, 2007.

[5] C. Liu, X. Zheng, and C. Sung. Preconditioned multigrid methods for unsteady incompressible flows. Journal of Computational Physics, 139:33-57, 1998.

[6] J. Guerrero. Numerical Simulation of the unsteady aerodynamics of flapping flight. PhD Thesis, University of Genoa, 2009.

192

Flow past a cylinder — From laminar to turbulent flow

At the end of the day, you should get something like this

Time: 0.000000

U Magnitude
1.431e+00

Z1.0738

~0.71508
C0.35784
E
0.0002+00

Instantaneous velocity magnitude field
www.wolfdynamics.com/wiki/cylinder vortex shedding/movvmag.qif

Time: 0.000000

magVorticity

EZ.CIDFH—[D

=15

=
Tos
E
0.0002+00

Instantaneous vorticity magnitude field
www.wolfdynamics.com/wiki/cylinder vortex shedding/movvort.qif

Incompressible flow — Reynolds 200

http://www.wolfdynamics.com/wiki/cylinder_vortex_shedding/movvmag.gif
http://www.wolfdynamics.com/wiki/cylinder_vortex_shedding/movvort.gif

Flow past a cylinder — From laminar to turbulent flow

At the end of the day, you should get something like this

15

- I - =
—] w A
L)

Drag coefficient
=

o
0

o
0

0.8

0.6
04f

0.2

0.0

-0.2

Lift coefficient

-0.4

-0.6

-0.8
0

Time
Incompressible flow — Reynolds 200 194

Flow past a cylinder — From laminar to turbulent flow

Let us run this case. Go to the directory:

$PTOFC/1010F/vortex shedding

In the case directory, you will find the README . FIRST file. In this file, you will find the general instructions of
how to run the case. In this file, you might also find some additional comments.

You will also find a few additional files (or scripts) with the extension .sh, namely, run all.sh,
run mesh.sh, run sampling.sh, run solver.sh, and soon. These files can be used to run the case

automatically by typing in the terminal, for example, sh run solver.

We highly recommend you to open the README . FIRST file and type the commands in the terminal, in this
way, you will get used with the command line interface and OpenFOAM® commands.

If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases.

195

Flow past a cylinder — From laminar to turbulent flow

What are we going to do?
We will use this case to learn how to use different solvers and utilities.
Remember, different solvers have different input dictionaries.
We will learn how to convert the mesh from a third-party software.

We will learn how to use setFields to initialize the flow field and accelerate the
convergence.

We will learn how to map a solution from a coarse mesh to a fine mesh.
We will learn how to setup a compressible solver.
We will learn how to setup a turbulence case.

We will use gnuplot to plot and compute the mean values of the lift and drag
coefficients.

We will visualize unsteady data.

196

Flow past a cylinder — From laminar to turbulent flow

Running the case
Let us first convert the mesh from a third-party format (Fluent format).

You will find this tutorial in the directory $PTOFC/1010F/vortex shedding/c2

In the terminal window type:

S> foamCleanTutorials

$> fluent3DMeshToFoam ../../../meshes and geometries/vortex shedding/ascii.msh

S> checkMesh

L nh -

$> paraFoam

In step 2, we convert the mesh from Fluent format to OpenFOAM® format. Have in
mind that the Fluent mesh must be in ascii format.

If we try to open the mesh using paraFoam (step 4), it will crash. Can you tell what is
the problem by just reading the screen?

197

Flow past a cylinder — From laminar to turbulent flow

Running the case

« To avoid this problem, type in the terminal,

1. $> paraFoam -builtin

« Basically, the problem is related to the names and type of the patches in the file
boundary and the boundary conditions (U, p). Notice that OpenFOAM® is telling you

what and where is the error.

Created temporary 'c2.OpenFOAM'

--> FOAM FATAL IO ERROR:

patch type 'patch' not constraint type 'empty' & \What Where
for patch front of field p in file "/home/joegi/my cases_course/8/1010F/vortex shedding/c2/0/p" 44—

file: /home/joegi/my cases_course/8/1010F/vortex shedding/c2/0/p.boundaryField.front from line 60 to line 60.
From function Foam: :emptyFvPatchField<Type>: :emptyFvPatchField(const Foam: :fvPatch&, const
Foam: :DimensionedField<Type, Foam: :volMesh>&, const Foam::dictionaryé&) [with Type = double]

in file fields/fvPatchFields/constraint/empty/emptyFvPatchField.C at line 80.

FOAM exiting

198

Flow past a cylinder — From laminar to turbulent flow

Remember, when converting meshes the name and type of the patches are not
always set as you would like, so it is always a good idea to take a look at the file
boundary and modify it according to your needs.

Let us modify the boundary dictionary file.

In this case, we would like to setup the following numerical type boundary
conditions.

Patch name: sym1
U & p: symmetry

|

Initial conditions
Uniform U & p

Patch name: in Patch name: out
U: fixedValue — ‘ <«—— U:inletOutlet
p: zeroGradient \ p: fixedValue

Patch name: cylinder
U: fixedValue
p: zeroGradient

Y I
Patch name: sym2 Patch.name: back and front
U & p: symmetry U & p: empty
X

199

Flow past a cylinder — From laminar to turbulent flow

B The boundary dictionary file
» This dictionary is located in the
18 7 i
. constant/polyMesh directory.
20 out
21 { « This file is automatically created when converting
22 type atch; .
23 Foses 20; or generating the mesh.
24 startFace 18180;
i ot » To get a visual reference of the patches, you can
. o, _ visualize the mesh with paraFoam/paraview.
ype symmetry;
29 inGroups 1 (symmetry) ; .
30 nFaces 100; » The type of the out patch is OK.
31 startFace 18260;
- 2 « The type of the sym1 patch is OK.
34 {
35 e S ectry; [] i
> TIPS o Y s The type of the sym2 patch is OK.
37 nFaces 100; . .
38 startFace 18360; * The type of the in patch is OK.
39
40 :.n
41 { U Sy
42 type patch; l
43 nFaces 80;
44 startFace 18460; Unitorm B
45 }
i,) o TR
\Path me:

200

Flow past a cylinder — From laminar to turbulent flow
Ei

The boundary dictionary file

46
47
48
49
50
51
52
55
54
55
56
57
58
59
60
61
62
63
64
65

)

cylinder

{
type
inGroups
nFaces
startFace

}

back

{
type
nFaces
startFace

}

front

{
type
nFaces
startFace

}

wall;
1(wall) ;
80;
18540;

» The type of the cylinder patch is OK.

» The type of the back patch is NOT OK.
Remember, this is a 2D simulation, therefore the
type should be empty.

* The type of the front patch is NOT OK.

patch; Remember, this is a 2D simulation, therefore the

9200;
18620;

patch; 4—

9200;
27820;

type should be empty.

« Remember, we assign the numerical type
boundary conditions (numerical values), in the
field files found in the directory 0

Patch name: cylinder

201

Flow past a cylinder — From laminar to turbulent flow

« At this point, check that the name and type of the base type boundary conditions
and numerical type boundary conditions are consistent. If everything is ok, we are
ready to go.

* Do not forget to explore the rest of the dictionary files, namely:

0/p (p is defined as relative pressure)

0/U
constant/transportProperties
system/controlDict
system/fvSchemes

system/fvSolution

« Reminder:

« The diameter of the cylinder is 2.0 m.

« And we are targeting for a Re = 200.

1 _pxUxD UxD

V= — Re
0

L v

202

Flow past a cylinder — From laminar to turbulent flow

Running the case
 You will find this tutorial in the directory $PTOFC/1010F/vortex shedding/c2

* In the folder ¢1 you will find the same setup, but to generate the mesh we use
blockMesh (the mesh is identical).

« To run this case, in the terminal window type:

1. $> renumberMesh -overwrite

2. $> icoFoam | tee log.icofoam

3 $> pyFoamPlotWatcher.py log.icofoam
You will need to launch this script in a different terminal

4 $> gnuplot scriptsO/plot coeffs

You will need to launch this script in a different terminal

5. $> paraFoam

203

Flow past a cylinder — From laminar to turbulent flow

Running the case

In step 1 we use the utility renumberMesh to make the linear system more diagonal
dominant, this will speed-up the linear solvers. This is inexpensive (even for large
meshes), therefore is highly recommended to always do it.

In step 2 we run the simulation and save the log file. Notice that we are sending the
job to background.

In step 3 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly. As the
job is running in background, we can launch this utility in the same terminal tab.

In step 4 we use the gnuplot script scripts0/plot coeffs to plot the force
coefficients on-the-fly. Besides monitoring the residuals, is always a good idea to
monitor a quantity of interest. Feel free to take a look at the script and to reuse it.

The force coefficients are computed using functionObjects.

After the simulation is over, we use paraFoam to visualize the results. Remember to
use the VCR Controls to animate the solution.

In the folder ¢1 you will find the same setup, but to generate the mesh we use
blockMesh (the mesh is identical).

204

Flow past a cylinder — From laminar to turbulent flow

At this point try to use the following utilities. In the terminal type:

* $> postProcess —-func vorticity —-noZero

This utility will compute and write the vorticity field. The —noZero option means do not compute the vorticity field for the
solution in the directory 0. If you do not add the —-nozero option, it will compute and write the vorticity field for all the
saved solutions, including 0

* S5> postprocess —func 'grad(U)' -latestTime
This utility will compute and write the velocity gradient or grad (U) in the whole domain (including at the walls). The

-latestTime option means compute the velocity gradient only for the last saved solution.
* $> postprocess —func 'grad(p)'
This utility will compute and write the pressure gradient or grad (U) in the whole domain (including at the walls).

e S> foamToVTK —-time 50:300

This utility will convert the saved solution from OpenFOAM® format to VTK format. The -time 50:300 option means
convert the solution to VTK format only for the time directories 50 to 300

* S$> postProcess -func 'div (U)'
This utility will compute and write the divergence of the velocity field or grad (U) in the whole domain (including at the
walls).

* $> pisoFoam -postProcess -func CourantNo

This utility will compute and write the Courant number. This utility needs to access the solver database for the physical
properties and additional quantities; therefore we need to tell what solver we are using. As the solver icoFoam does not
accept the option —-postProcess, we can use the solver pisoFoam instead. Remember, icoFoam is a fully laminar
solver and pisoFoam is a laminar/turbulent solver.

* $> pisoFoam -postProcess -func wallShearStress

This utility will compute and write the wall shear stresses at the walls. As no arguments are given, it will save the wall
shear stresses for all time steps.

These last three will give you
and error message, try to fix it.

205

Flow past a cylinder — From laminar to turbulent flow

Non-uniform field initialization

In the previous case, it took about 150 seconds of simulation time to onset the instability.

If you are not interested in the initial transient or if you want to speed-up the computation, you
can add a perturbation in order to trigger the onset of the instability.

Let us use the utility setFields to initialize a non-uniform flow.
This case is already setup in the directory ,
$PTOFC/1010F/vortex shedding/c3

As you saw in the previous example, icoFoam is a very basic solver that does not have access
to all the advanced modeling or postprocessing capabilities that comes with OpenFOAM®.

Therefore, instead of using icoFoam we will use pisoFoam (or pimpleFoam) from now on.

To run the solver pisoFoam (or pimpleFoam) starting from the directory structure of an
icoFoam case, you will need to add the followings modifications:

* Add the file momentumTransport in the directory constant.
« Add the transportModel to be used in the file constant/transportProperties.

« Add the entry div((nuEff*dev2(T(grad(U))))) Gauss linear; to the dictionary
system/fvSchemes in the section divSchemes (this entry is related to the Reynodls

stresses).
206

Flow past a cylinder — From laminar to turbulent flow

« Let us run the same case but using a non-uniform field

3] The setFieldsDict dictionary

« This dictionary file is located in the directory system.

17 defaultFieldValues * Inlines 17-20 we set the default value of the velocity vector
18 (. .

19 volVectorFieldvValue U (1 0 0) to be (0 0 O) In the WhOIe domaln

20) . TIPNT . .

21 * Inlines 24-31, we initialize a rectangular region (box) just
by e behind the cylinder with a velocity vector equal to (0.98480
2 boxTocell 0.17364 0)

26 box (0 -100 -100) (100 100 100); . H : H H .

o ool dValacs In this case, setFields will look for the dictionary file U
= (_ and it will overwrite the original values according to the

29 volVectorFieldValue U (0.98480 0.17364 0) . . . , ,

30) ; regions defined in setFieldsDict.

31 }

32)

boxToCell region

/

)
<
({=]
™
~
s
(=]
o
(o]
<
(o]
<
(=]
N
-}

207

Flow past a cylinder — From laminar to turbulent flow

Let us run the same case but using a non-uniform field.
You will find this tutorial in the directory $PTOFC/1010F/vortex shedding/c3

Feel free to use the Fluent mesh or the mesh generated with blockMesh. Hereafter, we will
use blockMesh.

To run this case, in the terminal window type:

$> foamCleanTutorials

$> blockMesh

$> rm —-rf 0 > /dev/null 2>&1
$> cp -r 0 org/ O

$> setFields

S> renumberMesh -overwrite

N o a0 bk~ 0D~

$> pisoFoam | tee log.solver

$> pyFoamPlotWatcher.py log.pisofoam

o

You will need to launch this script in a different terminal

$> gnuplot scriptsO/plot coeffs

You will need to launch this script in a different terminal

10 $> paraFoam 208

Flow past a cylinder — From laminar to turbulent flow

Running the case — Non-uniform field initialization

In step 2 we generate the mesh using blockMesh. The name and type of the
patches are already set in the dictionary blockMeshDict so thereis no need to
modify the boundary file.

In step 4 we copy the original files to the directory 0. We do this to keep a backup of
the original files as the file 0/U will be overwritten when using setFields.

In step 5 we initialize the solution using setFields.

In step 6 we use the utility renumberMesh to make the linear system more diagonal
dominant, this will speed-up the linear solvers.

In step 7 we run the simulation and save the log file. Notice that we are sending the
job to background.

In step 8 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly. As the
job is running in background, we can launch this utility in the same terminal tab.

In step 9 we use the gnuplot script scripts0/plot coeffs to plot the lift and drag
coefficients on-the-fly. Besides monitoring the residuals, is always a good idea to
monitor a quantity of interest. Feel free to take a look at the script and to reuse it.

209

Flow past a cylinder — From laminar to turbulent flow

Does non-uniform field initialization make a difference?

A picture is worth a thousand words. No need to tell you yes, even if the solutions are

slightly different.

This bring us to the next subject, for how long should we run the simulation?

Drag coefficient

Lift coefficient
5 &

-}

. L
50 100 150
Time

No field initialization

250

Drag coefficient

Lift coefficient

] 1]] L]
100 150 200 250 300
Time

With field initialization

210

Drag coefficient

Lift coefficient

Flow past a cylinder — From laminar to turbulent flow

For how long should run the simulation?

—- »
i
T

1
50

1
100

1
150

A A A\
200 250 300 350
Time

1
150

200 250 300 350
Time

This is the difficult part when dealing with
unsteady flows.

Usually you run the simulation until the
behavior of a quantity of interest does not
oscillates or it becomes periodic.

In this case we can say that after the 50
seconds mark the solution becomes
periodic, therefore there is no need to run up
to 350 seconds (unless you want to gather a
lot of statistics).

We can stop the simulation at 150 seconds
(or maybe less), and do the average of the
quantities between 100 and 150 seconds.

211

Flow past a cylinder — From laminar to turbulent flow

What about the residuals?

* Residuals are telling you a lot, but they are
< S AR difficult to interpret.

IS] * |n this case the fact that the initial residuals
i | are increasing after about 10 seconds, does
| e not mean that the solution is diverging. This

fivol resul is in indication that something is happening
(in this case the onset of the instability).

—— p final residual
Ux initial residual

— Ux final residual
Uy initial residual
—— uy final residual

 Remember, the residuals should always
drop to the tolerance criteria set in the
fvSolution dictionary (final residuals). If
they do not drop to the desired tolerance, we

% are talking about unconverged time-steps.

Time (seconds)

Residual
] =)
T = T
!
1 1.

« Things that are not clear from the residuals:

* For how long should we run the
simulation?

* Is the solution converging to the right
value?

212

Flow past a cylinder — From laminar to turbulent flow

How to compute force coefficients

51 functions » To compute the force coefficients we use
52 functionObjects.
e f°r°e°°effs_°bje°t * Remember, functionObjects are defined at the end of
188 type forceCoeffs; the con trOlDl ct dlCtlonary f||e
189 functionObjectLibs ("libforces.so");
101 patches (cylinder); * Inline 178 we give a name to the functionObject.
103 pName p; * Inline 191 we define the patch where we want to
194 Un, u;
Los rhoName. ThoInt; compute the forces.
e Thotng ©.07 « In lines 195-196 we define the reference density value.
198 //// D to fil . . .
Loo log trues « Inline 201 we define the center of rotation (for moments).
A CofR (0.0 0 0) * Inline 202 we define the lift force axis.
202 1iftDir (0 1 0); . . .
o dragbir (1 0 0) * Inline 203 we define the drag force axis.
204 jitchAxi 001);
o P gotnr 1 0r « In line 204 we define the axis of rotation for moment
206 1Ref 1.0; 1
507 Avet 2.0) computation.
200 outputControl timeStep; * Inline 206 we give the reference length (for computing
210 outputInterval 1; the momentS)
211 }

* Inline 207 we give the reference area (in this case the
=Ty frontal area).

« The output of this functionObject is saved in the file

forceCoeffs.dat located in the directory
forceCoeffs object/0/

213

Flow past a cylinder — From laminar to turbulent flow

Can we compute basic statistics of the force coefficients using gnuplot?

* Yes we can. Enter the gnuplot prompt and type:

1. gnuplot> stats ‘postProcessing/forceCoeffs object/0/forceCoeffs.dat’ u 3
This will compute the basic statistics of all the rows in the file forceCoeffs.dat (we are sampling column 3 in the input file)

2. gnuplot> stats ‘postProcessing/forceCoeffs object/0/forceCoeffs.dat’ every ::3000::7000 u 3
This will compute the basic statistics of rows 3000 to 7000 in the file forceCoeffs.dat (we are sampling column 3 in the input file)

3. gnuplot> plot ‘postProcessing/forceCoeffs object/0/forceCoeffs.dat’ u 3 w 1
This will plot column 3 against the row number (iteration number)

4. gnuplot> exit
To exit gnuplot

« Remember the force coefficients information is saved in the file forceCoeffs.dat
located in the directory postProcessing/forceCoeffs object/0

214

Flow past a cylinder — From laminar to turbulent flow

On the solution accuracy

17
18
20
22
23
24
25
29
35
36
g7
38
39
43
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

ddtSchemes
{

default
}

backward;

gradSchemes
{
default celllLimited leastSquares 1;
}
divSchemes
{
default none;
div(phi,U) Gauss linearUpwindV default;

div ((nuEff*dev2 (T (grad(U))))) Gauss linear;
}

laplacianSchemes

{

default Gauss linear limited 1;

}

interpolationSchemes
{
default linear;

}

snGradSchemes

{
default limited 1;

}

+ At the end of the day we want a solution that is second order

accurate.

We define the discretization schemes (and therefore the
accuracy) in the dictionary fvSchemes.

In this case, for time discretization (ddtSchemes) we are
using the backward method.

For gradient discretization (gradSchemes) we are using the
leastSquares method with slope limiters (cellLimited) for all
terms (default option).

Sometimes adding a gradient limiter to the pressure gradient
or grad(p) can be too diffusive, so it is better not to use
gradient limiters for grad(p), e.g., grad(p) leastSquares.

For the discretization of the convective terms (divSchemes)
we are using linearUpwindV interpolation method for the
term div(rho,U).

For the discretization of the Laplacian (laplacianSchemes
and snGradSchemes) we are using the Gauss linear
limited 1 method

In overall, this method is second order accurate (this is what
we want).

215

Flow past a cylinder — From laminar to turbulent flow

On the solution tolerance and linear solvers

.) * We define the solution tolerance and linear solvers in the
solvers . .

18 dictionary fvSolution.

31 P

== { * To solve the pressure we are using the GAMG method

33 solver GAMG; . .

34 tolerance le-6; with an absolute tolerance of 1e-6 and a relative tolerance

35 relTol 0;

36 smoother GaussSeidel; reITOI Of 001 .

37 nPreSweeps 0; . . .

38 nPostSweeps er » The entry pFinal refers to the final correction of the PISO

39 cacheAgglomeration on; I It . bI t t ht t . I

0 el (e ey oop. ltis possible to use a tighter convergence criteria only

41 nCellsInCoarsestLevel 100; in the Iast |terat|0n

42 mergelevels il g

I : « To solve U we are using the solver PBiCGStab and the DILU

j-z lfFi"al preconditioner, with an absolute tolerance of 1e-8 and a

a7 $p; relative tolerance relTol of O (the solver will stop iterating

s , e o when it meets any of the conditions).

50

Ell u « Solving for the velocity is relative inexpensive, whereas

o b lver N solving for the pressure is expensive.

54 preconditioner DILU; L . .

55 tolerance le-08; « The PISO sub-dictionary contains entries related to the

56 1Tol OF]

- reiTe ressure-velocity coupling (in this case the PISO method).

}

@ Hereafter we are doing two PISO correctors (nCorrectors

70 .

71 pIso and two non-orthogonal corrections

ol correctors 2, (nNonOrthogonalCorrectors).

74 nNonOrthogonalCorrectors 2;

77 }

216

Flow past a cylinder — From laminar to turbulent flow

On the runtime parameters

. Lieats - » This case starts from the latest saved solution (startFrom).
application pisoFoam;

0 etartrrom e * In this case as there are no saved solutions, it will start from

2; startTime 0; O (StartTime)

23 . .

24 stopat Ty * It will run up to 350 seconds (endTime).

26

27 endTime 350; » The time step of the simulation is 0.05 seconds (deltaT). The

29 deltaT 0.05; time step has been chosen in such a way that the Courant

22 writeControl runTime; number IS IeSS than 1

32

33 writeInterval 1; * It will write the solution every 1 second (writelnterval) of

5 purgewrite 0; simulation time (runTime).

36 : : : : .

37 writeFormat ascii; « |t will keep all the solution directories (purgeWrite).

38

oo writerecision & « It will save the solution in ascii format (writeFormat).

1 wri i ££; . o

o reCompressien o « The write precision is 8 digits (writePrecision).

43 timeFormat general; . . e . .

a4 « And as the option runTimeModifiable is on, we can modify

45 timePrecision 6;

a6 all these entries while we are running the simulation.

47 runTimeModifiable true;

217

Flow past a cylinder — From laminar to turbulent flow

The output screen

* - This is the output screen of the pisoFoam solver.

Time = 350

/ Courant number
Courant Number mean: 0.11299953 max: 0.87674198

DILUPBiCG: Solving for Ux, Initial residual = 0.0037946307, Final residual = 4.8324843e-09, No Iterations 3

DILUPBiCG: Solving for Uy, Initial residual = 0.011990022, Final residual = 5.8815028e-09, No Iterations 3

GAMG: Solving for p, Initial residual = 0.022175872, Final residual = 6.2680545e-07, No Iterations 14

GAMG: Solv::.ng for p, In%tl:.al res%dual 0.0033723932, FJ:.nal res?dual = 5.8494331e-07, No IteratJ:.ons 8 ? nNonOrthogonaICorrectors

GAMG: Solving for p, Initial residual = 0.0010074964, Final residual = 4.4726195e-07, No Iterations 7

time step continuity errors : sum local = 1.9569266e-11, global = -3.471923e-14, cumulative = -2.8708402e-10

GAMG: Solving for p, Initial residual 0.0023505548, Final residual = 9.9222424e-07, No Iterations 8 \
<

N

GAMG: Solving for p, Initial residual 0.00045248026, Final residual = 7.7250386e-07, No Iterations 6

nCorrector 2 —}l—l—\ l—l—\4— nCorrector 1

GAMG: Solving for p, Initial residual = 0.00014664077, Final residual = 4.5825218e-07, No Iterations 5 pFinaI
time step continuity errors : sum local = 2.0062733e-11, global = 1.2592813e-13, cumulative = -2.8695809e-10
ExecutionTime = 746.46 s ClockTime = 807 s
faceSource inMassFlow output:
sum(in) of phi = -40 « Mass flow at in patch
faceSource outMassFlow output:
sum(out)l of phi = 40 « Mass flow at out patch
fieldAverage fieldAverage output:
Calculating averages < Computing averages of fields
Writing average fields nCorrectors 2

forceCoeffs forceCoeffs object output:

Cm = 0.0043956828

cd = 1.4391786

c1 = 0.44532594 ¢ Force

Cl(f) = 0.22705865 coefficients
Cl(r) = 0.21826729

fieldMinMax minmaxdomain output:

min(p) = -0.82758125 at location (2.2845502 0.27072681 1.4608125e-17)
max (p) = 0.55952746 at location (-1.033408 -0.040619346 0) Mi d I
min(U) = (-0.32263726 -0.054404584 -1.8727033e-19) at location (2.4478235 -0.69065656 -2.5551406e-17) In and max values

max (U) = (1.4610304 0.10220218 2.19998le-19) at location (0.43121241 1.5285504 -1.4453535e-17)

21

Flow past a cylinder — From laminar to turbulent flow

Let us use a potential solver to find a quick solution

In this case we are going to use the potential solver potentialFoam (remember potential
solvers are inviscid, irrotational and incompressible)

This solver is super fast, and it can be used to find a solution to be used as initial conditions
(non-uniform field) for an incompressible solver.

A good initial condition will accelerate and improve the convergence rate.

This case is already setup in the directory

$PTOFC/1010F/vortex shedding/c4

Do not forget to explore the dictionary files.
The following dictionaries are different
* system/fvSchemes

e system/fvSolution

Try to spot the differences.

219

Flow past a cylinder — From laminar to turbulent flow

Running the case — Let us use a potential solver to find a quick solution

 You will find this tutorial in the directory $PTOFC/1010F/vortex shedding/c4

* Feel free to use the Fluent mesh or the mesh generated with blockMesh. In this
case we will use blockMesh.

* To run this case, in the terminal window type:

$> foamCleanTutorials
$> blockMesh

$> rm —-rf O

$> cp -r 0 org O

$> potentialFoam —-noFunctionObjects —-initialiseUBCs -writep -writePhi

o g~ W D =

$> paraFoam

220

Flow past a cylinder — From laminar to turbulent flow

Running the case — Let us use a potential solver to find a quick solution

* In step 2 we generate the mesh using blockMesh. The name and type of the
patches are already set in the dictionary blockMeshDict so thereis no need to
modify the boundary file.

» In step 4 we copy the original files to the directory 0. We do this to keep a backup of
the original files as they will be overwritten by the solver potentialFoam.

* In step 5 we run the solver. We use the option -noFunctionObjects to avoid
conflicts with the functionobjects. The options —-writep and —writePhi will write

the pressure field and fluxes respectively.

At this point, if you want to use this solution as initial conditions for an incompressible
solver, just copy the files U and p into the start directory of the incompressible case

you are looking to run. Have in mind that the meshes need to be the same.

» Be careful with the name and type of the boundary conditions, they should be same
between the potential case and incompressible case.

221

Flow past a cylinder — From laminar to turbulent flow

Potential solution

« Using a potential solution as initial conditions is much better than using a uniform
flow. It will speed up the solution and it will give you more stability.

« Finding a solution using the potential solver is inexpensive.

5]
4077601
Eo 1605

=-0.080600

Eo.aaasa
-5.8106-01

Velocity field Pressure field

222

Flow past a cylinder — From laminar to turbulent flow

The output screen
* This is the output screen of the potentialFoam solver.

« The output of this solver is also a good indication of the sensitivity of the mesh quality
to gradients computation. If you see that the number of iterations are dropping
iteration after iteration, it means that the mesh is fine.

« |f the number of iterations remain stalled, it means that the mesh is sensitive to
gradients, so you should use non-orthogonal correction.

* In this case we have a good mesh.

Calculating potential flow 4 VeIOCity comPUtation e . .
DICPCG: Solving for Phi, Initial residual = 2.6622265e-05, Final residual = 8.4894837e-07, No Iterations 27 <= Initial approximation
DICPCG: Solving for Phi, Initial residual = 1.016986e-05, Final residual = 9.5168103e-07, No Iterations 9

DICPCG: Solving for Phi, Initial residual = 4.0789046e-06, Final residual = 7.7788216e-07, No Iterations 5

DICPCG: Solving for Phi, Initial residual = 1.8251249e-06, Final residual = 8.8483568e-07, No Iterations 1

DICPCG: Solving for Phi, Initial residual = 1.1220074e-06, Final residual = 5.6696809e-07, No Iterations 1

DICPCG: Solving for Phi, Initial residual = 7.1187246e-07, Final residual = 7.1187246e-07, No Iterations 0

Continuity error = 1.3827583e-06

Interpolated velocity error 7.620206e-07 nNonOrthogonaICorrectors 5
Calculating approximate pressure field 4 Pressure comPUtation

DICPCG: Solving for p, Initial residual = 0.0036907012, Final residual = 9.7025397e-07, No Iterations 89

DICPCG: Solving for p, Initial residual = 0.0007470416, Final residual = 9.9942495e-07, No Iterations 85

DICPCG: Solving for p, Initial residual = 0.00022829496, Final residual = 8.6107759e-07, No Iterations 36

DICPCG: Solving for p, Initial residual = 7.9622793e-05, Final residual = 8.4360883e-07, No Iterations 31

DICPCG: Solving for p, Initial residual = 2.8883108e-05, Final residual = 8.7152873e-07, No Iterations 25

DICPCG: Solving for p, Initial residual = 1.151539e-05, Final residual = 9.7057871le-07, No Iterations 9

ExecutionTime = 0.17 s ClockTime = 0 s

End

223

Flow past a cylinder — From laminar to turbulent flow

Let us map a solution from a coarse mesh to a finer mesh

It is also possible to map the solution from a coarse mesh to a finer mesh (and all the
way around).

For instance, you can compute a full Navier-Stokes solution in a coarse mesh (fast
solution), and then map it to a finer mesh.

Let us map the solution from the potential solver to a finer mesh (if you want you can
map the solution obtained using pisoFoam or icoFoam). To do this we will use the

utility mapFields.
This case is already setup in the directory

$PTOFC/1010F/vortex shedding/c6é

224

Flow past a cylinder — From laminar to turbulent flow

Running the case — Let us map a solution from a coarse mesh to a finer mesh

 You will find this tutorial in the directory $PTOFC/1010F/vortex shedding/c6
« To generate the mesh, use blockMesh (remember this mesh is finer).

* To run this case, in the terminal window type:

$> foamCleanTutorials
$> blockMesh

$> rm —-rf O

$> cp -r 0 org O

$> mapfields ../c4 -consistent —-noFunctionObjects -mapMethod cellPointInterpolate -sourceTime 0

o ok W~

$> paraFoam

« To run step 5 you need to have a solution in the directory . ./c4 A\

225

Flow past a cylinder — From laminar to turbulent flow

Running the case — Let us map a solution from a coarse mesh to a finer mesh

In step 2 we generate a finer mesh using blockMesh. The name and type of the
patches are already set in the dictionary blockMeshDict so thereis no need to
modify the boundary file.

In step 4 we copy the original files to the directory 0. We do this to keep a backup of
the original files as they will be overwritten by the utility mapFields.

In step 5 we use the utility mapFields with the following options:

We copy the solution from the directory . . /c4
The options —consistent is used when the domains and BCs are the same.

The option —-noFunctionObjects is used to avoid conflicts with the
functionObjects.

The option -mapMethod cellPointInterpolate defines the interpolation
method.

The option -sourceTime 0 defines the time from which we want to interpolate
the solution.

226

Flow past a cylinder — From laminar to turbulent flow

The meshes and the mapped fields

Coarse mesh Fine mesh

mapFields

<& > o<

227

Flow past a cylinder — From laminar to turbulent flow

The output screen
* This is the output screen of the mapFields utility.

* The utility mapFields, will try to interpolate all fields in the source directory.

* You can control the target time via the startFrom and startTime keywords in the
controlDict dictionary file.

Source: "/home/joegi/my cases course/OF8/1010F/vortex shedding" "c5" < Source case
Target: "/home/joegi/my cases course/OF8/1010F/vortex shedding" "c6" <« Target case
Mapping method: cellPointInterpolate «¢ Interpolation method

Create databases as time

Source time: 350 <« Source time

Target time: O > Target time
Create meshes

Source mesh size: 9200 Target mesh size: 36800 < Source and target mesh cell count

Consistently creating and mapping fields for time 0

interpolating Phi
interpolating p < Interpolated fields
interpolating U

End

 Finally, after mapping the solution, you can run the solver in the usual way. The solver
will use the mapped solution as initial conditions. 228

Flow past a cylinder — From laminar to turbulent flow

Setting a turbulent case

» So far we have used laminar incompressible solvers.
» Let us do a turbulent simulation.

« When doing turbulent simulations, we need to choose the turbulence model, define
the boundary and initial conditions for the turbulent quantities, and modify the
fvSchemes and fvSolution dictionaries to take account for the new variables we

are solving (the transported turbulent quantities).
* This case is already setup in the directory

$PTOFC/1010F/vortex shedding/cl4

229

Flow past a cylinder — From laminar to turbulent flow

* The following dictionaries remain unchanged
e system/blockMeshDict

e constant/polyMesh/boundary
° 0/p
e 0/U

« The following dictionaries need to be adapted for the turbulence case

e constant/transportProperties
e system/controlDict
* system/fvSchemes

e system/fvSolution

« The following dictionaries need to be adapted for the turbulence case

* constant/momentumTransport

230

Flow past a cylinder — From laminar to turbulent flow

[3) The transportProperties dictionary file

« This dictionary file is located in the directory constant.

* In this file we set the transport model and the kinematic viscosity (nu).

16 transportModel Newtonian;
17
19 nu nu [02 -100001] 0.0002;

* Reminder:
* The diameter of the cylinder is 2.0 m.
* And we are targeting for a Re = 10000.

D
L, _ P ReszUx :U><D
p H v

231

Flow past a cylinder — From laminar to turbulent flow

) The momentumTransport dictionary file
« This dictionary file is located in the directory constant.
* In this dictionary file we select what model we would like to use (laminar or turbulent).

* In this case we are interested in modeling turbulence, therefore the dictionary is as follows

17 simulationType RAS; « RANS type simulation

18

19 RAS «¢ RANS sub-dictionary

20 {

21 RASModel kOmegaSST; <« RANS model to use

22

23 turbulence on; <« Turn on/off turbulence. Runtime modifiable
24

25 printCoeffs on; <« Print coefficients at the beginning

26 }

* If you want to know the models available use the banana method.

232

Flow past a cylinder — From laminar to turbulent flow

) The controlDict dictionary

N : + This case will start from the last saved solution (startFrom). If there is
17 application pimpleFoam; | X X .
18 no solution, the case will start from time O (startTime).
20 startFrom latestTime; . i
21 * It will run up to 500 seconds (endTime).
22 startTime 0;
23 « The initial time step of the simulation is 0.001 seconds (deltaT).
24 stopAt endTime;
25 . « It will write the solution every 1 second (writelnterval) of simulation time
26 endTime 500; .
27 (runTime).
28 deltaT 0.001;
29 * |t will keep all the solution directories (purgeWrite).
30 writeControl runTime;
31 « |t will save the solution in ascii format (writeFormat).
32 writeInterval 1;
33 _ « The write precision is 8 digits (writePrecision).
34 purgeWrite 0;
e s * And as the option runTimeModifiable is on, we can modify all these
eFormat ascii;)
37 entries while we are running the simulation.
38 writePrecision §;
39 _ _ * Inline 48 we turn on the option adjustTimeStep. This option will
Ly WEiteCompression off; automatically adjust the time step to achieve the maximum desired
42 timeFormat general; courant number maxCo (line 50).
43
44 timePrecision 6; + We also set a maximum time step maxDeltaT in line 51.
45
:j runTimeModifiable yes; * Remember, the first time-step of the simulation is done using the value
48 adjustTimeStep yes; set in line 28 and then it is automatically scaled to achieve the desired
49 maximum values (lines 50-51).
50 maxCo 0.9;
st maxDeltaT 0.1; » The feature adjustTimeStep is only present in the PIMPLE family
solvers, but it can be added to any solver by modifying the source code.

233

Flow past a cylinder — From laminar to turbulent flow

B The fvSchemes dictionary

17
18
21
22
24
25
29
34
5
37
38
89
45
47
49
50
57
59
60
61
62
64
65
66
67
69
70
71
72
74
75
76
77

ddtSchemes
{

default
}
gradSchemes
{

default

grad (U)
}
divSchemes

{
default

div(phi,U)

CrankNicolson 0.7;

celllLimited leastSquares 1;
celllLimited Gauss linear 1;

none;
Gauss linearUpwindV grad(U) ;

div((nuEff*dev2 (T (grad(U))))) Gauss linear;

div(phi, k)
div (phi,omega)

}

laplacianSchemes

{

default

}

interpolationSchemes

{
default

}

snGradSchemes

{
default

}
wallDist

{

method meshWave;

}

Gauss linearUpwind default;
Gauss linearUpwind default;

Gauss linear limited 1;

linear;

limited 1;

In this case, for time discretization (ddtSchemes) we are using the
blended CrankNicolson method. The blending coefficient goes from 0
to 1, where 0 is equivalent to the Euler method and 1 is a pure Crank
Nicolson.

For gradient discretization (gradSchemes) we are using as default
option the leastSquares method. For grad(U) we are using Gauss
linear with slope limiters (cellLimited). You can define different
methods for every term in the governing equations, for example, you
can define a different method for grad(p).

For the discretization of the convective terms (divSchemes) we are
using linearUpwindV interpolation method with slope limiters for the
term div(phi,U).

For the terms div(phi,k) and div(phi,omega) we are using
linearUpwind interpolation method with no slope limiters. These terms
are related to the turbulence modeling.

For the term div((nuEff*dev2(T(grad(U))))) we are using linear
interpolation (this term is related to turbulence modeling).

For the discretization of the Laplacian (laplacianSchemes and
snGradSchemes) we are using the Gauss linear limited 1 method.

To compute the distance to the wall and normals to the wall, we use the
method meshWave. This only applies when using wall functions
(turbulence modeling).

This method is second order accurate.

234

Flow past a cylinder — From laminar to turbulent flow

) The fvSolution dictionary

. colvers » To solve the pressure (p) we are using the GAMG method, with an

18 { absolute tolerance of 1e-6 and a relative tolerance relTol of 0.001.

2; f{’ Notice that we are fixing the number of minimum iterations (minlter).

> solver GAMG/ - To solve the final pressure correction (pFinal) we are using the PCG
tolerance le-6; i . h

35 relTol 0.001; method with the DIC preconditioner, with an absolute tolerance of 1e-6

36 smoother ETOERCENS and a relative tolerance relTol of 0.

37 nPreSweeps 0;

2 g « Notice that we can use different methods between p and pFinal. In this

39 cacheAgglomeration on; K . . R

40 agglomerator faceAreaPair; case we are using a tighter tolerance for the last iteration.

41 nCellsInCoarsestLevel 100; . L .))

42 mergeLevels 1; * We are also fixing the number of minimum iterations (minlter). This

e } minlter 2 entry is optional.

46 . . .

e pFinal + To solve U we are using the solver PBiCGStab with the DILU

48 { preconditioner, an absolute tolerance of 1e-8 and a relative tolerance

49 solver R relTol of 0. Notice that we are fixing the number of minimum iterations

50 preconditioner DIC; .

51 tolerance le-06; (nnlnlter).

52 relTol 0;

53 minIter 33

54 }

55

56 U

57 {

58 solver PBiCGStab;

59 preconditioner DILU;

60 tolerance le-08;

61 relTol 0;

62 minIter 3;

63 }

235

Flow past a cylinder — From laminar to turbulent flow

) The fvSolution dictionary

. colvers + To solve UFinal we are using the solver PBiCGStab with an absolute
18 { tolerance of 1e-8 and a relative tolerance relTol of 0. Notice that we are
fixing the number of minimum iterations (minlter).
77 UFinal
78 {
o colver PBiCGStab; Tc_J solve omega and omegaFinal we are using the solver PBiCGStab
80 preconditioner DILU; with an absolute tolerance of 1e-8 and a relative tolerance relTol of 0.
o cojorance oo Notice that we are fixing the number of minimum iterations (miniter).
re O ;
" , mintter 3 + To solve k we are using the solver PBiCGStab with an absolute
85 tolerance of 1e-8 and a relative tolerance relTol of 0. Notice that we are
:j ‘{’mega fixing the number of minimum iterations (minlter).
88 solver PBiCGStab;
89 preconditioner DILU;
90 tolerance le-08;
91 relTol 0;
92 minIter 3;
93 }
94
95 omegaFinal
96 {
97 solver PBiCGStab;
98 preconditioner DILU;
99 tolerance le-08;
100 relTol OF]
101 minIter S8
102 }
103
104 k
105 {
106 solver PBiCGStab;
107 preconditioner DILU;
108 tolerance le-08;
109 relTol 0;
110 minIter &3
111 }
236

Flow past a cylinder — From laminar to turbulent flow

) The fvSolution dictionary

113 CFinal * To solve kFinal we are using the solver PBiCGStab with an absolute

114 { tolerance of 1e-8 and a relative tolerance relTol of 0. Notice that we are
115 solver PBiCGStab; fixing the number of minimum iterations (minlter).
116 preconditioner DILU;
o oo o0 + Inlines 123-133 we setup the entries related to the pressure-velocity
119 minIter 3; coupling method used (PIMPLE in this case). Setting the keyword
12‘1’ } } nOuterCorrectors to 1 is equivalent to running using the PISO method.
o orveis « To gain more stability we are using 1 outer correctors
124 { (nOuterCorrectors), 3 inner correctors or PISO correctors
126 I/“/’“;er“zrecmrs 1"2 (nCorrectors), and 1 correction due to non-orthogonality
7 t t ;
198 nonRertorTectors (nNonOrthogonalCorrectors).
129 nCorrectors 3;
130 nNonOrthogonalCorrectors 1; + Remember, adding corrections increase the computational cost.
133 }
134 - * Inlines 135-147 we setup the under-relaxation factors used during the
. ’{’ela"atm““ct“s outer corrections of the PIMPLE method.
137 field . .
e {m ° » The values defined correspond to the industry standard of the
139 p 0.3; SIMPLE method.
140 }
141 equations - » By using under-relaxation we ensure diagonal equality.
142 {
1:2 . g; « Be careful not use too low values as you will loose time accuracy.
e e o7 « If you want to disable under-relaxation, comment out these lines.
147 }

237

Flow past a cylinder — From laminar to turbulent flow

* The following dictionaries are new
e 0/k

* 0/omega
e O0/nut

These are the field variables related to the closure equations of the turbulent
model.

« As we are going to use the v — w SST" model we need to define the initial
conditions and boundaries conditions.

 To define the IC/BC we will use the free stream values of K and w

* In the following site, you can find a lot information about choosing initial and
boundary conditions for the different turbulence models:

» https://turbmodels.larc.nasa.gov/

238

Flow past a cylinder — From laminar to turbulent flow

k —w SST Turbulence model free-stream boundary conditions

The initial value for the turbulent kinetic energy K can be found as follows

3
— Z(UI?
K 2(U)

The initial value for the specific kinetic energy W can be found as follows

_ prpe !
Bop

w

Where % is the viscosity ratioand I = % is the turbulence intensity.

If you are working with external aerodynamics or virtual wind tunnels, you can use the following
reference values for the turbulence intensity and the viscosity ratio. They work most of the
times, but it is a good idea to have some experimental data or a better initial estimate.

Low Medium High
1 1.0 % 5.0 % 10.0 %
e/ 1 10 100

239

Flow past a cylinder — From laminar to turbulent flow

B The file 0/k

s uermalfield uniform 000075/ « We are using uniform initial conditions (line 19).

21 boundaryField . .

22 { * Forthe in patch we are using a fixedValue boundary
23 t "

” T condition.

25 type inletOutlet;

26 inletValue uniform 0.00015; * For the out patch we are using an inletOutlet boundary
27 value uniform 0.00015; iy . e .

28 } condition (this boundary condition avoids backflow).
29 syml

30 { * Forthe cylinder patch (which is base type wall), we
31 type symmetryPlane; . . "

32 } are using the kqRWallFunction boundary condition.
" s This is a wall function, we are going to talk about this
35 type symmetryPlane; when we deal with turbulence modeling. Remember,
36 } . . .

37 in we can use wall functions only if the patch is of base
38 {

39 type fixedValue; type Wa"

40 value niform 0.00015; .

a1 } : h » The rest of the patches are constrained.

42 cylinder

43 { * FYI, the inlet velocity is 1 and the turbulence intensity is
44 type kgRWallFunction;

45 value uniform 0.00015; equal to 1%.

46 }

. pack « We will study with more details how to setup the

a9 type empty; boundary conditions when we deal with turbulence

50 } . .

. tront modeling in the advanced modules.

52 {

53 type empty;

54 }

55 }

240

Flow past a cylinder — From laminar to turbulent flow

3] Thefile 0/omega

19
20
21
22
723
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
il
52,
53
54
55
56
57/
58
5.0

internalField

boundaryField

{

out

{
type
inletValue
value

type
value
}
cylinder
{
type
Cmu
kappa
E
betal
value
}
back
{
type
}
front
{
type
}

uniform 0.075;

inletOutlet;
uniform 0.075;

uniform 0.075; .
symmetryPlane; .
symmetryPlane;

fixedValue;
uniform 0.075;

omegaWallFunction; °
0.09;
0.41;
9.8;
0.075; °

uniform 0.075;

empty;

empty;

We are using uniform initial conditions (line 19).

For the in patch we are using a fixedValue boundary
condition.

For the out patch we are using an inletOutlet boundary
condition (this boundary condition avoids backflow).

For the cylinder patch (which is base type wall), we
are using the omegaWallFunction boundary condition.
This is a wall function; we are going to talk about this
when we deal with turbulence modeling. Remember, we
can use wall functions only if the patch is of base type
wall.

The rest of the patches are constrained.

FYI, the inlet velocity is 1 and the eddy viscosity ratio is
equal to 10.

We will study with more details how to setup the
boundary conditions when we deal with turbulence
modeling in the advanced modules.

241

Flow past a cylinder — From laminar to turbulent flow

Ei

19
20
21
22
23
24
25
26
27
28
29
30
31
32
85
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

internalField

boundaryField

}

out

type
value
}
cylinder
{
type
Cmu
kappa
E
value
}
back
{
type
}
front
{
type
}

uniform 0;

calculated;
uniform O;

symmetryPlane;

symmetryPlane;

calculated;
uniform 0;

nutkWallFunction;

0.09;
0.41;
9.8;
uniform O;

empty;

empty;

The file 0/nut

We are using uniform initial conditions (line 19).

For the in patch we are using the calculated boundary
condition (nut is computed from kappa and omega)

For the out patch we are using the calculated
boundary condition (nut is computed from kappa and
omega)

For the cylinder patch (which is base type wall), we
are using the nutkWallFunction boundary condition.
This is a wall function, we are going to talk about this
when we deal with turbulence modeling. Remember, we
can use wall functions only if the patch is of base type
wall.

The rest of the patches are constrained.

Remember, the turbulent viscosity V¢ (nut) is equal to
K

W

We will study with more details how to setup the
boundary conditions when we deal with turbulence
modeling in the advanced modules.

242

Flow past a cylinder — From laminar to turbulent flow

Running the case — Setting a turbulent case

You will find this tutorial in the directory $PTOFC/1010F/vortex shedding/cl4

Feel free to use the Fluent mesh or the mesh generated with b1 ockMesh. In this case we will use
blockMesh.

To run this case, in the terminal window type:

S> foamCleanTutorials

2. $> blockMesh

3. S> renumberMesh -overwrite
4 $> pimpleFoam | tee log.solver
. You will need to launch this script in a different terminal
5 $> pyFoamPlotWatcher.py log.solver

You will need to launch this script in a different terminal

6 $> gnuplot scriptsO/plot coeffs

You will need to launch this script in a different terminal

7. $> pimpleFoam —-postprocess —-func yPlus -latestTime -noFunctionObjects

8. $> paraFoam

243

Flow past a cylinder — From laminar to turbulent flow

Running the case — Setting a turbulent case

In step 3 we use the utility renumberMesh to make the linear system more diagonal
dominant, this will speed-up the linear solvers.

In step 4 we run the simulation and save the log file. Notice that we are sending the
job to background.

In step 5 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly. As the
job is running in background, we can launch this utility in the same terminal tab.

In step 6 we use the gnuplot script scripts0/plot coeffs to plot the force
coefficients on-the-fly. Besides monitoring the residuals, is always a good idea to
monitor a quantity of interest. Feel free to take a look at the script and to reuse it.

In step 7 we use the utility postProcess to compute the y™ value of each saved
solution (we are going to talk about ¥+ when we deal with turbulence modeling).

244

Flow past a cylinder — From laminar to turbulent flow

pimpleFoam output screen

Courant Number mean: 0.088931706 max: 0.90251464 < Courant number

deltaT = 0.040145538 <« Time step) . .
Time = 499.97 < Simulation time
PIMPLE: iteration 1 <« Outer iteration 1 (nOuterCorrectors)

DILUPBiCG: Solving for Ux, Initial residual = 0.0028528538, Final residual = 9.5497298e-11, No Iterations 3
DILUPBiCG: Solving for Uy, Initial residual = 0.0068876991, Final residual = 7.000938e-10, No Iterations 3
GAMG: Solving for p, Initial residual = 0.25644342, Final residual = 0.00022585963, No Iterations 7

GAMG: Solving for p, Initial residual = 0.0073871161, Final residual = 5.2798526e-06, No Iterations 8

time step continuity errors : sum local = 3.2664019e-10, global = -1.3568363e-12, cumulative = -9.8446438e-08
GAMG: Solving for p, Initial residual = 0.16889316, Final residual = 0.00014947209, No Iterations 7

GAMG: Solving for p, Initial residual = 0.0051876466, Final residual = 3.7123156e-06, No Iterations 8

time step continuity errors : sum local = 2.2950163e-10, global = -8.0710768e-13, cumulative = -9.8447245e-08
PIMPLE: iteration 2 <« Outer iteration 2 (nOuterCorrectors)

DILUPBiCG: Solving for Ux, Initial residual = 0.0013482181, Final residual = 4.1395468e-10, No Iterations 3
DILUPBiCG: Solving for Uy, Initial residual = 0.0032433196, Final residual = 3.3969121e-09, No Iterations 3
GAMG: Solving for p, Initial residual = 0.10067317, Final residual = 8.9325549e-05, No Iterations 7

GAMG: Solving for p, Initial residual = 0.0042844521, Final residual = 3.0190597e-06, No Iterations 8

time step continuity errors : sum local = 1.735023e-10, global = -2.0653335e-13, cumulative = -9.8447452e-08
GAMG: Solving for p, Initial residual = 0.0050231165, Final residual = 3.2656397e-06, No Iterations 8 .
DICPCG: Solving for p, Initial residual = 0.00031459519, Final residual = 9.4260163e-07, No Iterations 36 - pFinal
time step continuity errors : sum local = 5.4344408e-11, global = 4.0060595e-12, cumulative = -9.8443445e-08
DILUPBiCG: Solving for omega, Initial residual = 0.00060510266, Final residual = 1.594660le-10, No Iterations 3
DILUPBiCG: Solving for k, Initial residual = 0.0032163247, Final residual = 6.9350899e-10, No Iterations 3
bounding k, min: -3.6865398e-05 max: 0.055400108 average: 0.0015914926

ExecutionTime = 1689.51 s ClockTime = 1704 s

fieldAverage fieldAverage output:

Calculating averages Message letting you know that kappa and omega residuals
. the variable is becoming
forceCoeffs forceCoeffs object output: unbounded
Cm = 0.0023218797
cd = 1.1832452 L
C1 = -1.3927646 < Force coefficients
Cl(£f) = -0.69406044
Cl(r) = -0.6987042

fieldMinMax minmaxdomain output:

min(p) = -1.5466372 at location (-0.040619337 -1.033408 0)

max(p) = 0.54524589 at location (-1.033408 0.040619337 1.4015759%e-17)

min(U) = (0.94205232 -1.0407426 -5.0319219e-19) at location (-0.70200781 -0.75945224 -1.3630525e-17) L.

max (U) = (1.8458167 0.0047368607 4.473279e-19) at location (-0.12989625 -1.0971865 2.4694467e-17) _4_ Minimum and

min(k) = le-15 at location (1.0972618 1.3921931 -2.2329889e-17) maximum values

max (k) = 0.055400108 at location (2.1464795 0.42727634 0)

min(omega) = 0.2355751 at location (29.403674 19.3304 0) 244
max (omega) = 21.477072 at location (1.033408 0.040619337 1.3245285e-17) -

Flow past a cylinder — From laminar to turbulent flow

The output screen

This is the output screen of the yP1us utility.

Time = 500.01
Reading field U

Reading/calculating face flux field phi
Transport model

Selecting incompressible transport model Newtonian «f—

Selecting RAS turbulence model kOmegaSST <« Turbulence model
kOmegaSSTCoeffs <« Model coefficients
{
alphaKl 0.85;
alphaK2 1;
alphaOmegal 0.5;
alphaOmega2 0.856;
gammal 0.55555556; Patch where we are computing y+
gamma?2 0.44;
betal 0.075;
beta2 0.0828;
betasStar 0.09;
al 0.31;
bl 2
cl

F3 Minimum, maximum and average values

Patch 4 named cylinder y+ : min: 0.94230389 max: 12.696632 average: 7.3497345 A‘(//////,

Writing yPlus to field yPlus = Writing the field to the solution directory

246

Flow past a cylinder — From laminar to turbulent flow

Using a compressible solver
So far, we have only used incompressible solvers.
Let us use the compressible solver rhoPimpleFoam, which is a,

Transient solver for laminar or turbulent flow of compressible fluids for HVAC and
similar applications. Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-
resolved and pseudo-transient simulations.

When working with compressible solver we need to define the thermodynamical
properties of the working fluid and the temperature field (we are also solving the
energy equation).

Also remember, compressible solvers use absolute pressure. Conversely,
incompressible solvers use relative pressure.

This case is already setup in the directory

$PTOFC/1010F/vortex shedding/c24

247

Flow past a cylinder — From laminar to turbulent flow

* The following dictionaries remain unchanged

» system/blockMeshDict

e constant/polyMesh/boundary

* Reminder:
* The diameter of the cylinder is 0.002 m.
« The working fluid is air at 20° Celsius and at a sea level.
» Isothermal flow.
» And we are targeting for a Re = 200.
1 _pxUxD UxD

V= — Re
p H v

248

Flow past a cylinder — From laminar to turbulent flow

[The constant directory

* In this directory, we will find the following compulsory dictionary files:

* thermophysicalProperties

* momentumilransport

« thermophysicalProperties contains the definition of the physical
properties of the working fluid.

« momentumTransport contains the definition of the turbulence model to use.

249

Flow past a cylinder — From laminar to turbulent flow

3] The thermophysicalProperties dictionary file

« This dictionary file is located in the directory constant.
18 thermoType h Thermophysical models are concerned with energy, heat
o (e hePsiThermo; and physical properties.
21 mixture pureMixture; Lo .
22 transport const; L * In the sub-dictionary thermoType (lines 18-27), we
23 thermo hConst; . .
24 equationOfState perfectGas; deﬂne the thermophy3|ca| mOdels
25 specie specie;
26 [o sensibleEnthalpy; « The transport modeling concerns evaluating dynamic
28 = viscosity (line 22). In this case the viscosity is constant.
29 mixture
SO » The thermodynamic models (thermo) are concerned with
32 r evaluating the specific heat Cp (line 23). In this case Cp
4 moweight 26.9; is constant
32 1}:hermodynamics * The equationOfState keyword (line 24) concerns to the
i - 1005 equation of state of the working fluid. In this case
39 Hf 0;
:2 1}:ransport p — i
a2 { RT
43 mu 1.84e-05;
44 Pr 0.713; . .
a5 } « The form of the energy equation to be used in the
L solution is specified in line 26 (energy). In this case we

are using enthalpy (sensibleEnthalpy).

250

Flow past a cylinder — From laminar to turbulent flow

3] The thermophysicalProperties dictionary file

* In the sub-dictionary mixture (lines 29-46), we define the
18 thermoType thermophysical properties of the working fluid.
19 {
i e ;j:;::iz‘;‘:; In this case, we are defining the properties for air at 20°
22 transport const; Celsius and at a sea level.
23 thermo hConst;
24 equationOfState perfectGas;
25 specie specie;
26 energy sensibleEnthalpy;
27 }
28 -
29 mixture
30 {
31 specie
32 {
33 nMoles g
34 molWeight 28.9;
35 }
36 thermodynamics
37 { -
38 Cp 1005;
39 HEf 0;
40 }
41 transport
42 {
43 mu 1.84e-05;
44 Pr 0.713;
45 }
46 } i

251

Flow past a cylinder — From laminar to turbulent flow

B The turbulenceProperties dictionary file

* In this dictionary file we select what model we would like to use (laminar or
turbulent).

» This dictionary is compulsory.
« As we do not want to model turbulence, the dictionary is defined as follows,

17 simulationType laminar;

252

Flow past a cylinder — From laminar to turbulent flow

- The 0 directory

* In this directory, we will find the dictionary files that contain the boundary and
initial conditions for all the primitive variables.
» As we are solving the compressible laminar Navier-Stokes equations, we will

find the following field files:

* D (pressure)
e T (temperature)
e U (velocity field)

253

Flow past a cylinder — From laminar to turbulent flow

) Thefile 0/p

« This file contains the boundary and initial conditions

17 dimensions [1-1-200001; for the scalar field pressure (p). We are working
19 internalField uniform 101325; With abSOIUte pressure-

20

2 1{’°undaryFie1d « Contrary to incompressible flows where we defined
23 in relative pressure, this is the absolute pressure.

24 {

o , zeroGradient; « Also, pay attention to the units (line 17). The

28 out pressure is defined in Pascal.

29 {

30 type fixedValue; ° H H Ha N Y H

o e e e, We are using uniform initial conditions (line 19).
32 } . . .

34 cylinder * For the in patch we are using a zeroGradient

35 { ngw

ne type reroGradient; boundary condition.

37 } . .

39 sym1 « For the outlet patch we are using a fixedValue
40 { g

" type S — boundary condition.

a2 } . : .
a4 sym2 « For the cylinder patch we are using a zeroGradient
45 { ey

i — S —_— boundary condition.

47 })

49 back » The rest of the patches are constrained.

50 {

51 type empty;

52 }

54 front

55 {

56 type empty;

57 }

58 }

254

Flow past a cylinder — From laminar to turbulent flow

3] Thefile 0/T

17 dimensions [000-1000]; - This file contains the boundary and initial conditions
18 for the scalar field temperature (T).
19 internalField uniform 293.15;
% boundaryField - Also, pay attention to the units (line 17). The
L temperature is defined in Kelvin.
in
24 { . . g iy .
o5 — fixedvalue; « We are using uniform initial conditions (line 19).
26 value $internalField; . . .
27 } » For the in patch we are using a fixedValue boundary
i o condition.
31 type inletOutlet; . .
32 value $internalField; « For the out patch we are using a inletOutlet
" [metvalue Sintemmalmield; boundary condition (in case of backflow).
36 cylinder . . .
37 { * For the cylinder patch we are using a zeroGradient
38 type zeroGradient; iy
39 } boundary condition.
41 syml .
a2 { * The rest of the patches are constrained.
43 type symmetryPlane;
44 }
46 sym2
47 {
48 type symmetryPlane;
49 }
51 back
52 {
5 type empty;
54 }
56 front
57 {
58 type empty;
59 }
60 }

255

Flow past a cylinder — From laminar to turbulent flow

Q) Thefile 0/U

g Cmenstens O R TEO000L - This file contains the boundary and initial conditions

1o intermaiField unifom (1.5 0 0)/ for the dimensional vector field U.

21 bound. ield ' . TT] "

by g noamyme « We are using uniform initial conditions and the

i jn numerical value is (1.5 0 0) (keyword internalField in

25 type fixedValue; I|ne 19)

26 value uniform (1.5 0 0);

o ! * For the in patch we are using a fixedValue boundary
out L.

30 { condition.

31 type inletOutlet;

i B value i © 00, » For the out patch we are using a inletOutlet

34 value uniform (0 0 0); boundary condition (in case of backflow).

35 }

o ‘{:Y““de” « For the cylinder patch we are using a zeroGradient

39 type fixedValue; boundary condition.

40 value uniform (0 0 0);

41 } . i

s L The rest of the patches are constrained.

44 {

45 type symmetryPlane;

46 }

48 sym2

49 {

50 type symmetryPlane;

538 }

53 back

54 {

55 type empty;

56 }

58 front

59 {

60 type empty;

61 }

62 }

256

Flow past a cylinder — From laminar to turbulent flow

D The system directory

The system directory consists of the following compulsory dictionary files:
* controlDict
* fvSchemes

e fvSolution

controlDict contains general instructions on how to run the case.

fvSchemes contains instructions for the discretization schemes that will be
used for the different terms in the equations.

fvSolution contains instructions on how to solve each discretized linear
equation system.

257

Flow past a cylinder — From laminar to turbulent flow

[3) The controlDict dictionary

17
18
19
20
20
22
23
24
25
26
27
28
29
30
Sl
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51

application rhoPimpleFoam;
startFrom startTime;
//startFrom latestTime;
startTime 0;

stopAt endTime;

//stopAt writeNow;

endTime ©.3¢
deltaT 0.00001;
writeControl adjustableRunTime;

writeInterval 0.0025;
purgeWrite 0;
writeFormat ascii;
writePrecision 10;
writeCompression off;
timeFormat general;
timePrecision 6;
runTimeModifiable true;
adjustTimeStep yes;

maxCo 1;
maxDeltaT ilg

This case will start from the last saved solution (startFrom). If there is
no solution, the case will start from time O (startTime).

It will run up to 0.3 seconds (endTime).
The initial time step of the simulation is 0.00001 seconds (deltaT).

It will write the solution every 0.0025 seconds (writelnterval) of
simulation time (adjustableRunTime). The option adjustableRunTime
will adjust the time-step to save the solution at the precise intervals. This
may add some oscillations in the solution as the CFL is changing.

It will keep all the solution directories (purgeWrite).
It will save the solution in ascii format (writeFormat).

And as the option runTimeModifiable is on, we can modify all these
entries while we are running the simulation.

In line 49 we turn on the option adjustTimeStep. This option will
automatically adjust the time step to achieve the maximum desired
courant number (line 50).

We also set a maximum time step in line 51.

Remember, the first time step of the simulation is done using the value
set in line 28 and then it is automatically scaled to achieve the desired
maximum values (lines 66-67).

The feature adjustTimeStep is only present in the PIMPLE family
solvers, but it can be added to any solver by modifying the source code.

258

Flow past a cylinder — From laminar to turbulent flow

[3) The controlDict dictionary

55
56

178
179
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

235
236

functions

{

forceCoeffs object

{

type forceCoeffs;

functionObjectLibs ("libforces.so");
patches (cylinder);

pName p;

Uname U;
//rhoName rholInf;
rhoInf 1.205;

//// Dump to file
log true;

CofR (0.0 0 0);
1liftDir (0 1 0);
dragDir (1 0 0);
pitchAxis (0 0 1);
magUInf 1.5;

1Ref 0.001;

Aref 0.000002;

outputControl timeStep;
outputInterval 1;
}

As usual, at the bottom of the controlDict dictionary file
we define the functionObjects (lines 55-236).

Of special interest is the functionObject
forceCoeffs_object.

As we changed the domain dimensions and the inlet
velocity, we need to update the reference values (lines 204-
2006).

It is also important to update the reference density (line
195).

259

Flow past a cylinder — From laminar to turbulent flow

) The fvSchemes dictionary

17 ddtSchemes * In this case, for time discretization (ddtSchemes) we are
SO using the Euler method.
19 default Euler;
] » For gradient discretization (gradSchemes) we are using the
i ?rad“he’“es leastSquares method.
29 defaul 1llLimited 1 1;
SE seitiimited feastSqmares « For the discretization of the convective terms (divSchemes)
ot divschemes we are using linearUpwind interpolation with no slope limiters
37 { for the term div(phi,U).
38 default none;
s e Gauss linearUpwindV default; For the terms div(phi,K) (kinetic energy) and div(phi,h)
41 div (phi, K) Gauss linear; (enthalpy) we are using linear interpolation method with no
42 div(phi, h) Gauss linear; . .
43 slope limiters.
44 div(((rho*nuEff) *dev2 (T (grad(U))))) Gauss linear; .
45) * For the term div(((rho*nuEff)*dev2(T(grad(U))))) we are
46 . -
47 laplacianSchemes using linear interpolation (this term is related to the turbulence
48 { :
49 default Gauss linear limited 1; mOde“ng)
50 } A
51 » For the discretization of the Laplacian (laplacianSchemes
oy reTRelationSchemes and snGradSchemes) we are using the Gauss linear limited
54 default linear; 1 method.
55 }
- » This method is second order accurate.
snGradSchemes
58 {
59 default limited 1;
60 }

260

Flow past a cylinder — From laminar to turbulent flow

3] The fvSolution dictionary

17
18
20
21
22
28
24
25
26
27
46
47
48
49
50
Sl
53
54
55
56
57
58
59
60
74
75
76
77
78
79
80
81
83
84
85
86
87

solvers

{

P
{

solver PCG;
preconditioner DIC;
tolerance le-06;
relTol 0.01;
minIter 2;

}

pFinal

{
$p;
relTol 0;
minIter 2;

}

ny.x"

{
solver PBiCGStab;
preconditioner DILU;
tolerance le-08;
relTol 0;
minIter 2;

}

hFinal

{
solver PBiCGStab;
preconditioner DILU;
tolerance le-08;
relTol 0;
minIter 2;

}

llrho‘ *n

{
solver diagonal;

}

To solve the pressure (p) we are using the PCG method with
an absolute tolerance of 1e-6 and a relative tolerance relTol
of 0.01.

The entry pFinal refers to the final correction of the PISO
loop. Notice that we are using macro expansion ($p) to copy
the entries from the sub-dictionary p.

To solve U and UFinal (U.*) we are using the solver
PBiCGStab with an absolute tolerance of 1e-8 and a relative
tolerance relTol of O.

To solve hFinal (enthalpy) we are using the solver
PBiCGStab with an absolute tolerance of 1e-8 and a relative
tolerance relTol of 0.

To solve rho and rhoFinal (rho.*) we are using the diagonal
solver (remember rho is found from the equation of state, so
this is a back-substitution).

FYI, solving for the velocity is relative inexpensive, whereas
solving for the pressure is expensive.

Be careful with the enthalpy, it might cause oscillations.

261

Flow past a cylinder — From laminar to turbulent flow

3] The fvSolution dictionary

o8 * The PIMPLE sub-dictionary contains entries related to the

ot ?IMPLE pressure-velocity coupling (in this case the PIMPLE method).
0 B e oor Yes « Setting the keyword nOuterCorrectors to 1 is equivalent to
> nCorrectors 2; running using the PISO method.

94 nNonOrthogonalCorrectors 1;

103 MinFact 0.5 .

104 R o « Hereafter we are doing 2 PISO correctors (nCorrectors) and
105 4 1 non-orthogonal corrections (nNonOrthogonalCorrectors).

* Inlines 95-96 we set the minimum and maximum physical
values of rho (density).

* If we increase the number of nCorrectors and
nNonOrthogonalCorrectors we gain more stability but at a
higher computational cost.

* The choice of the number of corrections is driven by the
quality of the mesh and the physics involve.

* You need to do at least one PISO loop (nCorrectors).

262

Flow past a cylinder — From laminar to turbulent flow

Running the case — Using a compressible solver

You will find this tutorial in the directory $PTOFC/1010F/vortex shedding/c24

Feel free to use the Fluent mesh or the mesh generated with b1 ockMesh. In this case we will use
blockMesh.

To run this case, in the terminal window type:

S> foamCleanTutorials
S> blockMesh
S> transformPoints —scale ‘(0.001 0.001 0.001)"’

S> renumberMesh -overwrite

o &~ 0D =

$> rhoPimpleFoam | tee log

$> pyFoamPlotWatcher.py log
You will need to launch this script in a different terminal

$> gnuplot scriptsO/plot coeffs

You will need to launch this script in a different terminal

$> rhoPimpleFoam -postProcess —-func MachNo

$> paraFoam
263

Flow past a cylinder — From laminar to turbulent flow

Running the case — Using a compressible solver

In step 3 we scale the mesh.

In step 4 we use the utility renumberMesh to make the linear system more diagonal
dominant, this will speed-up the linear solvers.

In step 5 we run the simulation and save the log file. Notice that we are sending the
job to background.

In step 6 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly. As the
job is running in background, we can launch this utility in the same terminal tab.

In step 7 we use the gnuplot script scripts0/plot coeffs to plot the force
coefficients on-the-fly. Besides monitoring the residuals, is always a good idea to
monitor a quantity of interest. Feel free to take a look at the script and to reuse it.

In step 8 we use the utility MachNo to compute the Mach number.

264

Flow past a cylinder — From laminar to turbulent flow

rhoPimpleFoam output screen

Courant Number mean: 0.1280224248 max: 0.98858633384 Courant number
deltaT = 3.816512052¢-05 <« Time step
Time = 0.3

diagonal: Solving for rho, Initial residual = 0, Final residual = 0, No Iterations 0 4 Solving for density (rho)
PIMPLE: iteration 1

DILUPBiCG: Solving for Ux, Initial residual 0.003594731129, Final residual = 3.026673755e-11, No Iterations 5

DILUPBiCG: Solving for Uy, Initial residual = 0.01296036298, Final residual = 1.223236662e-10, No Iterations 5

DILUPBiCG: Solving for h, Initial residual = 0.01228951539, Final residual = 2.58323646le-09, No Iterations 4 4— h residuals
DICPCG: Solving for p, Initial residual = 0.01967621449, Final residual = 8.797612158e-07, No Iterations 77

DICPCG: Solving for p, Initial residual = 0.003109422612, Final residual = 9.943030465e-07, No Iterations 69

diagonal: Solving for rho, Initial residual = 0, Final residual = 0, No Iterations 0

time step continuity errors : sum local = 6.835363016e-11, global = 4.328592697e-12, cumulative = 2.366774797e-09

rho max/min : 1.201420286 1.201382023 pFinal
DICPCG: Solving for p, Initial residual = 0.003160602108, Final residual = 9.794177338e-07, No Iterations 69 /

DICPCG: Solving for p, Initial residual = 0.0004558492254, Final residual = 9.278622052e-07, No Iterations 58

diagonal: Solving for rho, Initial residual = 0, Final residual = 0, No Iterations 0 4 Solving for density (rhoFinaI)
time step continuity errors : sum local = 6.38639685e-11, global = 1.446434866e-12, cumulative = 2.368221232e-09
rho max/min : 1.201420288 1.201381976 <« Max/min density values

ExecutionTime = 480.88 s ClockTime = 490 s

faceSource inMassFlow output:
sum(in) of phi = -7.208447027e-05

faceSource outMassFlow output:
sum(out) of phi = 7.208444452e-05

fieldAverage fieldAverage output:
Calculating averages

Writing average fields

forceCoeffs forceCoeffs object output:

Cm = -0.001269886395

cd = 1.419350733

Cl = 0.6247248606 > Force coefficients

Cl(f) = 0.3110925439 Minimum and
Cl(r) = 0.3136323167

maximum values

fieldMinMax minmaxdomain output:
min(p) = 101322.7878 at location (-0.0001215826043 0.001027092827 0)

max(p) = 101326.4972 at location (-0.001033408037 -4.061934599e-05 0)

min(U) = (-0.526856427 -0.09305459972 -8.110485132e-25) at location (0.002039092041 -0.0004058872656 -3.893823418e-20)

max (U) = (2.184751599 0.2867627526 4.83091257e-25) at location (0.0001663574444 0.001404596295 0)

min(T) = 293.1487423 at location (-5.556854517e-05 0.001412635233 0) 264
max (T) = 293.1509903 at location (-0.00117685237 -4.627394552e-05 3.016083257e-20)

Flow past a cylinder — From laminar to turbulent flow

* Inthe directory $PTOFC/1010F/vortex shedding, you will find 29 variations of the cylinder case involving
different solvers and models. Feel free to explore all them.

« This is what you will find in each directory,
* ¢1 = blockMesh — icoFoam — Unsteady solver — Re = 200.
+ ¢2 = fluentMeshToFoam — icoFoam — Unsteady solver — Re = 200.
* ¢3 = blockMesh — pisoFoam — Unsteady solver — Field initialization — Re = 200.
* ¢4 = blockMesh — potentialFoam — Re = 200.
* ¢b = blockMesh — mapFields — pisoFoam — Unsteady solver — original mesh — Re = 200.
* c6 = blockMesh — mapFields — pisoFoam — Unsteady solver — Finer mesh — Re = 200.
* 7 = blockMesh — pimpleFoam — Unsteady solver — Re = 200 — No turbulent model.
* ¢8 = blockMesh — pisoFoam — Unsteady solver — Re = 200 — No turbulent model.
* €9 = blockMesh — pisoFoam — Unsteady solver — Re = 200 — K-Omega SST turbulent model.
* ¢10 = blockMesh — simpleFoam — Steady solver — Re = 200 — No turbulent model.
* ¢11 = blockMesh — simpleFoam — Steady solver — Re = 40 — No turbulent model.
* ¢12 = blockMesh — pisoFoam — Unsteady solver — Re = 40 — No turbulent model.
* ¢14 = blockMesh — pimpleFoam — Unsteady solver — Re = 10000 — K-Omega SST turbulence model with wall functions.
* ¢15 = blockMesh — pimpleFoam — Unsteady solver — Re = 100000 — K-Omega SST turbulence model with wall functions
* ¢16 = blockMesh — simpleFoam — Steady solver — Re = 100000 — K-Omega SST turbulence model no wall functions.
* ¢17 = blockMesh — simpleFoam — Steady solver — Re = 100000 — K-Omega SST turbulent model with wall functions.
* ¢18 = blockMesh — pisoFoam — Unsteady solver — Re = 100000, LES Smagorinsky turbulent model.

266

Flow past a cylinder — From laminar to turbulent flow

« This is what you will find in each directory,
* ¢19 = blockMesh — pimpleFoam — Unsteady solver — Re = 1000000 — Spalart Allimaras turbulent model no wall functions.
* ¢20 = blockMesh — rhoPimpleFoam — Unsteady solver — Mach = 2.0 — Compressible — Laminar.

* ¢21 = blockMesh — rhoPimpleFoam —Unsteady solver — Mach = 2.0 — Unsteady solver — Compressible — K-Omega SST
turbulent model with wall functions.

* ¢22 = blockMesh — rhoSimpleFoam — Mach = 2.0 — Steady solver — Compressible — K-Omega SST turbulent model with
wall functions.

* ¢23 = blockMesh — rhoPimpleFoam — Mach = 2.0 — LTS Pseudo-transient solver — Compressible — K-Omega SST
turbulent model with wall functions.

* c24 = blockMesh — pimpleFoam — Unsteady solver — Re = 200 — No turbulent model — Source terms (momentum)

« ¢25 = blockMesh — pimpleFoam — Unsteady solver — Re = 200 — No turbulent model — Source terms (scalar transport)
* €26 = blockMesh — rhoPimpleFoam — Unsteady solver — Re = 200 — Laminar, isothermal

* ¢27 = blockMesh — rhoPimpleFoam — Unsteady solver — Re = 20000 — Turbulent, compressible

* ¢28 = blockMesh — pimpleDyMFoam — Unsteady solver — Re = 200 — Laminar, moving cylinder (oscillating).

* ¢29 = blockMesh — pimpleDyMFoam/pimpleFoam — Unsteady solver — Re = 200 — Laminar, rotating cylinder using AMI
patches.

* ¢30 = blockMesh — interFoam — Unsteady solver — Laminar, multiphase, free surface.

* ¢31 = blockMesh — pimpleFoam — Unsteady solver — Laminar with source terms and AMR.

267

Module 2

Solid modeling

1. Solid modeling preliminaries and
introduction to Onshape

269

Solid modeling — Preliminaries

There is no wrong or right way when doing solid modeling for CFD. The
only rule you should keep in mind is that by the end of the day you should
get a smooth, clean, and watertight geometry.

A watertight geometry means a close body with no holes or overlapping
surfaces.

Have in mind that the quality of the mesh and hence of the solution, greatly
depends on the geometry. So always do your best when creating the
geometry.

During this solid modeling session we are going to show you how to get
started with the geometry generation tools. The rest is on you.

The best way to learn how to use these tools is by doing.

The tool of our choice is Onshape (www.onshape.com). However, have in
mind that all CAD and solid modeling applications have similar capabilities.

270

http://www.onshape.com/

Solid modeling — Preliminaries

 There are always many ways to accomplish a task when creating a
geometry, this give you the freedom to work in a way that is comfortable to
you. Hereafter we are going to show you our way.

» Before starting to create your geometry, think about a strategy to employ to
create your design, this is what we call design intent.

Choose one feature over other.
Dimensioning strategy.

Order of the operations.
Parametrization.

Single or multiple parts.

Do | need to parametrize my design, or should | use direct
modeling?

« We are going to work with design intent during the hands-on sessions.

271

Solid modeling — Preliminaries

Geometry defeaturing

Many times, it is not necessary to model all the details of the geometry. In these cases you

should consider simplifying the geometry (geometry defeaturing).
Geometry defeaturing can save you a lot of time when generating the mesh. So be smart,

and use it whenever is possible.

Are the nuts and bolts necessary
in my simulation?

[—

Do we really need to
capture the fillet details?

Do we need to
model the flange?

272

Solid modeling — Preliminaries

Geometry defeaturing

« Would you use all these geometry details for a CFD simulations?

273

Solid modeling using Onshape

Onshape is a professional CAD/solid modeling application.

It provides powerful parametric and direct modeling capabilities.

It is cloud based therefore you do not need to install any software.
Documents are shareable.

Multiple users can work in the same document at the same time
(simultaneous editing).

It runs in any device with a working web browser.

Users can implement their own features using Onshape scripting language
(featureScript).

Users can access and modify documents in a programmatic way using
python or node;s.

It is freely available for educational use and personal use.
To start using Onshape register at: https://cad.onshape.com/

274

https://cad.onshape.com/

Solid modeling using Onshape

« Even if you have not used a CAD software before, you will find the GUI easy to use.

* You will notice that there is no save button because everything you do is

automatically saved.

Help
Versioning, branching, and history menu Toolbar

(3 CAD Inner and OgfrVolu.. X [T new | Part Studio 1 X (@ Leaming Center: Introduct.. X =+ = x . b
View cube

UndO/RedO € Oa ny ad.onshape.com/documents/d9513985a8ec9caf1f62779b/w/ea57cda4724270565dbbcbcf/e/bd155aef1a21a3fcd5dagabf ¢ Q. geometry defeaturing > ﬁ =] Q0 = -'
\Onshape = 9= 4. newl van @ ® ‘3 © - Miost guerrero~
5 Zseern BG@ @ B ® ONAJLADE B-¥ oRB&@ B ¥od 00 & W +

Features (10) K

‘:’; by name or type \ ‘ .

~ Default geometry
= rop Enter to sketch mode X
@ Front .-
[Right

£ Sketch1

@ Revolve 1

£

Feature list e

Extrude 2

Parts (1)

Partl

Parts list ——pp

@G + OPartstudiol Assembly 1

/ 3D area

Document tabs 275

Solid modeling using Onshape

* Mouse interaction in the 3D area (it can be configured in the preference area).

Mouse interaction in the
3D viewer

Fr .
@ Selection " -

@ Rotate Rig™
@ Pan
@ Zoom

« To deselect click in an empty region in the 3D area

276

Solid modeling using Onshape

« Parametric modeling and feature based modeling are crucial components in the
design experience.

* In Onshape you will find the following features:

Feature toolbar:
- Zsh M@ @ B N AATE B-0 oD B ¥roeaad DE0&E K+

Sketch toolbar:

* B/ O0-Q-a~G-A~>c DO~ X~-M~-k BB~ < A~

« Remember, sketches are the core of good 3D designs and parametrization.
* This is all we need to know about Onshape.
» Let us work with a simple geometry to understand how Onshape works.

« We also will show you a few clicks and picks you should be aware of.

277

Solid modeling using Onshape

» Let us create this solid using the dimensions illustrated.

D1

©0,500

N

Note: all the dimensions are in meters -

Solid modeling using Onshape

Enter the document page and create a new design

() CAD Inner and Outer Volu.. X [Documents

€ @& https;//cad.onshape.com/documentsfilter=created-by-me&column=modifiedAt&order=desc
Onshape _Searchin€
— .

Create new document Created by me

Name orkspace

X (@ Leaming Center: Introduct.. X | =+

Modified v

<, geometry defeaturing

Modified b Owned b Size i i
@® Recently opened Y y static_mixer x
€ My documents (=] ’ static_mixer /- 5:34 PM Today me me 531KB
| [Created by me
[Shared with me =] . importl 5 700 PM Yesterday ~ me me 901 KB
%9 New label...
@ Public Q& test 110 3:29PM Yesterday ~ me me 2MB
[Tutorials & Samples
fil Trash ahmed_openfoam ©7 11:07 PM Jan 15 me me 3MB Owner
me
(5]
Description
B CSV Profile chooser - Copy 12:40 AM Jan 2 me me 41 KB No description
Labels
No labels
Not shared
Created by
me

Subscription: Education

1:33 AM Nov 15 2016

Last modified by
me

5:34 PM Today

Size
531KB .

279

Solid modeling using Onshape

* In the part studio page, select the top plane and start a new sketch.

2. Start a new sketch

(® CAD Inner an@lOuter Volu.. X [mixing_elbow | Part Studi.. X | () Leaming Center: Introduct... X | =+ = fic} X
€ @@ nhttpsj/cad.onshape.com/documents/ac69dd641fdd3ffadds2f6as/w/abaed 15987b3b05406abf6fe/e/7363f9bedeadab749b5cbas4 Q. geometry defeaturing > B & A =@-
Onshape =%z ¢, mixing_elbow v=in & L] ‘" @ - Micelguerrero~

? ZLsech @@ & B E OO A B B-0 o & B ¥ 98 ODE0O& W +

Features (4)

"..’f by narne or type ‘ i

%
v Default geometry
. © Origin K [
9
1. Select this plane — W
3 Front X o-
[Right ‘.
g
] [} [
Parts (0)
& + @Partstudiol Assembly 1

Part studio page

280

Solid modeling using Onshape

* In the part studio page, select the top plane and start a new sketch.

(@ CAD Inner and Outer Volu.. X [mixing_elbow | Part Studi.. X () Leaming Center: Introduct... X | =+ = fic} X
€ @ @& | https;//cad.onshape.com/documents/4c69dd641fdd3ffadds2feas/w/abaed 15987b3b05406abf6fe/e/7363fIbede9dsb749b5chas4 @ Q geometry defeaturing > Y E ¥ A = '
Onshape = = {. mixing_elbow main 3 [] ‘-‘ ©~ Micel guerrero~

B@ /TO-O-a-G- -0 AD-F | X-MB-EB-B-¢ 0N 46— 1 L=-=xxUYRK-~

Features (5)

"..’f by narne or type ‘ i

%
v Default geometry
o Fr fr,
3 Top ont
N Sketch 1 v x
i X
[Front)
- o Sketch plane o
[Right Top plane P /'241;\
£ sketen Show constraints /,r N ~
@ show overdefined ﬂ?‘jh: ~]
[C]
Exit Sketch 1 D -
Copy sketch N
Parts (0) Show all

Select other.

Right click on the 3D e
area and select view -
normal to sketch plane T

281

Solid modeling using Onshape

« Using the sketching features, draw the following line.

When you are done sketching
press the checkmark

[B mixing_elbow | Part Studi.. X | 4 = fic} X
€ @ @ | httpsy/cad.onshape.com/documents/4c69dd641fdd3ffadds2f6a6/w/abaed 15§87b3b05406abf6fe/e/7363f9bedeadb749b5cbas4 ¢ | Q search B 4 A = @3-
Onshape = %= ¢, mixing_elbow vain 3 [] @ - Mioel guerrero~
9 B@® /O0-0-a-G-~-° AO-0 ¢ X-B-BE-B-@ KON AL— | L =-~\YX~
Features (10) Sketch 1 X
‘:..’:‘ by name or type ‘ Sketch plane 1 Y
v Default geometry Topplane T

@ Origin Show constraints »
X
® Show overdefined
Final Q-

2
2 3
@

2
@

R15
' |
Parts (0)
& + @partstudiol [dPart 1 Drawing 1) Assembly 1

In sketch mode:

* Blue geometry is free to move.

+ Black geometry is fully defined.

* Red geometry is over-constrained.

Use the dimensions illustrated to
draw this polyline

282

Solid modeling using Onshape

Select the right plane and start a new sketch.
Draw a circle with the center in the origin (the white point).

When you are done sketching
press the checkmark

(@) CAD Inner and Outer Volu.. X [I mixing_elbow | Part Studi.. X | () Leaming Center: Introduct... X | +

€ @@ httpsy/cad.onshape.com/documents/4c69dd641fdd3ffadds2f6a6/w/abaed 15987b3b054063##8 /e/7363f9bedeadab749b5cbas4 Q. geometry defeaturing > Y E ¥ A =

Onshape = 9= ¢, mixing_elbow v=in &

4 B@® /O-0-7-6G-~7-° A i 7 K-~ B-B- & KON 46— 1 L =~ KX~

Features (6) Sketch 2 %
‘7"? S ‘ Sketoh plane H
~ Default geometry Right plane Y
© Origin 2
Show constraints
[Top z
. - @ show overdefined
[Front
Select this plane and - .-
_> [Rigl
start a new sketch £ sweton1
£ Sketch2
Parts (0)
Origin
& + @Partstudiol Assembly 1

Use the dimensions illustrated to
draw the circle

- [x

» PEERIEE o o

283

Solid modeling using Onshape

Use the sweep feature to create a new solid.

Select the circle as the
face to sweep

(@) CAD Inner and Outer Volu.. X [mixing_elbow | Part Studi... X

€ @ @& | https;//cad.onshape.com/documents/4c69dde41fdd3ffadds2foWgw/abaed 15987b3b05406abf6fe/e/7363fIbede:

Onshape = %= ¢, mixing_elbow main
4 & Sketch

BB O00A40E

Features (7)

S \

£ Top
3 Front @
[Right
£ Sketch1
£ Sketch2
@ Sweepl

Sweep feature

Parts (1)

Partl

& + rartstudiol Assembly 1

0 Leaming Center: Introduct... X

- W

Select the lines as the
sweep patch

Select new solid

+ —

[x

s ¥ A9 =@

» PEERIEE o o

8b749b5cbag4 c @, geometry defeaturin;

oD BF B8 OO0 & W

SWE! 1

M x

%
Solid Surface
[t
New Add Remove Intersect L
Faces and sketch regions to sweep X
Face of Sketch 2 U~

Sweep path
Edge of Sketch 1

Edge of Sketch 1
Edge of Sketch 1

Keep profile orientation

284

Solid modeling using Onshape

At this point, you should have this solid.

(@) CAD Inner and Outer Volu.. X [I mixing_elbow | Part Studi.. X | () Leaming Center: Introduct... X

€ Oa https://cad.onshape.com/documents/4c69dd641fdd3ffaddd2f6a6/w/abaed 15987b3b05406abfbfe/e/7363f9be4e9d8b749b5chad4

Onshape = %= ¢, mixing_elbow Mzin
) Lseen @@ @ B ® OO AL EBE B-NT

Features (7)

v Default geometry

© Origin
I Top

[Front
[Right

NI

@ Sweep 1

Solid name. parte 1)

Right click to rename —9»r
or view the properties

& + rartstudiol Assembly 1

RIS

[X
@ Q geometry defeaturing > v BEa ¥ A =@~

» PEERIEE o o

DB ¥Fed OE0C& K +

285

Solid modeling using Onshape

« Let us add the new inlet to the pipe.
» Create a new sketch in the top plane or edit the initial sketch.

 Hereafter we will edit the initial sketch.

[B mixing_elbow | Part Studi.. X | 4 = fic} X

¢ Q search B 4 A = @3-

Onshape = 9= i, mixing_elbow vain &3 ® @~ Miicelguerrero~
B@ /O-O-&a-@G- -0 ABQ-1F ¢ K-~ B-B- & KON 46— 1 L =~ LR~

Sketch 1 X
|

Filter by name or type Sketch plane
~ Default geometry Top plane T
’ Show constraints -

X

© Origin

€ Oa https://cad.onshape.com/documents/4c69dd641fdd3ffa4ds2feas/w/abaed 15987b3b05406abf6fe/e/7363fIbe4e3dBb749b5chag4

Features (10)

I Y

® Show overdefined

Final

Right click and choose S 3

the option edit 2
2
@
R15 /
3
45°

Parts (0)

05

httpsy//cad.onsh e comdocuments [dPart 1 Drawing 1) Assembly 1

Sketch these new lines using the dimensions illustrated.
Pay attention to the angle and the offset distance.

286

Solid modeling using Onshape

« Create a plane normal to a line and passing through a point

1. Create new plane

[B mixing_elbow | Part Studi.. > ' [Onshape Help - Plane X ‘ @@ Leaming Center: Introduct.. X | +

- [X
€ ® @ | httpsy/cad.onshape.com/documents/4c69dd641fdd3ffadds2f6a6/w/abaed 15987b3b05406abf6fe/e/7363f9bedeadab749b5cbas4 Q. designspark mechanical > B & A =@-
Onshape = 9= ¢, mixing_elbow vain B3 » I3 @~ Mioclguerrero~
Zseen @@ @ B @ OO A AEBR B-M oD@ B e d DEOCA W +
Features (10) Plane 1 X '
‘ ‘ Entities
. o Edge of Sketch 1 — T
2. Select point normal, — Z¥;
and select the line and . P roromal ’ \ / -
. . [T Front o— Final : o-

point as illustrated & rign S
£ Sketch1
Z
@ Sweep 1
[Plane 1
2
@

To get better visibility, you e

can hide the solid or adjust — : Use this line to create
the transparency

the new plane

& + rartstudiol Assembly 1

Use this point to create
the new plane

287

Solid modeling using Onshape

Sketch a circle in the newly created plane.

[B mixing_elbow | Part Studi.. > ' [Onshape Help - Plane

€ Oa https://cad.onshape.com/documents/4c69dd641fdd3ffa4ds2feas/w/abaed 15987b3b05406abf6fe/e/7363fIbe4e3dBb749b5chag4

X @ Leaming Center: Introduct... X

Onshape = : i, mixing_elbow vain &

4 BE@ /O-0-&- G-

Features (10)

v Default geometry

3 Top
3 Front
[T Right
£ Sketch1
2
@ Sweep 1
New plane =— =ran:
£ Sketch3
@
To ge.t better V|s.|b|I|ty, you p——
can hide the solid or adjust —
the transparency
& + @partstudiol ®) Assembly 1

Sketch this circle in the newly created plane

F-o A B

Sketch 3

Sketch plane
Plane1

Show constraints
® Show overdefined

Final

. designspark mechanical

> B ¥ A9

» PEERIEE o o

rX-Mm-BE-B 8 K0 - X MK -

Solid modeling using Onshape

» Using the feature extrude to create a new solid using the previous sketch.
» Extrude the circle until in intercept the solid.

Add the new solid to the previous part (boolean operation)
Feature extrusion

mixing_elbow | Part Studi.. X [Onshape Help - Plane X \ Leaming Center: Introduct... X | =+ = (i x
ttps://cad.onshape.com/documents/4c69dd641fdd3ffadddp fea6/w/abaed 15987b3b05406abf6fe/e/7363f9bededdsb749b5chbas4 @ Q designspark mechanical > e ¥ A =E-
. mixing_elbow Main ® ‘-‘ © - Micelguerrero~
seen @ @ @ B O A 4 B B-¥ oD B a8 OE0CS K +
7
Features (10) Extrud X " Py
‘ ‘ Soli Surface | . /
V

~ Default geometry New Add Remove Intersect

Faces and sketch regions to extrude “\ \J
& Top Face of Sketch 3 \
3 Front X v
[Right Depth
2 Sketch 1 Draft
i Second end position
Use this sketch as the ki
base for the extrusion
Extrusion.
You can manually move
— the extrusion using the
triad manipulator, or
input a value
& + @partstudiol @) Assembly 1

Instead of the extrusion feature, you could use
the sweep feature. You will need to create a

longer sweep path.
9 PP 289

Solid modeling using Onshape

« At this point you should have the following solid.

[B mixing_elbow | Part Studi.. > ' [Onshape Help - Plane x ‘ @ Leaming Center: Introduct... X

€ Oa https://cad.onshape.com/documents/4c69dd641fdd3ffaddd2f6a6/w/abaed 15987b3b05406abfbfe/e/7363f9be4e9d8b749b5chad4

Onshape = %= ¢, mixing_elbow Mzin

4 Zsween @@ @ BB OO0 A4AEBE B-W o0 & B

Features (10)

v Default geometry

NN

@ Sweep 1

2
Extrude 1

Parts (1)

Partl

& + rartstudiol Assembly 1

- @ X
> e ¥ A QO =@

» PEERIEE o o

98 O0s0& W+

@ Q designspark mechanical

290

Solid modeling using Onshape

If you want to know the mass properties of the solid, select it, and then click on the
mass properties icon.

To get the inertia, you will need to assign a material.

[B mixing_elbow | Part Studi.. > ' [Onshape Help - Plane x ‘ @@ Leaming Center: Introduct.. X | + = fic} X

€ ® @ | httpsy/cad.onshape.com/documents/4c69dd641fdd3ffadds2f6a6/w/abaed 15987b3b05406abf6fe/e/7363f9bedeadab749b5cbas4 Q. designspark mechanical > B & A =@-

Onshape = 9= ¢, mixing_elbow vain B3 s FIEAED o Nicoereo-
4 Lsketen @@ @ B OO A AEBRE B-M o0 @B 9@ O0OE0C & K +

Features (10)

‘ ‘ Mass properties X

Y .
Parts to measure \
v Default geometry ‘ \
. Part1 11 o
Mate connector for reference frame <
T e e e e e T I e e O~
2 Mass
2 Volume: 7.382m?
- Surface area: 31868 m?
@ Sweep Center of mass
x-
2 ¥
Extrude 1 z
Moments of inertia: kg m?
Lxx Ly Lz
Lyx Ly Lyz
Lox: Lzy L2z
Select the part.
Parts (1)
Right click and select =~ =P
assign material.
i)

& + @rartstudiol Assembly 1 Colendar /

Mass properties icon

291

Solid modeling using Onshape

« To export the solid model, right click on the part name and select the option export.
* Choose the desired format. In this case choose STL.

Right click and select the
option export.

292

Solid modeling using Onshape

Parametric modeling and feature-based modeling are two of the most powerful tools
available in any CAD/solid modeling applications.

They are crucial components in the design experience, especially when dealing with
design intent.

Experimenting with dimension schemes is one of the best ways to improve your
understanding of design intent.

To learn more about Onshape, you can visit their learning center:

https://learn.onshape.com/

Finally, feel free to visit our youtube channel where you will find a few solid modeling
videos in the context of CFD and OpenFOAM® :

https://www.youtube.com/channel/UCNNBmM3KxVS1rGeCVUU1p61q

293

https://learn.onshape.com/
https://www.youtube.com/channel/UCNNBm3KxVS1rGeCVUU1p61g

Solid modeling using Onshape

At the following links, you can find a few geometries that you can use to setup cases

from scratch:

» Sailing boat:
https://cad.onshape.com/documents/ad885ed6298e6d95e372f573/w/1cfdad457fe3ad410332aad9c/e/8dac4fcaf6e34a43e9676fbc

* Mixing elbow:
https://cad.onshape.com/documents/1cc919d8e75c2e47e8c1d50e/w/0efa002648eb2fb80ec4becd/e/a742bf4113c626735e1d8f1a

. Static mixer:
https://cad.onshape.com/documents/58f7930861743e1074559ea6/w/96672317c¢9167265f9d10181/e/e4bbb1baffa90ca207afe974

* Ahmed body:
https://cad.onshape.com/documents/e1ecbacd95be9ed0962aa410/w/f0295899197e2f3d851000fd/e/aa40f8f5d26b7117dd0a5111

* Mixing tank:
https://cad.onshape.com/documents/e00307¢c191ce168d1d8c2e05/w/fc5d69b18559ec3893a1a80a/e/badb5cabb34ad7335a2915a3

* Onera M6 wing:
https://cad.onshape.com/documents/e176caaa70bfd4719cafe3d7/w/9d8b5771d7382000b0762e65/e/ec4669f8c28761e60e35b32f

* Three element airfoil:
https://cad.onshape.com/documents/590a4195a6145a1089cfb96f/w/838a3095da90d5dd66a3150e/e/5d65878bed975a1a94102846

294

https://cad.onshape.com/documents/ad885ed6298e6d95e372f573/w/1cfda457fe3ad410332aad9c/e/8dac4fcaf6e34a43e9676fbc
https://cad.onshape.com/documents/1cc919d8e75c2e47e8c1d50e/w/0efa002648eb2fb80ec4bec4/e/a742bf4113c626735e1d8f1a
https://cad.onshape.com/documents/58f7930861743e1074559ea6/w/96672317c9167265f9d10181/e/e4b6b1baffa90ca207afe974
https://cad.onshape.com/documents/e1ecbacd95be9ed0962aa410/w/f0295899197e2f3d851000fd/e/aa40f8f5d26b7117dd0a5111
https://cad.onshape.com/documents/e00307c191ce168d1d8c2e05/w/fc5d69b18559ec3893a1a80a/e/ba4b5ca5b34ad7335a2915a3
https://cad.onshape.com/documents/e176caaa70bfd4719cafe3d7/w/9d8b5771d7382000b0762e65/e/ec4669f8c28761e60e35b32f
https://cad.onshape.com/documents/590a4195a6145a1089cfb96f/w/838a3095da90d5dd66a3150e/e/5d65878bed975a1a94102846

Module 3

Meshing preliminaries — Mesh quality
assessment — Meshing in OpenFOAM®

Before we begin

OpenFOAM® comes with the following meshing applications:
* blockMesh

* snappyHexMesh
e foamyHexMesh
e foamyQuadMesh
We are going to work with bl ockMesh and snappyHexMesh.
blockMesh is a multi-block mesh generator.
snappyHexMesh is an automatic split hex mesher, refines and snaps to surface.

If you are not comfortable using OpenFOAM® meshing applications, you can use an
external mesher.

OpenFOAM® comes with many mesh conversion utilities. Many popular meshing
formats are supported. To name a few: gambit, cfx, fluent, gmsh, ideas, netgen,
plot3d, starccm, VTK.

In this module, we are going to address how to mesh using OpenFOAM®
technology, how to convert meshes to OpenFOAM® format, and how to assess
mesh quality in OpenFOAM®.

296

Before we begin

By the end of this module, you will realize that

You will use snappyHexMesh to mesh the sphinx

You will use blockMesh to mesh the pyramids

4 =g
=N e-..

297

1. Meshing preliminaries

298

Meshing preliminaries

Mesh generation or domain discretization consist in dividing the physical
domain into a finite number of discrete regions, called control volumes or
cells in which the solution is sought

L

0

www.wolfdynamics.com/wiki/moving/ani1.gif www.wolfdynamics.com/wiki/moving/ani2.gif

299

http://www.wolfdynamics.com/wiki/moving/ani2.gif
http://www.wolfdynamics.com/wiki/moving/ani1.gif

Meshing preliminaries

Mesh generation process

» Generally speaking, when generating the mesh we follow these three
simple steps:

Geometry generation: we first generate the geometry that we are going
to feed into the meshing tool.

Mesh generation: the mesh can be internal or external. We also define
surface and volume refinement regions. We can also add inflation layers
to better resolve the boundary layer. During the mesh generation
process we also check the mesh quality.

Definition of boundary surfaces: in this step we define physical
surfaces where we are going to apply the boundary conditions. If you do
not define these individual surfaces, you will have one single surface
and it will not be possible to apply different boundary conditions.

300

Meshing preliminaries

Geometry generation - Input geometry
* The geometry must be watertight.

* Remember, the quality of the mesh and hence the quality of the solution greatly depends on the geometry. So
always do your best when creating the geometry.

301

Meshing preliminaries

Mesh generation

« If we are interested in external aerodynamics, we define a physical domain and we mesh the region around
the body.

« If we are interested in internal aerodynamics, we simply mesh the internal volume of the geometry.
» To resolve better the flow features, we can add surface and volume refinement.

* Remember to always check the mesh quality.

302

Meshing preliminaries

Definition of boundary surfaces (patches)

In order to assign boundary conditions, we need to create boundary surfaces (patches) where we are going to
apply the boundary values.

The boundary surfaces (patches) are created at meshing time.

In OpenFOAM®, you will find this information in the boundary dictionary file which is located in the directory
constant/polyMesh. This dictionary is created automatically at meshing time.

inlet outlet
* ——= + S
top \
left right
—— —* — &_

AN

airplane

bottom / 303

Meshing preliminaries

What cell type should | use?

http://www.wolfdynamics.com/wiki/cells/ani_tetra.gif http://www.wolfdynamics.com/wiki/cells/ani_hexa.gif http://www.wolfdynamics.com/wiki/cells/ani_poly.gif

 In the meshing world, there are many cell types. Just to name a few: tetrahedrons,
pyramids, hexahedrons, prisms, polyhedral.

» Each cell type has its very own properties when it comes to approximate the gradients
and fluxes, we are going to talk about this later on when we deal with the FVM.

» Generally speaking, hexahedral cells will give more accurate solutions under certain
conditions.

« However, this does not mean that tetra/poly cells are not good.

» What cell type do | use? It is up to you; at the end of the day the overall quality of the
final mesh should be acceptable, and your mesh should resolve the physics

304

http://www.wolfdynamics.com/wiki/cells/ani_tetra.gif
http://www.wolfdynamics.com/wiki/cells/ani_hexa.gif
http://www.wolfdynamics.com/wiki/cells/ani_poly.gif

| Moshi T

2. What is a good mesh?

305

What is a good mesh?

There is no written theory when it comes to mesh generation.
Basically, the whole process depends on user experience and good standard

practices.
A standard rule of thumb is that the elements shape and distribution should be

pleasing to the eye.

oo

AT
AR

FBEES

5
e
i

AL

SRNX
s
SRR
Sz ey
'

AR
ok

)
S

e
e
S

a
SO

SoSSY

et

e
'E%
W,
A!',mv&
i
R
VAT
SR
s,
ﬂ,ﬂv

B

5
4

0
it
Ay
o
WA
O
WA
Y

.
i
)
(|
I

W)
o
Y
By
Y,
o
B

Ty
W

A
0
AHIN
b
by

0
N
Y
RN

Wi

22rd IMR Meshing Maestro Contest Winner
Travis Carrigan, John Chawner and Carolyn Woeber. Pointwise.

http://imr.sandia.gov/22imr/MeshingContest.html
306

What is a good mesh?

In a more sounded way, the user can rely in mesh metrics.

However, no single standard benchmark or metric exists that can effectively
assess the quality of a mesh, but the user can rely on suggested best
practices.

Hereafter, we will present the most common mesh quality metrics:
* Orthogonality.
« Skewness.
 Aspect Ratio.
 Smoothness.

After generating the mesh, we measure these quality metrics to assess the
mesh quality.

Have in mind that there are many more mesh quality metrics out there, and
some of them are not very easy to interpret (e.g., jacobian matrix,
determinant, flatness, equivalence, condition number, and so on).

It seems that it is much easier diagnosing bad meshes than good meshes.

307

What is a good mesh?

Mesh quality metrics. Mesh orthogonality

« Mesh orthogonality is the angular deviation of the vector S (located at the face center
£) from the vector d connecting the two cell centers P and N. In this case is 20°.

« It mainly affects the Laplacian and gradient terms at the face center f.

|t adds numerical diffusion to the solution.

N e
~
2

308

What is a good mesh?

Mesh quality metrics. Mesh skewness

« Skewness (also known as non-conjunctionality) is the deviation of the vector d that
connects the two cells P and N, from the face center f.

 The deviation vector is represented with and is the point where the vector d
intersects the face f'.

« |t affects the interpolation of the cell centered quantities at the face center f.
« |t affects the computation of the convective, diffusive, and gradient terms.
« It adds numerical diffusion and wiggles to the solution.

309

What is a good mesh?

Mesh quality metrics. Mesh aspect ratio AR

« Mesh aspect ratio AR is the ratio between the longest side A2 and the shortest

side Ay .

» Large AR are ok if gradients in the largest direction are small.

 High AR smear gradients.
« Large AR can add numerical diffusion to the solution.

® 9

® 9

------- @ ®
AyI

-------- @ ®

AXx

310

What is a good mesh?

Mesh quality metrics. Smoothness

« Smoothness, also known as expansion rate, growth factor or uniformity, defines the
transition in size between contiguous cells.

« Large transition ratios between cells add diffusion to the solution.

» l|deally, the maximum change in mesh spacing should be less than 20%:

A
/Y2 <1.2
AT

Steep transition Smooth transition 311

What is a good mesh?

Mesh quality metrics. Element type close to the walls - Cell/Flow alignment

« Hexes, prisms, and quadrilaterals can be stretched easily to resolve boundary layers
without losing quality.
« Triangular and tetrahedral meshes have inherently larger truncation error.

« Less truncation error when faces aligned with flow direction and gradients.

Flow direction P f
>

QOlI

What is a good mesh?

Striving for quality

For the same cell count, hexahedral meshes will give more accurate solutions,
especially if the grid lines are aligned with the flow.

But this does not mean that tetrahedral meshes are not good, by carefully choosing
the numerical scheme you can get the same level of accuracy as in hexahedral
meshes.

The problem with tetrahedral meshes is mainly related to the way gradients are
computed.

* In the early years of CFD, there was a huge

—— Tetra gap between the outcome of tetra and hex
meshes.

+ But with time and thanks to developments in
numerical methods and computer science
(software and hardware), today all cell types
give the same results.

Hexa

Year 313

What is a good mesh?

Striving for quality
* The mesh density should be high enough to capture all relevant flow features.

* In areas where the solution change slowly, you can use larger elements.

A good mesh does not rely in the fact that the more cells we use the better the
solution.

size field

10.00
861
Fla
5.84
4486
3.07
1.69
0.30

23rd IMR Meshing Maestro Contest Winner

Zhoufang Xiao , Jianjing Zheng, Dawei Zhao, Lijuan Zeng, Jianjun Chen, Yao Zheng
Center for Engineering & Scientific Computation, Zhejiang University, China.
http://www.sandia.gov/imr/MeshingContest.html

314

What is a good mesh?

Striving for quality

Hexes, prisms, and quadrilaterals can be easily aligned with the flow.
They can also be stretched to resolve boundary layers without losing much quality.

Triangular and tetrahedral meshes can easily be adapted to any kind of geometry. The mesh
generation process is almost automatic.

Tetrahedral meshes normally need more computing resources during the solution stage. But
this can be easily offset by the time saved during the mesh generation stage.

Increasing the cells count will likely improve the solution accuracy, but at the cost of a higher
computational cost. However, a finer mesh does not mean a better mesh.

To keep cell count low, use non-uniform meshes to cluster cells only where they are needed.
Use local refinements and solution adaption to further refine only on selected areas.

In boundary layers, quads, hexes, and prisms/wedges cells are preferred over triangles,
tetrahedrons, or pyramids.

If you are not using wall functions (turbulence modeling), the mesh next to the walls should be
fine enough to resolve the boundary layer flow. Have in mind that this will rocket the cell count
and increase the computing time.

315

What is a good mesh?

Striving for quality
Use hexahedral meshes whenever is possible, specially if high accuracy in predicting forces is

your goal (drag prediction) or for turbo machinery applications.

For complex flows without dominant flow direction, quad and hex meshes loose their
advantages.

Keep orthogonality, skewness, and aspect ratio to a minimum.
Change in cell size should be smooth.

Always check the mesh quality. Remember, one single cell can cause divergence or give you
inaccurate results.

When you strive for quality, you avoid the GIGO syndrome (garbage in, garbage out).
Just to end for good the mesh quality talk:
A good mesh is a mesh that serves your project objectives.

« S0, as long as your results are physically realistic, reliable and accurate; your mesh is
good.

« Know your physics and generate a mesh able to resolve the physics involve, without
over-doing.
316

What is a good mesh?

A good mesh might not lead to the ideal solution, but a bad
mesh will always lead to a bad solution.
P. Baker — Pointwise

Who owns the mesh, owns the solution.
H. Jasak — Wikki Ltd.

Avoid the GIGO syndrome (Garbage In — Garbage Out).
As | am a really positive guy | prefer to say,
good mesh — good results.

J.G.-WD

317

| Meshi liminari
3. Mesh quality assessment in OpenFOAM®

318

Mesh quality assessment in OpenFOAM®

Mesh quality metrics in OpenFOAM®

* Inthefile primitiveMeshCheck.C located in the directory
$WM_PROJECT DIR/src/OpenFOAM/meshes/primitiveMesh/primitiveMeshCheck/ you will find the
quality metrics hardwired in OpenFOAM®. Their maximum (or minimum) values are defined as follows:

36 Foam: :scalar Foam: :primitiveMesh: :closedThreshold = 1.0e-6;

37 Foam: :scalar Foam: :primitiveMesh::aspectThreshold = 1000;

38 Foam: :scalar Foam: :primitiveMesh::nonOrthThreshold = 70; // deg
39 Foam: :scalar Foam: :primitiveMesh: :skewThreshold _ = 4;

40 Foam: :scalar Foam: :primitiveMesh: :planarCosAngle = 1.0e-6;

* You will be able to run simulations with mesh quality errors such as high skewness, high aspect ratio, and high
non-orthogonality. But remember, they will affect the solution accuracy, might give you strange results, and
eventually can made the solver blow-up.

« Have in mind that if you have bad quality meshes, you will need to adapt the numerics to deal with this kind of
meshes. We will give you our recipe later when we deal with the numerics.

* You should avoid as much as possible non-orthogonality values close to 90. This is an indication that you have
zero-volume cells.

* Inoverall, large aspect ratios do not represent a problem. It is just an indication that you have very fine
meshes (which is the case when you are resolving the boundary layer).

» The default quality metrics in OpenFOAM® seems to be a little bit conservative. In our experience, we have
found that you can run simulations with no numerical tricks with a non-orthogonality values up to 80 and
skewness values up to 8. 319

Mesh quality assessment in OpenFOAM®

Checking the mesh quality in OpenFOAM®

To check the mesh quality and validity, OpenFOAM® comes with the utility checkMesh.
To use this utility, just type in the terminal checkMesh, and read the screen output.
checkMesh will look for/check for:

» Mesh stats and overall number of cells of each type.

» Check topology (boundary conditions definitions).

» Check geometry and mesh quality (bounding box, cell volumes, skewness, orthogonality, aspect
ratio, and so on).

If for any reason checkMesh finds errors, it will give you a message and it will tell you what check failed.
It will also write a set with the faulty cells, faces, and/or points.

These sets are saved in the directory constant/polyMesh/sets/

Mesh topology and patch topology errors must be repaired.

You will be able to run with mesh quality errors such as skewness, aspect ratio, minimum face area, and non-
orthogonality.

But remember, they will severely tamper the solution accuracy, might give you strange results, and eventually
can made the solver blow-up.

Unfortunately, checkMesh does not repair these errors.
You will need to check the geometry for possible errors and generate a new mesh.
You can visualize the failed sets directly in paraFoam.

You can also convert the failed sets into VTK format by using the utility foamToVTK.
320

Mesh quality assessment in OpenFOAM®

Visualizing the failed sets in OpenFOAM®

You can load the failed sets directly within
paraFoam.

Remember, you will need to create the sets. To
do so, just run the checkMesh utility.

If there are problems in the mesh, checkMesh

will automatically save the sets in the directory
constant/polyMesh/sets

In paraFoam, simply select the option Include
Sets and then select the sets you want to
visualize.

This method only works when using the wrapper
paraFoam.

If you are using paraview or a different scientific
visualization application, you will need to convert
the failed sets to VTK format or an alternative
format.

Also, when working with large meshes we prefer
to convert the faulty sets to VTK format.

To convert the faulty sets to VTK format you can
use the utility foamToVTK.

Check this box to include sets

selaction /

(M| Include sets

(W] Include Zones

[] Groups Only

(@] Mesh Parts ©)
[] FUSELAGE - wall

[] INLET - patch

[] NOSE - wall

[] OUTLET - patch

[] syMMm - wall

[] WING - wall

|:| int_CREATED_MATERIAL_1 - faceZone

(W] internalMesh

[] wall - group

(M| nonOrthoFaces - facesSet

(W] unusedPoints - pointSet

!

Failed sets

321

Mesh quality assessment in OpenFOAM®
Visualizing the failed sets in OpenFOAM®

To convert the failed faces/cells/points to VTK format, you can proceed as follows:

$> foamToVTK -set type name of sets

where set_type is the type of sets (faceSet, cellSet, pointSet, surfaceFields) and
name_of_sets is the name of the set located in the directory

constant/polyMesh/sets (highAspectRatioCells, nonOrthoFaces,
wrongOrientedFaces, skewFaces, unusedPoints, and so on).

At the end, foamToVTK will create a directory named VTK, where you will find the
failed faces/cells/points in VTK format.

At this point you can use paraview/paraFoam or any scientific visualization
application to open the VTK files and visualize the failed sets.

322

Mesh quality assessment in OpenFOAM®

Checking mesh quality in OpenFOAM®

Sample checkMesh output,

Mesh stats

points: 81812

faces: 902132

internal faces: 871012

cells: 443286

faces per cell: 4 - < Mesh stats
boundary patches: 9

point zones: 0

face zones: 1

cell zones: 1

Overall number of cells of each type:
hexahedra: 0 h
prisms:
wedges:
pyramids:
tet wedges:
tetrahedra:
polyhedra:

Number of each type of cells
43286

omoooo
J
A

Checking topology. ..
Boundary definition OK. < Checking mesh topology
Cell to face addressing OK.
***Unused points found in the mesh, number unused by faces: 16 number unused by cells: 16
<<Writing 16 unused points to set unusedPoints
Upper triangular ordering OK.

Face vertices OK. U d poi f din th h
Number of regions: 1 (OK). nused points found in the mes

In this case they do not harm the solution
They can be removed using topoSet and subsetMesh

23

Mesh quality assessment in OpenFOAM®

Checking mesh quality in OpenFOAM®

Sample checkMesh output,

Checking patch topology for multiply connected surfaces...

Patch Faces Points Surface topology -

FAIRING 1267 727 ok (non-closed singly connected)

FUSELAGE 3243 1774 ok (non-closed singly connected)

WING 15313 7706 ok (non-closed singly connected)

INLET 272 160 ok (non-closed singly connected)

OUTLET 272 160 ok (non-closed singly connected) p= = Boundary patches
SYMM 6280 3324 ok (non-closed singly connected)

FARFIELD 3136 1645 ok (non-closed singly connected)

NOSE 76 49 ok (non-closed singly connected)

COCKPIT 1261 670 ok (non-closed singly connected)

Checking geometry. ..
Overall domain bounding box (-15000 -7621.0713 -7396.4536) (30048.969 0 7446.8442)
Mesh has 3 geometric (non-empty/wedge) directions (1 1 1) “ki“s\\\
Mesh has 3 solution (non-empty) directions (1 1 1)
Boundary openness (-4.2298633e-18 8.0240802e-16 4.013988e-16) OK.
Max cell openness = 4.8098963e-16 OK.
Max aspect ratio = 29.575835 OK. ¢ Aspect ratio
Minimum face area = 0.0066721253. Maximum face area = 1037224.8. Face area magnitudes OK.

Mesh bounding box

Min volume = 0.00050536842. Max volume = 3.2500889e+08. Total volume = 5.0960139%e+12. Cell volumes OK.

Mesh non-orthogonality Max: 86.939754 average: 17.939523 44— High non-orthogonality
*Number of severely non-orthogonal (> 70 degrees) faces: 3168. But we still can run the simulation
Non-orthogonality check OK.
<<Writing 3168 non-orthogonal faces to set nonOrthoFaces
Face pyramids OK.
Max skewness = 2.5719979 OK. ¢ Skewness
Coupled point location match (average 0) OK.

Failed 1 mesh checks. €= The fact that one check failed does not mean that you can not run the simulation

End

24

Mesh quality assessment in OpenFOAM®

Visualization of faulty sets in paraFoam

* You will find this case ready to use in the directory,
$PTOFC/mesh quality manipulation/M1l_ wingbody

* To run the case, just follow the instructions in the README . FIRST files.

Non orthogonal faces (green spheres) and unused points (yellow spheres) 325

| Meoshi liminari
2 Mes] li in O EOAME

4. Mesh generation using blockMesh.

326

Mesh generation using blockMesh

blockMesh

“blockMesh is a multi-block mesh generator.”
For simple geometries, the mesh generation utility blockMesh can be used.

The mesh is generated from a dictionary file named blockMeshDict
located in the system directory.

This meshing tool generates high quality meshes.

It is the tool to use for very simple geometries. As the complexity of the
geometry increases, the effort and time required to setup the dictionary
increases a lot.

Usually, the background mesh used with snappyHexMesh consist of a
single rectangular block; therefore, bl ockMesh can be used with no

problem.

It is highly recommended to create a template of the dictionary
blockMeshDict that you can change according to the dimensions of your

domain.
You can also use m4 or Python scripting to automate the whole process.

328

blockMesh

o)
=
"
S
-
O

blockMesh

These are a few meshes that you can generate using bl ockMesh.

Mesh generat

However, generating the blocking topology requires some effort.

As you can see, they are not very complex.

Mesh generation using blockMesh

blockMesh workflow

Vv
0
1

2
3
4
5
6
7

ERTICES
000
100

O = =200 =

-_ et OO = -
O N N = N =)

BLOCK (HEX)
01234567

FACES

3762
1540
0473
2651
0321
4567

- WN=O

FACE INDEX IS NOT
IMPORTANT

To generate a mesh with b1 ockMesh, you will need to define the vertices, block

connectivity and number of cells in each direction.

To assign boundary patches, you will need to define the faces connectivity

329

blockMesh guided tutorials

* Meshing with blockMesh — Case 1.
« We will use the square cavity case.
* You will find this case in the directory:

SPTOFC/101BLOCKMESH/C1

In the case directory, you will find the README . FIRST file. In this file, you will find the general instructions of
how to run the case. In this file, you might also find some additional comments.

You will also find a few additional files (or scripts) with the extension .sh, namely, run all.sh,
run mesh.sh, run sampling.sh, run solver.sh, and soon. These files can be used to run the case

automatically by typing in the terminal, for example, sh run solver.

We highly recommend you to open the README . FIRST file and type the commands in the terminal, in this
way, you will get used with the command line interface and OpenFOAM® commands.

If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases.

330

blockMesh guided tutorials

What are we going to do?
* We will use this simple case to take a close look at a b1ockMeshDict dictionary.

« We will study all sections in the b1ockMeshDict dictionary.

« We will introduce two features useful for parameterization, namely, macro syntax and
inline calculations.

* You can use this dictionary as a bl1ockMeshDict template that you can change
automatically according to the dimensions of your domain and the desired cell
spacing.

331

blockMesh guided tutorials

3] The blockMeshDict dictionary.

* The keyword convertToMeters (line 17), is a scaling

17 convertloMeters 1; < factor. In this case we do not scale the dimensions.
e + Inlines 19-24 we declare some variables using macro
2L o O < syntax notation. With macro syntax, we first declare the
22 ymax 1; . . .
23 zmin 0; variables and their values (lines 19-24), and then we can
L mmex use the variables by adding the symbol $ to the variable
30 deltax 0-05:} name (lines 47-54).
31 deltay 0.05; <«
S el 00y + Inlines 30-32 we use macro syntax to declare another
34 1x #eale "$xmax - $xmin"; set of variables that will be used later.
35 ly #calc "$ymax - S$ymin";
o5 iz Heale Temmax - Smmin®y « Macro syntax is a very convenient way to parameterize
38 xcells #calc "round(($1x)/ ($deltax))"; dictionaries_
39 ycells #calc "round(($ly)/ ($deltay))";
40 zcells #calc "round(($1z)/ ($deltaz))";
41
44 vertices 2
45 (
46 //BLOCK 0 3
47 ($xmin $ymin $zmin) //0 T 9 6
48 ($xmax $ymin $zmin) //1 1
49 ($xmax S$Symax $zmin) //2 7
50 ($xmin $ymax $zmin) //3 L < D/
51 ($xmin $ymin $zmax) //4
52 ($xmax $ymin $zmax) //5
53 ($xmax $ymax $zmax) //6 1
54 ($xmin $ymax $zmax) //7 -
66 M Y //

X 0 ;

5
4

4
332

blockMesh guided tutorials

3] The blockMeshDict dictionary.

* Inlines 34-40 we are doing inline calculations using the
17 convertToMeters 1; d|reCt|Ve #calc
18
e min 2 * Basically we are programming directly in the dictionary.
e OpenFOAM® will compile this function as it reads it.

ymax 1;
el « With inline calculations and codeStream you can access
2s many OpenFOAM® functions from the dictionaries.
30 deltax 0.05;
31 delt 0.05; . . .
> qeltes 0 05, + Inline calculations and codeStream are very convenient
33 , ways to parameterize dictionaries and program directly
34 1x #calc "$xmax - $xmin"; .. i
35 ly #calc "Symax - Symin"; on the dictionaries.
36 1z #calc "$zmax - $zmin";
& <4+
38 xcells #calc "round(($1lx)/(Sdeltax))";
39 ycells #calc "round(($ly)/($Sdeltay))";
40 zcells #calc "round(($1z)/ ($deltaz))";
41
44 vertices 2
45 (
46 //BLOCK 0 3
47 ($xmin $ymin $zmin) //0 ﬁ 6
48 ($xmax $ymin $zmin) //1 1
49 ($xmax S$Symax $zmin) //2 7
50 ($xmin $ymax $zmin) //3 D/
51 ($xmin $ymin $zmax) //4
52 ($xmax $ymin $zmax) //5
53 ($xmax $ymax $zmax) //6 1
54 ($xmin $ymax $zmax) //7
66 M Y //
[
X 0 :
z

4
333

blockMesh guided tutorials

3] The blockMeshDict dictionary.

* To doinline calculations using the directive #calc, we
17 convertToMeters 1; proceed as follows (we will use line 35 as example):
19 xmin 0;
20 xmax 1;
21 ymin 0; " .
22 ymax 1; ly #calc "$ymax - $ymin";
23 zmin O;
24 zmax 1;
25
30 deltax 0.05; . . .
31 deltay 0.05; * We first give a name to the new variable (ly), we then tell
o aelrem 008 OpenFOAM® that we want to do an inline calculation
34 1x fealc ":max - :xmin": > (#calc), and then we do the inline calculation ("$ymax-
85 ly #calc " X - in"; T . .
S) S iy $ymin™;). Notice that the operation must be between
37 1
38 xcells #calc "round(($1lx)/(Sdeltax))"; dOUbIe qUOtatlon marks'
39 ycells #calc "round(($ly)/($Sdeltay))";
40 zcells #calc "round(($1z)/ ($deltaz))";
41
44 vertices 2
45 (
46 //BLOCK 0 3
47 ($xmin $ymin $zmin) //0 1 6
48 ($xmax $ymin $zmin) //1 1
49 ($xmax S$Symax $zmin) //2 7
50 ($xmin $ymax $zmin) //3 D/
51 ($xmin $ymin $zmax) //4
52 ($xmax $ymin $zmax) //5
53 ($xmax $ymax $zmax) //6 1
54 ($xmin $ymax $zmax) //7
66 M Y //
X 0 ;
5
V4

4
334

blockMesh guided tutorials

3] The blockMeshDict dictionary.

17
18
19
20
21
22
23
24
25
30
31
32
33
34
S5
36
37
38
39
40
41
44
45
46
47
48
49
50
51
52
53
54
66

convertToMeters 1;

xmin
Xmax
ymin
ymax
zmin
zmax

HORKRrOHRLRO
Ne Ne Ne Ne Ne o N.

deltax 0.05;
deltay 0.05; 44—
05;

deltaz 0.

1x #calc "$xmax - $xmin";
ly #calc "$ymax - Symin"; 4_

1z #calc "$zmax — $zmin";

xcells #calc "round(($1lx)/(Sdeltax))";
ycells #calc "round(($ly)/ ($deltay))";
zcells #calc "round(($1z)/ ($deltaz))";

vertices

(

//BLOCK 0
($xmin $ymin $zmin) //0
($xmax $ymin $zmin) //1
($xmax S$Symax $zmin) //2
($xmin $ymax $zmin) //3
($xmin $ymin $zmax) //4
($xmax $ymin $zmax) //5
($xmax S$ymax $zmax) //6
($xmin S$Symax $zmax) //17

]—4—

In lines lines 34-36, we use inline calculations to
compute the length in each direction.

Then we compute the number of cells to be used in each
direction (lines 38-40).

To compute the number of cells we use as cell spacing
the values declared in lines 30-32.

By proceeding in this way, we can compute automatically
the number of cells needed in each direction according to
the desired cell spacing.

\

\.

Y ———

0 b

(5]

4
335

blockMesh guided tutorials

3] The blockMeshDict dictionary.

* In the vertices section (lines 44-66), we define the vertex
17 convertfoMeters 1; coordinates of the geometry.
e m « In this case, there are eight vertices defining a 3D block.
21 ymin 0;
22 ymax 1; *+ Remember, OpenFOAM® always uses 3D meshes, even
el if the simulation is 2D. For 2D meshes, you only add one
25 cell in the third dimension.
30 deltax 0.05;
31 del 0.05; . .
e ee + Notice that the vertex numbering starts from 0 (as the
33 , counters in c++). This numbering applies for blocks as
34 1x #calc "$xmax - $xmin";
35 ly #calc "$ymax - Symin"; We”
36 1z #calc "$zmax — $zmin";
37
38 xcells #calc "round(($1lx)/(Sdeltax))";
39 ycells #calc "round(($ly)/($Sdeltay))";
40 zcells #calc "round(($1z)/ ($deltaz))";
41
44 vertices = 2
45 (
46 //BLOCK 0 3
47 ($xmin $ymin $zmin) //0 1 6
48 ($xmax $ymin $zmin) //1 1
49 ($xmax S$Symax $zmin) //2 ' 7
50 ($xmin $ymax $zmin) //3 = D/
51 ($xmin $ymin $zmax) //4
52 ($xmax $ymin $zmax) //5
53 ($xmax $ymax $zmax) //6 1
54 ($xmin $ymax $zmax) //7
66 M - Y //

[
X 0 :
z

4
336

blockMesh guided tutorials

3] The blockMeshDict dictionary.

In lines 68-71, we define the block topology, hex means that it is a structured hexahedral block. In this case,
we are generating a rectangular mesh.

Inline 70, (0123 45 6 7) are the vertices used to define the block (and yes, the order is important). Each
hex block is defined by eight vertices, in sequential order. Where the first vertex in the list represents the
origin of the coordinate system (vertex 0 in this case).

($xcells $ycells $zcells) is the number of mesh cells in each direction (X Y Z). Notice that we are using
macro syntax, and we compute the values using inline calculations.

simpleGrading (1 1 1) is the grading or mesh stretching in each direction (XY Z), in this case the mesh is
uniform. We will deal with mesh grading/stretching in the next case.

2

3
68 blocks 1 3
69 (7

6
70 hex (0 1 2 345 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1) /
71)
72
73 edges
74 (1
75 v _——
76 r /

<
5
z

337

blockMesh guided tutorials

3] The blockMeshDict dictionary.

Let us talk about the block ordering hex (0 12 3 4 5 6 7), which is extremely important.

hex blocks are defined by eight vertices in sequential order. Where the first vertex in the list represents the
origin of the coordinate system (vertex 0 in this case).

Starting from this vertex, we construct the block topology. So in this case, the first part of the block is made up
by vertices 0 1 2 3 and the second part of the block is made up by vertices 4 5 6 7 (notice that we start from
vertex 4 which is the projection in the Z-direction of vertex 0).

In this case, the vertices are ordered in such a way that if we look at the screen/paper (-z direction), the
vertices rotate counter-clockwise.

If you add a second block, you must identify the first vertex and starting from it, you should construct the block
topology. In this case, you will need to merges faces, you will find more information about merging face in the
supplement lectures.

2

3

1 6
68 blocks 3
69 (7

70 hex (0 1 2 345 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1) /
71)
72
73 edges
74 (1
75 Y /
76); —
<
% X 0 b
5
z

338

blockMesh guided tutorials

3] The blockMeshDict dictionary.

Edges, are constructed from the vertices definition.

Each edge joining two vertices is assumed to be straight by default.

The user can specify any edge to be curved by entries in the section edges.
Possible options are Bspline, arc, line, polyline, project, projectCurve, spline.

For example, to define an arc we first define the vertices to be connected to form an edge and then we give an
interpolation point.

To define a polyline we first define the vertices to be connected to form an edge and then we give a list of the
coordinates of the interpolation points.

In this case and as we do not specify anything, all edges are assumed to be straight lines.

2

3
68 blocks ﬁ 3
69 (7

6
70 hex (0 1 2 345 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1) /
71)
72
73 edges
74 (1
75 v _——
76 r /

<
5
z

339

blockMesh guided tutorials

3] The blockMeshDict dictionary.

* In the section boundary, we define all the patches where
i r:oundary < we want to apply boundary conditions.
o et « This step is of paramount importance, because if we do
o2 tupe wall; not define the surface patches, we will not be able to
aces g . P

84 (apply the boundary conditions to individual surface
85 (37 6 2)
86); patches.
87 }
88 left
89 {
90 type wall;
91 faces
92 (
93 (0 47 3)
94)
95 }
96 right
97 {
98 type wall;
99 faces 2
100 (
101 (2 6 5 1) 3
102); 1 °
103 } '
104 bottom 7
105 { —
106 type wall;
107 faces
108 (1
109 (0 1 5 4)
110) ; Y //
111 })

% X 0 b

5
z

340

blockMesh guided tutorials

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

boundary

(

top
{
type wall;
faces
(
(37 6 2)
)
}
left
{
type wall;
faces
(
(0 4 7 3)
)
}
right
{
type wall;
faces
(
(2 6 5 1)
)
}
bottom
{
type wall;
faces
(
(0 1 5 4)
)
}

3] The blockMeshDict dictionary.

In lines 80-87 we define a boundary patch.

In line 80 we define the patch name top (the name is
given by the user).

In line 82 we give a base type to the surface patch. In
this case wall (do not worry we are going to talk about
this later).

In line 85 we give the connectivity list of the vertices that
made up the surface patch or face, that is, (3 7 6 2).

Have in mind that the vertices need to be neighbors and
it does not matter if the ordering is clockwise or
counterclockwise.

2

3
* '
7

_—

|

N %
oa
a O

341

blockMesh guided tutorials

3] The blockMeshDict dictionary.

* Have in mind that the vertices need to be neighbors and
78 lzoundary it does not matter if the ordering is clockwise or
80 top counterclockwise.
81 {
o type well; * Remember, faces are defined by a list of 4 vertex

aces
84 (numbers, e.g., (37 6 2).
85 (37 6 2)
- })i * Inlines 88-95 we define the patch left.
o teft * Inlines 96-103 we define the patch right.
90 type wall; . .
91 faces - — * Inlines 104-11 we define the patch bottom.
92 (
93 (0 47 3)
94)
95 } -
96 right =
97 {
98 type wall;
99 faces < 2
100 (-
101 (2 6 5 1) 3
102); 1 6
103 } - 1
104 bottom = 7
105 { —
106 type wall;
107 faces
108 (- < .
109 (0 1 5 4)
110) ; Y //
111 } = ¢
0 b
% X E
4

342

blockMesh guided tutorials

3] The blockMeshDict dictionary.

* Inlines 112-119 we define the patch front.
112 front =
113 { * Inlines 120-127 we define the patch back.
114 type wall;
iy f(aces - —— * You can also group many faces into one patch, for
117 (4567 example, instead of creating the patches front and back,
e) i you can group them into a single patch named
120 *{mk 7 backAndFront, as follows,
122 type wall;
123 faces - 4_
124 (
105 O backAndFront
126) {
iiZ); : = type wall;
129 faces
130 mergePatchPairs (
131 (
132 (4567) X
133); (0321)
); 3
6
} * .
7/
1
Y //
% X 0 L
5
z

343

blockMesh guided tutorials

3] The blockMeshDict dictionary.

* We can merge blocks in the section mergePatchPairs

ﬂi front (Iines 130-1 33)

iie P wall; * The block patches to be merged must be first defined in
116 (the boundary list, b1 ockMesh then connect the two
117 (456 7)

118); blocks.

119 }

120 pack * Inthis case, as we have one single block there is no
122 type wall; need to merge patches.

123 faces

124 (

125 (0 321)

126)

127 }

128)

129

130 mergePatChPairs —«m—

131 (

132

133) 2

o

3
ﬁ p
7

\

\.

N %
oa
a O

344

blockMesh guided tutorials

3] The blockMeshDict dictionary.

* Tosumup, the blockMeshDict dictionary
generates a single block with:

« X/Y/Z dimensions: 1.0/1.0/1.0

* As the cell spacing in all directions is
defined as 0.05, it will use the following
number of cells in the X, Y and Z directions:
20 x 20 x 20 cells.

0.8

Y‘AX i

* One single hex block with straight lines.

« Six patches of base type wall, namely, left,
right, top, bottom, front and back.

« The information regarding the patch base type
and patch name is saved in the file boundary.

Feel free to modify this file to fit your needs.

« Remember to use the utility checkMesh to check
the quality of the mesh and look for topological
errors.

» Topological errors must be repaired.

345

blockMesh guided tutorials

) The constant/polyMesh/boundary dictionary

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
B2
DS
54
5
56
57
58
59
60
61
62

type
inGroups
nFaces
startFace

type
inGroups
nFaces
startFace

type
inGroups
nFaces
startFace

bottom

type
inGroups
nFaces
startFace

type
inGroups
nFaces
startFace

type
inGroups
nFaces
startFace

wall;

1(wall);

400;
22800;

wall;

1(wall);

400;
23200;

empty;

1(wall);

400;
23600;

wall;

1(wall);

400;
24000;

wall;

1(wall);

400;
24400;

empty;

1(wall);

400;
24800;

First of all, this file is automatically generated after you
create the mesh or you convert it from a third-party format.

In this file, the geometrical information related to the base
type patch of each boundary of the domain is specified.

The base type boundary condition is the actual surface
patch where we are going to apply a primitive type
boundary condition (or numerical boundary condition).

The primitive type boundary condition assign a field value
to the surface patch.

You define the numerical type patch (or the value of the
boundary condition), in the directory 0 or time directories.

The name and base type of the patches was defined in the
dictionary blockMeshDict in the section boundary.

You can change the name if you do not like it. Do not use
strange symbols or white spaces.

You can also change the base type. Forinstance, you can
change the type of the patch top from wall to patch.

346

blockMesh guided tutorials

) The constant/polyMesh/boundary dictionary

oo + If you do not define the boundary patches in the dictionary
20 top blockMeshDict, they are grouped automatically in a default
21 {

22 type wall; group named defaultFaces of type empty.

23 inGroups 1(wall);

24 nFaces 400; ° 1 H 1

. D trace 29500 For instance, if you do not assign a base type to the patch
26 } front, it will be grouped as follows:

27 left

28 {

29 type wall;

30 inGroups 1(wall);

31 — 400; defaultFaces

32 startFace 23200; {

88 } type empty;

34 right inGroups 1 (empty) ;

:2 ! 550 s nFaces 400;

37 inGroups 1 (wall) ; startFace 24800;

38 nFaces 400; }

39 startFace 23600;

40 }

41 bottom

i ‘ type wall; « Remember, you can manually change the name and type.
44 inGroups 1(wall);

45 nFaces 400;

46 startFace 24000;

47 }

48 front

49 {

50 type wall;

51 inGroups 1(wall);

52 nFaces 400;

53 startFace 24400;

54 }

55 back

56 {

57 type empty;

58 inGroups 1(wall);

59 nFaces 400;

60 startFace 24800;

61 }

62) 347

blockMesh guided tutorials

) The constant/polyMesh/boundary dictionary

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
DS
54
55
5E
57
58
59
60
61
62

6 <
(

top

{
type wall;
inGroups 1(wall);
nFaces 400;
startFace 22800;

}

left

{
type wall;
inGroups 1(wall) ;
nFaces 400;
startFace 23200;

}

right

{
type empty;
inGroups 1(wall) ;
nFaces 400;
startFace 23600;

}

bottom

{
type wall;
inGroups 1(wall) ;
nFaces 400;
startFace 24000;

}

front

{
type wall;
inGroups 1(wall) ;
nFaces 400;
startFace 24400;

}

back

{
type empty;
inGroups 1(wall) ;
nFaces 400;
startFace 24800;

Number of surface patches

In the list bellow there must be 6 patches

definition.
top
back

\\
left ——e—pp right

w front

s
bottom

348

blockMesh guided tutorials

) The constant/polyMesh/boundary dictionary

18 6

19 (

20 top 4

21 {

22 type wall;, <«¢ Name and type of the surface patches

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 22800; . .

26 } < « The name and base type of the patch is given

o i by the user.

29 type wall; 4 .

20 inGzoups S * In this case the name and base type was
nkaces 7

32 startFace 23200; assigned in the dictionary b1ockMeshDict.

33 }

i Tene < » You can change the name if you do not like it.

36 type wall; < Do not use strange symbols or white spaces.

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 23600; * You can also change the base type. For

a L instance, you can change the type of the

42 {

o type wail; < patch top from wall to patch.

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 24000;

47

48 front 4

49 {

50 type wall; 4

51 inGroups 1(wall);

52 nFaces 400;

55 startFace 24400;

54 }

55 back 4

56 {

57 type wall;

58 inGroups 1(wall);

59 nFaces 400;

60 startFace 24800;

61 }

62) 349

blockMesh guided tutorials

) The constant/polyMesh/boundary dictionary

18 6

19 (

20 top

21 { .

22 type wall; inGroups keyword

23 inGroups 1(wall); <

24 nFaces 400;

25 tartF: 22800; .. .

26 o * This is optional.

27 left

o8 ; . . .

oo type wall; « You can erase this information safely.

30 inGroups 1(wall);)
31 nFaces 400; « ltis used to group patches during visualization
32 startFace 23200; . . .

33 } in ParaView/paraFoam. [f you open this mesh
i Tane in paraFoam you will see that there are two
36 t 11; .

> P o il € groups, namely: wall and empty.

38 nFaces 400;

39 startFace 23600; * As usual, you can change the name.

40 }

s P » If you want to put a surface patch in two

43 type wall; -

. SRS s o, groups, you can proceed as follows:

45 F 400;

a6 startrace 24000; 2(wall wall1)

47 }

ie ot In this case the surface patch belongs to the
50 type wall; group wall (which can have another patch)
51 inGroups 1(wall); 4

52 nFaces 400; and the group Wa"1

55 startFace 24400;

54 }

55 back

56 {

57 type wall;

58 inGroups 1(wall); 4

59 nFaces 400;

60 startFace 24800;

61 }

62) 350

blockMesh guided tutorials

) The constant/polyMesh/boundary dictionary

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
DS
54
55
5E
57
58
59
60
61
62

top

right
{

}

type
inGroups
nFaces
startFace

type
inGroups
nFaces
startFace

type
inGroups
nFaces
startFace

bottom

{

}

front

type
inGroups
nFaces
startFace

type
inGroups
nFaces
startFace

type
inGroups
nFaces
startFace

wall;

1(wall) ;

400;
22800;

wall;

1(wall) ;

400;
23200;

wall;

1(wall) ;

400;
23600;

wall;

1(wall) ;

400;
24000;

wall;

1(wall) ;

400;
24400;

wall;

1(wall) ;

400;
24800;

nFaces and startFace keywords

* Unless you know what are you doing, you do

not need to change this information.

» Basically, this is telling you the starting face

and ending face of the patch.

» This information is created automatically when

generating the mesh or converting the mesh.

351

blockMesh guided tutorials

Running the case

To generate the mesh, in the terminal window type:

S> foamCleanTutorials
S> blockMesh
S> checkMesh

B w b~

$> paraFoam

If you want to visualize the blocking topology, type in the terminal

1. | $> paraFoam -block

You can run the rest of the cases following the same steps.

\b

352

blockMesh guided tutorials

Final remarks on blockMesh

For the moment, we will limit the use of bl1ockMesh to single-block mesh topologies, which are
used to run some simple cases and are the starting point for snappyHexMesh.

But have in mind that you can do more elaborated meshes, however, it requires careful setup of
the input dictionary.

Have in mind that it can be really tricky to generate multi-block meshes with curve edges.

With the training material, you will find a set of supplement slides where we explain how to
create multi-block meshes, add stretching, and how to define curve edges.

¥
o

Single-block mesh with multi-stretching Multi-block mesh with curved edges and Multi-block mesh with face merging
multi-stretching

353

| Meoshi liminari
2 Mesl li in O EOAME

5. Mesh generation using snappyHexMesh.

354

Mesh generation using snhappyHexMesh

shappyHexMesh

“Automatic split hex mesher. Refines and snaps to surface.”
For complex geometries, the mesh generation utility snappyHexMesh can be used.

The snappyHexMesh utility generates 3D meshes containing hexahedra and split-
hexahedra from a triangulated surface geometry in Stereolithography (STL) format.

The mesh is generated from a dictionary file named snappyHexMeshDict located in

the system directory and a triangulated surface geometry file located in the directory
constant/triSurface.

I I

|

REEN

INEEN

[

355

Mesh generation using snhappyHexMesh

snappyHexMesh workflow

« To generate a mesh with snappyHexMesh we proceed as follows:

Generation of a background or base mesh.

Geometry definition.

Generation of a castellated mesh or cartesian mesh.

Generation of a snapped mesh or body fitted mesh.

Addition of layers close to the surfaces or boundary layer meshing.
Check/enforce mesh quality.

blockMesh or external mesher

> Background mesh Geometry (STL file) << '

-

OpenFOAM mesh

356

Mesh generation using snhappyHexMesh

snappyHexMesh workflow — Background mesh

The background or base mesh can be generated using blockMesh or an
external mesher.

The following criteria must be observed when creating the background
mesh:

* The mesh must consist purely of hexes.
* The cell aspect ratio should be approximately 1, at least near the

STL surface.
» There must be at least one intersection of a cell edge with the
STL surface.
blockMesh or external mesher
—> Background mesh Geometry (STL file)

!

OpenFOAM mesh

357

Mesh generation using snhappyHexMesh

snappyHexMesh workflow — Geometry (STL file)
« The STL geometry can be obtained from any geometry modeling tool.

« The STL file can be made up of a single surface describing the geometry, or
multiple surfaces that describe the geometry.

* Inthe case of a STL file with multiple surfaces, we can use local refinement

in each individual surface. This gives us more control when generating the
mesh.

« The STL geometry is always located in the directory
constant/triSurface

blockMesh or external mesher

Background mesh Geometry (STL file) 4— d ’

!

OpenFOAM mesh

358

Mesh generation using snhappyHexMesh

snappyHexMesh workflow

 The meshing utility snappyHexMesh reads the dictionary
snappyHexMeshDict located in the directory system.

* The castellation, snapping, and boundary layer meshing steps are controlled
by the dictionary snappyHexMeshDict.

« The final mesh is always located in the directory
constant/polyMesh

blockMesh or external mesher

Background mesh Geometry (STL file)

e S

OpenFOAM mesh

359

Mesh generation using snhappyHexMesh

snappyHexMesh workflow

 All the volume and surface refinement is done in reference to the
background or base mesh.

< >
A > > » andsoon...
Base cell - RL 0 RL 1 RL 2
* RL = refinement level A
\ Edge size = ES = —
\ mn
X 2
A\
Note:
In 2D each quad is subdivided in 4
quads.
In 3D each hex is subdivided in 8
hexes.

360

Mesh generation using snhappyHexMesh

snappyHexMesh workflow

o
€ K

« The process of generating a mesh using snappyHexMesh will be described using this figure.

* The objective is to mesh a rectangular shaped region (shaded grey in the figure) surrounding an object
described by a STL surface (shaded green in the figure).

» This is an external mesh (e.g. for external aerodynamics).

* You can also generate an internal mesh (e.g. flow inside a pipe). 251

Mesh generation using snhappyHexMesh

snappyHexMesh workflow

Step 1. Creating the background hexahedral mesh

+ Before snappyHexMesh is executed the user must create a background mesh of hexahedral cells that fills the entire region as
shown in the figure. This can be done by using blockMesh or any other mesher.
» The following criteria must be observed when creating the background mesh:
* The mesh must consist purely of hexes.
* The cell aspect ratio should be approximately 1, at least near the STL surface.

» There must be at least one intersection of a cell edge with the STL surface.
362

Mesh generation using snhappyHexMesh

snappyHexMesh workflow

]
|

Step 2. Cell splitting at feature edges

Cell splitting is performed according to the specification supplied by the user in the castellatedMeshControls sub-dictionary in
the snappyHexMeshDict dictionary.

The splitting process begins with cells being selected according to specified edge features as illustrated in the figure.
The feature edges can be extracted from the STL geometry file using the utility surfaceFeatures.

363

Mesh generation using snhappyHexMesh

snappyHexMesh workflow

i

LH

fREE
S o

| Additional internal cells
splitting

Step 3. Cell splitting at surfaces

Following feature edges refinement, cells are selected for splitting in the locality of specified surfaces as illustrated in the figure.
The surface refinement (splitting) is performed according to the specification supplied by the user in the
refinementMeshControls in the castellatedMeshControls sub-dictionary in the snappyHexMeshDict dictionary.

Notice that we added additional internal cells splitting. This new cell region can be used to define a source term, or it can be put
into motion.

364

Mesh generation using snhappyHexMesh

snappyHexMesh workflow

1%,1
+

ST

T T T PET T T

| Additional internal cells
splitting

Step 4. Cell removal

* Once the feature edges and surface splitting is complete, a process of cell removal begins.
« The region in which cells are retained are simply identified by a location point within the region, specified by the locationinMesh
keyword in the castellatedMeshControls sub-dictionary in the snappyHexMeshDict dictionary.

» Cells are retained if, approximately speaking, 50% or more of their volume lies within the region.

365

Mesh generation using snhappyHexMesh

snappyHexMesh workflow

1
Fimmr s [
SIES (.
snanemasiiii 2
mae i L
ui ++:. %éi:
NaziacBzees -
e HH
[111 I___
= A
+ A
o
e e
Rr iian s .
RESEL, i Additional internal cells
EEES splitting

Step 5. Cell splitting in specified regions

Those cells that lie within one or more specified volume regions can be further split by a region (in the figure, the rectangular
region within the red rectangle).

The information related to the refinement of the volume regions is supplied by the user in the refinementRegions block in the
castellatedMeshControls sub-dictionary in the snappyHexMeshDict dictionary.

This is a valid castellated or cartesian mesh that can be used for a simulation.

366

Mesh generation using snhappyHexMesh

snappyHexMesh workflow

citee M
N JH T
i y
__+ l
geroe S
! o
SEEes
€>‘IL 17 [::
I f_ |
= am || —
Zé— A 1] I
5 §§ =
NRS. ui i al Additional internal cells
HH] o splitting

Step 6. Snapping to surfaces

After deleting the cells in the region specified and refining the volume mesh, the points are snapped on the surface to create a
conforming mesh.

The snapping is controlled by the user supplied information in the snapControls sub-dictionary in snappyHexMeshDict.

Sometimes, the default snapControls options are not enough, so you will need to adjust the values to get a better mesh (not
guarantee). It is advisable to save the intermediate steps with a high writing precision (controlDict).

This is a valid snapped or body fitted mesh that can be used for a simulation.
367

Mesh generation using snhappyHexMesh

snappyHexMesh workflow

L LT T
|| il |
e |
i
Wisss
i |
i
ioeé |
e TN
g H- fl Additional internal cells
s | LT‘\Jl | v splitting
iluaris
_F*/] [

Step 7. Mesh layers

The mesh output from the snapping stage it is suitable for simulation, although it can produce some irregular cells along
boundary surfaces.

There is an optional stage of the meshing process which introduces boundary layer meshing in selected parts of the mesh.
This information is supplied by the user in the addLayersControls sub-dictionary in the snappyHexMeshDict dictionary.
This is the final step of the mesh generation process using snappyHexMesh.

This is a valid body fitted mesh with boundary layer meshing, that can be used for a simulation.
368

Mesh generation using snhappyHexMesh

snappyHexMesh in action

www.wolfdynamics.com/wiki/shm/ani.qgif

369

http://www.wolfdynamics.com/wiki/shm/ani.gif

Mesh generation using snhappyHexMesh

* Let us study the snappyHexMesh dictionary in

details.
* We are going to work with the case we just saw In

action.
* You will find this case in the directory:

$PTOFC/101SHM/M101 WD

370

Mesh generation using snhappyHexMesh

Let us explore the snappyHexMeshDict dictionary. =

castellatedMesh true; llor false
snap true; llor false
addLayers true; llor false
Definition of geometry entities
t
?eome v < to be used for meshing
}
¢ Definition of feature, surface
E:astellatedMeshControls and volume mesh refinement
}
Definition of surface mesh
snapControls <= snapping and advanced
{ parameters
* Open the dictionary snappyHexMeshDict with your favorite text
} editor (we will use gedit).
Definition of boundary layer * The snappyHexMesh dictionary is made up of five sections, namely:
addLayersControls €¢———— meshing and advanced geometry, castellatedMeshControls, snapControls,
{ parameters addLayersControls and meshQualityControls. Each section
controls a step of the meshing process.
} * In the first three lines we can turn off and turn on the different
. Definition of mesh qualit meshing steps. For example, if we want to generate a body fitted
EneshQualltyControIs +— metrics quattlty mesh with no boundary layer we should proceed as follows:

castellatedMesh true;
shap true;
} addLayers false; 371

Mesh generation using snhappyHexMesh

Let us explore the snappyHexMeshDict dictionary. =

e fie e « Have in mind that there are more than 70
snap true; llor false .
addLayers true; llor false parameters to control in
snappyHexMeshDict dictionary.
geometry

{ « Adding the fact that there is no native GUI, it
can be quite tricky to control the mesh

} .
generation process.

castellatedMeshControls

{
* Nevertheless, snappyHexMesh generates

, very good hexa dominant meshes.

snapControls .
{ » Hereafter, we will only comment on the most
important parameters.

}

addLayersControls

* The parameters that you will find in the

{ snappyHexMeshDict dictionaries distributed
- with the tutorials, in our opinion are robust and
} will work most of the times.

meshQualityControls
{ \
It can be located In a separated file

} 372

Mesh generation using snhappyHexMesh

Let us explore the snappyHexMeshDict dictionary. =

Geometry controls section
geometry
{
wolfExtruded.stl «¢ STL file to read
{
type triSurfaceMesh;
name wolf; <¢ Name of the surface inside snappyHexMesh
regions «¢ Use this option if you have a STL with multiple patches defined
{
wolflocal < This is the name of the region or surface patch in the STL
{
name wolf_wall; «¢ User-defined patch name. This is the final name of the patch
}
}
}
N £ trical entit * In this section we read in the STL geometry. Remember, the input
?0’(< ame ot geometrical entity geometry is always located in the directory constant/triSurface
type searchableBox; We can also define geometrical entities that can be used to refine the
min (-100.0 -120.0 -50.0); mesh, create regions, or generate baffles.
max (100.0 120.0 150.0);
} - You can add multiple STL files.
?phere < Name of geometrical entlity « If you do not give a name to the surface, it will take the name of the
STL file.
type searchableSphere; <€ Note 1
centre (120.0 -100.0 50.0); + The geometrical entities are created inside snappyHexMesh.
radius 40.0;
} Note 1:
If you want to know what geometrical entities are available, just
} misspelled something in the type keyword.
373

Mesh generation using snhappyHexMesh

Let us explore the snappyHexMeshDict dictionary. =

castellatedMeshControls

{

/IRefinement parameters
maxLocalCells 100000;

maxGlobalCells 2000000; <¢
nCellsBetweenLevels 3;

I[Explicit feature edge refinement

Note 1

features «¢
(

);

[ISurface based refinement

Dictionary block

refinementSurfaces <

{

}

/IRegion-wise refinement
refinementRegions «¢

Dictionary block

{

}

/IMesh selection
locationInMesh (-100.0 0.0 50.0);

<

Dictionary block

Note 2

Castellated mesh controls section

I
+
T + ‘
SN A
aarr s ik
Wi
7777771 T 1 1
+ T i H
N il
e]
£ o
T
|| r+
PR s
man
L
i if
+
HHH

* In the castellatedMeshControls section, we define the global
refinement parameters, explicit feature edge refinement,
surface-based refinement, region-wise refinement and the
material point.

* In this step, we are generating the castellated mesh.

Note 1:
Maximum number of cells in the domain. If the mesher reach this
number, it will not add more cells.

Note 2:
The material point indicates where we want to create the mesh,
that is, inside or outside the body to be meshed. 374

Mesh generation using snhappyHexMesh

Let us explore the snappyHexMeshDict dictionary. =

castellatedMeshControls

{

/I Refinement parameters
maxLocalCells 100000;
maxGlobalCells 2000000;
minRefinementCells 0;
maxLoadUnbalance 0.10;

nCellsBetweenLevels 3; «¢ Note 1

/ILocal curvature and

I[feature angle refinement
resolveFeatureAngle 30; < Note 2

planarAngle 30;

allowFreeStandingZoneFaces true;

/[Explicit feature edge refinement

features <@————— Dictionary block
(
{

file "wolfExtruded.eMesh"; «¢
level 2;

Note 3

Castellated mesh controls section

Note 1:
This parameter controls the transition between cell
refinement levels.

Note 2:

This parameter controls the local curvature refinement. The
higher the value, the less features it captures. For example,
if you use a value of 100 it will not add refinement in high
curvature areas. It also controls edge feature snapping; high
values will not resolve sharp angles in surface intersections.

Note 3:

This file is automatically created when you use the utility
surfaceFeatures. The file is located in the directory
constant/triSurface 375

Mesh generation using snhappyHexMesh

Let us explore the snappyHexMeshDict dictionary. =

Castellated mesh controls section
castellatedMeshControls
{
!
| -k 7~>
/ISurface based refinement EEEES: :,,,, ”E:iiiiii
refinementSurfaces «¢ Dictionary block B fF AL e
{ B + i
=
Ilwolf was defined in the geometry section iﬁ
wolf «¢ Note 1 et Edis
{ S
f
level (1 1); /IGlobal refinement
regions «¢ Note 2
{
\{Nolflocal < Note 3 Note 1:
level (24); < Local refinement The surface wolf was defined in the geometry section.
Note 2:
?atchlnfo The region wolflocal was defined in the geometry section.
I1;
} type wall; ¢ Note 4 Note 3:
} Named region in the STL file. This refinement is local.
} To use the surface refinement in the regions, the local
} regions must exist in STL file. We created a pointer to this
region in the geometry section.
} Note 4:
You can only define patches of type wall or patch. 376

Mesh generation using snhappyHexMesh

Let us explore the snappyHexMeshDict dictionary. =

Castellated mesh controls section
castellatedMeshControls

{
[ISurface based refinement
refinementSurfaces Dictionary block |
{ A7
) }Liiii”ﬁg
T T T Hflt’ HHTH ffffiiiiiii
S
/IThis surface or geometrical entity e
llwas defined in geometry section ET =
sphere «¢ Note 1 S
{ B e
level (1 1); r
Name of faceZone
faceZone face_inner; <« !
cellZone cell_inner; 4— Name of cellZone
cellZonelnside inside; € Create inner cellZone
|
IifaceType internal; < Create internal faces from faceZone
) Uncomment to create the internal faceZone
Note 1:
} Optional specification of what to do with faceZone faces:

internal: keep them as internal faces (default)

baffle: create baffles from them. This gives more freedom in mesh
} motion

boundary: create free-standing boundary faces (baffles but
without the shared points)

e.g., faceType internal; 377

Mesh generation using snhappyHexMesh

Let us explore the snappyHexMeshDict dictionary. =

Castellated mesh controls section
castellatedMeshControls
{
/T
[
P H
/IRegion-wise refinement T T THH ++§# %27#77777
refinementRegions «¢ Dictionary block i‘ : i
{ I IﬂTT::: gaii
EECI
/[This region or geometrical entity o
llwas defined in the geometry section 7 3 ;P[Jr
5 I
box 4 Note 1 +++
{
mode inside;
levels ((11));
}
}
/IMesh selection Note 1:
locationinMesh (-100.0 0.0 50.0); This region or geometrical entity was created in the geometry section.
}
378

Mesh generation using snhappyHexMesh

Let us explore the snappyHexMeshDict dictionary. =

Castellated mesh controls section
castellatedMeshControls
{
/T
+
AT : : + ‘
/IRegion-wise refinement T T THH ++3§@% Hj:,,,iiiii
refinementRegions «¢ Dictionary block j : i
{ I IHTT: gaii
£ o
/[This region or geometrical entity T
llwas defined in the geometry section 7 3 ;P[Jr
i il
box H
{
mode inside;
levels ((11));
}
}
This point defines where do you want the mesh.
Can be internal mesh or external mesh.
/IMesh selection <
locationinMesh (-100.0 0.0 50.0); » If the point is inside the STL it is an internal mesh.
» If the point is inside the background mesh and outside the
} STL it is an external mesh.
At this point we have a valid mesh (cartesian)
379

Mesh generation using snhappyHexMesh

Let us explore the snappyHexMeshDict dictionary. =

snapControls

{

/INumber of patch smoothing iterations
/Ibefore finding correspondence to surface
nSmoothPatch 3;

tolerance 2.0;

/I- Number of mesh displacement relaxation
Iliterations.

nSolvelter 100; <¢=——————— Note 1

/I- Maximum number of shapping relaxation
Iliterations. Should stop before upon
llIreaching a correct mesh.

nRelaxiter 10; ¢ Note 2

I/l Feature snapping

/INumber of feature edge snapping iterations.

nFeatureSnaplter 10; «¢

/IDetect (geometric only) features by
/lsampling the surface (default=false).
implicitFeatureSnap false;

Il Use castellatedMeshControls::features
Il (default = true)
explicitFeatureSnap true;

multiRegionFeatureSnap false;

Note 3

Snap mesh controls section

H
1+

GlIE

Note 1:

The higher the value the better the body fitted mesh. The default value
is 30. If you are having problems with the mesh quality (related to the
shapping step), try to increase this value to 300. Have in mind that this
will increase the meshing time.

Note 2:
Increase this value to improve the quality of the body fitted mesh.

Note 3:
Increase this value to improve the quality of the edge features.

* In this step, we are generating the body fitted mesh. 380

Mesh generation using snhappyHexMesh

Let us explore the snappyHexMeshDict dictionary. =

addLayersControls

{

/IGlobal parameters
relativeSizes true;
expansionRatio 1.2;
finalLayerThickness 0.5;
minThickness 0.01;

layers «¢ Note 1
wolf_wall < Note 2
{

nSurfacelLayers 3;
/ILocal parameters

llexpansionRatio 1.3;
[lfinalLayerThickness 0.3;
/IminThickness 0.1;
}

}

/I Advanced settings

nGrow 0;

featureAngle 130; «¢ Note 3

maxFaceThicknessRatio 0.5;
nSmoothSurfaceNormals 1;
nSmoothThickness 10;
minMedianAxisAngle 90;
maxThicknessToMedialRatio 0.3;
nSmoothNormals 3;
slipFeatureAngle 30;
nRelaxlter 5;
nBufferCellsNoExtrude 0;
nLayerlter 50;

nRelaxedlter 20;

Boundary layer mesh controls section

Empn

Note 1:
In this section we select the patches where we want to add the
layers. We can add multiple patches (if they exist).

Note 2:
This patch was created in the geometry section.

Note 3:
Specification of feature angle above which layers are collapsed
automatically.

* In this step, we are generating the boundary layer mesh.

381

Mesh generation using snhappyHexMesh

Let us explore the snappyHexMeshDict dictionary. =

Mesh quality controls section
meshQualityControls
{
maxNonOrtho 75; «¢ Note 1
maxBoundarySkewness 20; EnmEEE SenEn
] [
maxinternalSkewness 4; «¢ Note 2 EEE Gy
maxConcave 80; 7777:2% HEE
i S
minVol 1E-13; L]
EiEs FATR
/IminTetQuality 1e-15; |]
minTetQuality -1e+30; it Sommm =
i # E“ [3>
minArea -1; A
]
minTwist 0.02;
minDeterminant 0.001; Note 1:
minFaceWeight 0.05; Maximum non-orthogonality angle.
. . . Note 2:
ke G Maximum skewness angle.
LR U= + During the mesh generation process, the mesh quality is continuously
inEl 0.5: monitored.
minFlatness 0.5; + The mesher snappyHexMesh will try to generate a mesh using the
. mesh quality parameters defined by the user.
nSmoothScaled; + If a mesh motion or topology change introduces a poor quality cell or
. . face the motion or topology change is undone to revert the mesh back
} IR G LEIET W to a previously valid error free state.
382

Mesh generation using snhappyHexMesh

Let us explore the snappyHexMeshDict dictionary. =

Mesh debug and write controls sections
debugFlags

(

I/l write intermediate meshes
mesh

Il write current mesh intersections as .obj files B ‘
intersections &

Il write information about explicit feature edge
Il refinement
featureSeeds

Empn

Il write attraction as .obj files |

attraction H _:‘>
=

Il write information about layers u
layerinfo |

writeFlags
(

Il write volScalarField with cellLevel for » At the end of the dictionary you will find the sections: debugFlags

Il postprocessing and writeFlags

scalarLevels
» By default they are commented. If you uncomment them you will

Il write cellSets, faceSets of faces in layer enable debug information.
layerSets

» debugFlags and writeFlags will produce a lot of outputs that you
Il write volScalarField for layer coverage can use to post process and troubleshoot the different steps of
layerFields the meshing process.

383

Mesh generation using snhappyHexMesh

Let us generate the mesh of the wolf dynamics logo.

* This tutorial is located in the directory:
. $PTOFC/101SHM/M101_WD

* In this case we are going to generate a body fitted mesh with boundary layer. This is an
external mesh.

» Before generating the mesh take a look at the dictionaries and files that will be used.

These are the dictionaries and files that will be used.
e system/snappyHexMeshDict
* system/surfaceFeaturesDict
e system/meshQualityDict
e system/blockMeshDict
e constant/triSurface/wolfExtruded.stl

. constant/triSurface/wolfExtruded.eMesh

« Thefile wolfExtruded.eMesh is generated after using the utility surfaceFeatures, which

reads the dictionary surfaceFeaturesDict.
384

Mesh generation using snhappyHexMesh

Let us generate the mesh of the wolf dynamics logo.

« To generate the mesh, in the terminal window type:

$> foamCleanTutorials

$> blockMesh

$> surfaceFeatures

$> snappyHexMesh

$> checkMesh —-latestTime

a koo bnh -~

* To visualize the mesh, in the terminal window type:

* $> paraFoam

« Remember to use the VCR controls in paraView/paraFoam to visualize the
mesh intermediate steps.

385

Mesh generation using snhappyHexMesh

Let us generate the mesh of the wolf dynamics logo.

In the case directory you will find the time folders 1, 2, and 3, which contain

the castellated mesh, snapped mesh and boundary layer mesh respectively.
In this case, snappyHexMesh automatically saved the intermediate steps.

Before running the simulation, remember to transfer the solution from the
latest mesh to the directory constant/polyMesh, in the terminal type:

$>
$>
S>
$>
$>

a k> o0bdh =

Cp
rm

rm

rm

3/polyMesh/* constant/polyMesh
-rf 1
-rf 2
-rf 3

checkMesh —-latestTime

386

Mesh generation using snhappyHexMesh

Let us generate the mesh of the wolf dynamics logo.

If you want to avoid the additional steps of transferring the final mesh to the
directory constant/polyMesh by not saving the intermediate steps, you

can proceed as follows:

* S$> snappyHexMesh -overwrite

When you proceed in this way, snappyHexMesh automatically saves the
final mesh in the directory constant/polyMesh.

Have in mind that you will not be able to visualize the intermediate steps.

Also, you will not be able to restart the meshing process from a saved state
(castellated or snapped mesh).

Unless it is strictly necessary, from this point on we will not save the /_\
intermediate steps.

387

Mesh generation using snhappyHexMesh

The constant/polyMesh/boundary file [2)

« At this point, we have a valid mesh to run a simulation.

» Have in mind that before running the simulation you will need to set the boundary and initial
conditions in the directory 0.

* Let us talk about the constant/polyMesh/boundary file,

» First of all, this file is automatically generated after you create the mesh or you convert it
from a third-party format.

» In this file, the geometrical information related to the base type patch of each boundary of
the domain is specified.

+ The base type boundary condition is the actual surface patch where we are going to apply
a numerical type boundary condition.

« The numerical type boundary condition assign a field value to the surface patch (base
type).

* You define the numerical type patch (or the value of the boundary condition), in the
directory 0 or time directories.

« The name and base type of the patches was defined in the dictionaries blockMeshDict
and snappyHexMeshDict.

* You can change the name if you do not like it. Do not use strange symbols or white
spaces.

* You can also change the base type. For instance, you can change the type of the patch
maxyY from wall to patch. 388

Mesh generation using snhappyHexMesh

The constant/polyMesh/boundary file [2)

Number of surface patches

18 o In the list bellow there must be 9 patches

19 T

20 minX definition.

21 {

22 type wall;

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 466399; wolf_wall

26 }

27 maxX

28 {

29 type wall;

30 inGroups 1(wall);

31 nFaces 400;

32 startFace 466799;

e } minZ

34 minY

25 {

36 type empty;

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 467199;

40 }

41 maxY mlnX maXX

42 {

43 type wall;

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 467599;

47 }

48 minZ maxz

49 { a

50 type wall;

51 inGroups 1(wall) ; Q'X

52 nFaces 400;

53 startFace 467999;

54 }
sphere
sphere_slave

389

Mesh generation using snhappyHexMesh

The constant/polyMesh/boundary file [2)

18
19
20
21
22
28
24
25
26
27
28
29
30
S
82
33
34
35
36
Sy
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Name

wall; — Type

type
inGroups
nFaces
startFace

type
inGroups
nFaces
startFace

type
inGroups
nFaces
startFace

type
inGroups
nFaces
startFace

type
inGroups
nFaces
startFace

1(wall) ;
400;

466399; \

wall;
1(wall);
400;
466799;

empty;
1(wall);
400;
467199;

wall;
1(wall) ;
400;
467599;

wall;
1(wall);
400;
467999;

nFace
startF

S
ace

Name and type of the surface patches

The name and base type of the patch is given by the user.

In this case the name and base type was assigned in the
dictionaries b1ockMeshDict and snappyHexMeshDict.

You can change the name if you do not like it. Do not use
strange symbols or white spaces.

You can also change the base type. Forinstance, you can
change the type of the patch maxY from wall to patch.

nFaces and startFace keywords

Unless you know what are you doing, you do not A
need to change this information.

Basically, this is telling you the starting face and ending face
of the patch.

This information is created automatically when generating
the mesh or converting the mesh.

390

Mesh generation using snhappyHexMesh

The constant/polyMesh/boundary file [2)

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

maxz

type wall;
inGroups 1(wall);
nFaces 400;
startFace 466399;
} — Name
wolf wall k
{
type wall; h Type
inGroups 1(wall);
nFaces 400;
startFace 466799; \
}
sphere
(nFaces
type empty; startFace
inGroups 1(wall);
nFaces 400;
startFace 467199;
}
sphere_slave
{
type wall;

inGroups
nFaces
startFace

1(wall);
400;
467599;

Name and type of the surface patches

The name and base type of the patch is given by the user.

In this case the name and base type was assigned in the
dictionaries b1ockMeshDict and snappyHexMeshDict.

You can change the name if you do not like it. Do not use
strange symbols or white spaces.

You can also change the base type. Forinstance, you can
change the type of the patch maxY from wall to patch.

nFaces and startFace keywords

Unless you know what are you doing, you do not A
need to change this information.

Basically, this is telling you the starting face and ending face
of the patch.

This information is created automatically when generating
the mesh or converting the mesh.

391

Mesh generation using snhappyHexMesh

Cleaning the case directory

When generating the mesh using OpenFOAM®), it is extremely important to
start from a clean case directory.

To clean all the case directory, in the terminal type:

* $> foamCleanTutorials
To only erase the mesh information, in the terminal type:
* $> foamCleanPolyMesh

If you are planning to start the meshing from a previous saved state, you do
not need to clean the case directory.

Before proceeding to compute the solution, remember to always check the
quality of the mesh.

392

6. snappyHexMesh guided tutorials.

393

snappyHexMesh guided tutorials

Our first case will be a mesh around a cylinder.

This is a simple geometry, but we will use it to study all the meshing steps
and introduce a few advanced features.

This case is located in the directory SPTOFC/101SHM/Mlcyl

394

snappyHexMesh guided tutorials

* Meshing with snappyHexMesh — Case 1.
« 3D cylinder with feature edge refinement (external mesh).
* You will find this case in the directory:

$PTOFC/101SHM/M1 cyl/C1

In the case directory, you will find the README . FIRST file. In this file, you will find the general instructions of
how to run the case. In this file, you might also find some additional comments.

You will also find a few additional files (or scripts) with the extension .sh, namely, run all.sh,
run mesh.sh, run sampling.sh, run solver.sh, and soon. These files can be used to run the case

automatically by typing in the terminal, for example, sh run solver.

We highly recommend you to open the README . FIRST file and type the commands in the terminal, in this
way, you will get used with the command line interface and OpenFOAM® commands.

If you are already comfortable with OpenFOAM®, use the automatic scripts to run the cases.

395

snappyHexMesh guided tutorials

3D Cylinder with edge refinement.

Sphere with no edge refinement Cylinder with edge refinement Cylinder with no edge refinement

« If the geometry has sharp angles and you want to resolve those edges, you should use edge
refinement.

* In the left figure there is no need to use edge refinement as there are no sharp angles.
* In the mid figure we used edge refinement to resolve the sharp angles.

* In the right figure we did not use edge refinement, therefore we did not resolve well the sharp
angles.

396

snappyHexMesh guided tutorials

3D Cylinder with edge refinement.

« How do we control curvature refinement and enable edge refinement?
* Inthe file snappyHexMeshDict, look for the following entry:

castellatedMeshControls

{

/ILocal curvature and
I[feature angle refinement
resolveFeatureAngle 30; < To contrpl curvature refinement

I[Explicit feature edge refinement

features
(
{
file “surfacemesh.eMesh"; > Igni?;b;;: ‘
, level 0; refinement level

} 397

snappyHexMesh guided tutorials

3D Cylinder with edge refinement.

How resolveFeatureAngle works?

angle < resolveFeatureAngle

If angle is more than resolveFeatureAngle No curvature refinement

the adjacent STL faces will be marked for s
refinement '

resolveFeatureAngle

0: mark the whole surface for refinement
180: do not mark any STL face for refinement

398

snappyHexMesh guided tutorials

3D Cylinder with edge refinement.

How resolveFeatureAngle works?

angle > resolveFeatureAngle

If angle is more than resolveFeatureAngle Curvature refinement

the adjacent STL faces will be marked for s
refinement 7

P
P
-

-
Pt
P
-

o

resolveFeatureAngle

0: mark the whole surface for refinement
180: do not mark any STL face for refinement

399

snappyHexMesh guided tutorials

3D Cylinder with edge refinement.

« How do we control surface refinement?
* Inthe file snappyHexMeshDict, look for the following entry:

castellatedMeshControls
{
/[Surface based refinement
refinementSurfaces
{
banana_stISurface To control surface refinement.
{ The first di§it controls the global
. surface refinement level and the second
level (2 4); < digit contrgls the curvature refinement
} level, according to the angle set in the
} entry resolyeFeatureAngle
}
400

snappyHexMesh guided tutorials

3D Cylinder with edge refinement.

How do we create refinement regions?
In the file snappyHexMeshDict, look for the following entry:

Dimensions of geometric

&

geometry
{
refinementBox <« Name of refinement region
{
type searchableBox; « Geometrical entity type.
min (-2 -2 -2); This is the zone v{here we
max (2 2 2); want to apply the| refinement
}

al entity

401

snappyHexMesh guided tutorials

3D Cylinder with edge refinement.

 How do we create refinement regions?
* Inthe file snappyHexMeshDict, look for the following entry:

castellatedMeshControls

{

refinementRegions

{ _ P Name of the region
refinementBox created in the geometry section

{

mode inside; < Type of refinement (inside,
levels ((1e15 1)); outside, or distance mode)

Refinement level

Distance from the surface
A large value covers the whole region

402

snappyHexMesh guided tutorials

3D Cylinder with edge refinement.

Effect of various parameters on edge capturing and surface refinement

Explicit feature edge refinement level 0 Explicit feature edge refinement level O
resolveFeatureAngle 110 resolveFeatureAngle 60
Surface based refinement level (2 2) Surface based refinement level (2 2)

« To control edges capturing you can decrease the value of resolveFeatureAngle.

» Be careful, this parameter also controls curvature refinement, so if you choose a low
value you also will be adding a lot of refinement on the surface.

403

snappyHexMesh guided tutorials

3D Cylinder with edge refinement.

Effect of various parameters on edge capturing and surface refinement

Explicit feature edge refinement level 0 Explicit feature edge refinement level 4
resolveFeatureAngle 60 resolveFeatureAngle 60
Surface based refinement level (2 2) Surface based refinement level (2 2)

« To control edges refinement level, you can change the value of the explicit feature
edge refinement level.

404

snappyHexMesh guided tutorials

3D Cylinder with edge refinement.

Effect of various parameters on edge capturing and surface refinement

Explicit feature edge refinement level 6 Explicit feature edge refinement level 0
resolveFeatureAngle 5 resolveFeatureAngle 5
Surface based refinement level (2 4) Surface based refinement level (2 4)

« To control edges refinement level, you can change the value of the explicit feature
edge refinement level.

405

snappyHexMesh guided tutorials

3D Cylinder with edge refinement.

Effect of various parameters on edge capturing and surface refinement

Explicit feature edge refinement level O Explicit feature edge refinement level 4
resolveFeatureAngle 60 resolveFeatureAngle 60
Surface based refinement level (2 4) Surface based refinement level (2 2)

« To control surface refinement level, you can change the value of the surface based
refinement level.

» The first digit controls the global surface refinement level and the second digit

controls the curvature refinement level. 15

snappyHexMesh guided tutorials

3D Cylinder with edge refinement.

Effect of various parameters on edge capturing and surface refinement

Explicit feature edge refinement level O Explicit feature edge refinement level O
resolveFeatureAngle 60 resolveFeatureAngle 5
Surface based refinement level (2 4) Surface based refinement level (2 4)

« To control surface refinement due to curvature together with control based surface
refinement level, you can change the value of resolveFeatureAngle, and surface
based refinement level

407

snappyHexMesh guided tutorials

3D Cylinder with edge refinement.

Let us explore the dictionary surfaceFeaturesDict used by the utility
surfaceFeatures.

This utility will extract surface features (sharp angles) according to an angle
criterion (includedAngle).

Features edges

Name of the STL. \

surfaces (“surfacemesh.stl’) - @—— The STU file is located
in constant/triSurface

Angle criterion
i . —
includedAngle 150; to extract features f
subsetFeatures J
{ Keep ngn-manifold edges

nonManifoldEdges yes; < (edges with more that 2
connected faces)

.
Keep open edges /
< pop g

openEdges yes; (edges with 1 connected face)

}

Features edges

If you want to save
the .obj files

writeObj yes; <«

408

snappyHexMesh guided tutorials

3D Cylinder with edge refinement.

* Let us explore the dictionary surfaceFeaturesDict used by the utility
surfaceFeatures.

» This utility will extract surface features (sharp angles) according to an angle
criterion (includedAngle).

Name of the STL. If angle is less than includedAngle

surfaces (“surfacemesh.stl”) - @—— The STL file is located this feature will be marked
in constant/triSurface

Angle criterion
. ¢ < —
includedAngle 150; to extract features

subsetFeatures
{ Keep ngn-manifold edges

nonManifoldEdges yes; < (edges with more that 2
connected faces)

includedAngle

: openEdges yes; (edges With 1 connected face) are at an angle less than includedAngle
0: selects no edges
180: selects all edge
writeObj yes: < If you want to save

the .obj files

409

snappyHexMesh guided tutorials

3D Cylinder with edge refinement.

If you want to have a visual representation of the feature edges, you can use
paraview/paraFoam.

Just look for the filter Feature Edges.

Have in mind that the angle you need to define in paraview/paraFoam is the complement of the
angle you define in the dictionary surfaceFeaturesDict

o Paraliew 4.1.0 64-bit v &

File Edit View Sources Filters Tools Macros Help

PEEROaF 2K KAD> BB w0 B

U @ ff[@sodcoor 7][7] (surfece DE: skl [(#Fleea
COPR@O @ ok
Pipeline Browser [Layout #1% | ¥ |
ﬁbuntm: & 30 B A K B R R BE RO EERES
@ B MI1_cyl_er.OpenFOAM
@ = surfacemes| h.stl
@

Properties Information

Properties

[aeply || geset || stpewte | ? l

[Search ... (use Esc to clear text)]
[= Properties (FeatureEdgesl) ﬂ /

x| Boundary Edges

(%] Feature Edges

(%] Non-Manifcld Edges
["] Manifold Edges

ﬁl Feature Angle —(}————— I
{ = Display (GeometryRepresen tation) J
Represen tation [Surface |.]
Coloring %\
[@ solid color [l [+ /

Sralar Calarina

=1 L 410

snappyHexMesh guided tutorials

3D Cylinder with edge refinement.

* In this case we are going to generate a body fitted mesh with edge refinement. This is an
external mesh.

* These are the dictionaries and files that will be used.
e system/snappyHexMeshDict
* system/surfaceFeaturesDict
» system/meshQualityDict
e system/blockMeshDict
e constant/triSurface/surfacemesh.stl

e constant/triSurface/surfacemesh.eMesh

 The file surfacemesh.eMesh is generated after using the utility surfaceFeatures, which
reads the dictionary surfaceFeaturesDict.

 The utility surfaceFeatures, will save a set of *.obj files with the captured edges. These files
are located in the directory constant/extendedFeatureEdgeMesh. You can use paraview
to visualize the *.obj files.

411

snappyHexMesh guided tutorials

3D Cylinder with edge refinement.

* Let us generate the mesh, in the terminal window type:

$> foamCleanTutorials

$> surfaceFeatures

$> blockMesh

$> snappyHexMesh —-overwrite

S> checkMesh —-latestTime

2 A

$> paraFoam

* In step 2 we extract the sharp angles from the geometry.
* |In step 3 we generate the background mesh.

* In step 4 we generate the body fitted mesh. Have in mind that as we use the
option —overwrite, we are